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PAPER

Delay Evaluation of Issue Queue in Superscalar Processors with
Banking Tag RAM and Correct Critical Path Identification

Kyohei YAMAGUCHI†, Yuya KORA††∗, Nonmembers, and Hideki ANDO†a), Member

SUMMARY This paper evaluates the delay of the issue queue in a su-
perscalar processor to aid microarchitectural design, where quick quantifi-
cation of the complexity of the issue queue is needed to consider the trade-
off between clock cycle time and instructions per cycle. Our study covers
two aspects. First, we introduce banking tag RAM, which comprises the
issue queue, to reduce the delay. Unlike normal RAM, this is not straight-
forward, because of the uniqueness of the issue queue organization. Sec-
ond, we explore and identify the correct critical path in the issue queue. In
a previous study, the critical path of each component in the issue queue was
summed to obtain the issue queue delay, but this does not give the correct
delay of the issue queue, because the critical paths of the components are
not connected logically. In the evaluation assuming 32-nm LSI technology,
we obtained the delays of issue queues with eight to 128 entries. The pro-
cess of banking tag RAM and identifying the correct critical path reduces
the delay by up to 20% and 23% for 4- and 8-issue widths, respectively,
compared with not banking tag RAM and simply summing the critical path
delay of each component.
key words: microprocessor, superscalar processor, issue queue, delay,
complexity

1. Introduction

The tradeoff between complexity and attained instructions
per cycle (IPC) must be considered in the microarchitectural
design phase of microprocessors. To quantify complexity
precisely, the delay of structures must be known. Although
a quick estimation is required in the microarchitectural de-
sign phase, this is a time-consuming task in reality, since
a circuit-level simulation that considers the layout must be
carried out. It would thus be useful if evaluated delays for
structures were readily available.

The issue queue is one of the superscalar processor
structures whose delay is difficult to estimate. To achieve
increased IPC, the issue queue needs to be enlarged. In fact,
the recently released Intel Sandy Bridge has a 54-entry is-
sue queue, whereas the previous generation, the Nehalem,
only has 36 entries [1]. However, as the issue queue com-
prises one of the critical paths in a processor, its enlargement
can degrade the clock cycle time. In this study, we evaluate
the delay of issue queues of varying sizes and issue widths
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through circuit-level simulations. Despite previous evalua-
tions of the delay of parts of or the whole issue queue [2],
[3], the contributions of this paper, as given below, are quite
different.

• To reduce the delay, a banked tag RAM, which is one
of the components comprising the issue queue, is de-
signed. Although it has intuitively been found that
banking is effective in large issue queues in current and
future technology generations where wire delay is seri-
ous, there have been no studies on banking tag RAM.
In normal RAM, multiple banks are accessed in paral-
lel using part of the address, and then one of the outputs
from the banks is selected by the other part of the ad-
dress. However, this method is unusable in tag RAM,
since this is not accessed via an address but instead
through direct activation of a wordline connected to the
selection logic, another component in the issue queue.
Thus, a novel banked tag RAM, accommodating the
selection logic, is designed.
• In a previous study [3], the issue queue delay was ob-

tained by summing the delay of the critical path of each
component comprising the issue queue. Unfortunately,
the delay obtained in this way is overestimated, espe-
cially in a large issue queue, because the critical paths
of these components are not connected logically. In
this paper, we identify the correct critical path of the
issue queue through exhaustive simulation and give its
delay.

This paper is an extension of our previous conference
paper [4]–[6] providing more detailed descriptions and ad-
ditional evaluation results.

The remainder of this paper is organized as follows.
Section 2 presents related work. Section 3 describes the pro-
cessor organization we assumed to narrow down the organi-
zation of the issue queue in this study. Section 4 explains
the circuit organization of the issue queue, while Sect. 5 dis-
cusses its critical paths. Evaluation results are presented in
Sect. 7, and finally our conclusions are stated in Sect. 8.

2. Related Work

Although many studies have focused on the organization of
the issue queue (e.g., [7], [8]), there are few that cover cir-
cuit design. In this section, we discuss relevant studies that
address circuit designs and evaluate the delay. Note that the
critical path of an issue queue traverses three components,

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



2236
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

namely, the wakeup logic, selection logic, and tag RAM, as
described in Sect. 4.

Having evaluated the delay of critical structures in
a processor using 800 nm to 180 nm technology [2], [9],
Palacharla et al. suggested that the issue queue, which is
a target for enlargement, is one of the key structures affect-
ing the clock cycle time. By assuming a CAM organization
of the wakeup logic, the authors evaluated the delay, point-
ing out that the tag drive delay is the most serious in a large
issue queue under deep submicron technology, because the
wire delay is not scaled.

Palacharla et al. also evaluated selection logic imple-
mented using arbiter circuits. Generally, selection takes a
long time if many requests are being arbitrated at the same
time. Therefore, a logic circuit was implemented by seri-
ally connecting small arbiters that grant the request with the
highest priority out of four requests. Since the resulting se-
lection logic circuit grants only one of the requests, it is nec-
essary to connect the logic serially to extend it so as to be
able to grant multiple requests. Unfortunately, this extension
has the drawback of linearly increasing the delay according
to the number of requests granted, and thus it is not suit-
able for the unified issue queue used in modern processors
(e.g., [1], [10]).

Although Palacharla et al. evaluated the delays of the
wakeup and selection logic, they did not evaluate the tag
RAM delay, and thus the total delay of the issue queue was
not obtained.

Goshima et al. proposed a scheme that organizes the
wakeup logic using RAM instead of CAM [3]. In the RAM
organization, comparators are not necessary, unlike in the
CAM organization. In addition, since RAM is more com-
pact than CAM, the length of the wires stretching across the
logic is reduced. Although this in turn reduces the delay,
the RAM organization has the drawback that compaction of
the issue queue is difficult to implement, because dependen-
cies are represented by the entry positions in the issue queue.
Goshima et al. compared the delay of the RAM organization
with that of the CAM organization. However, it seems that
they calculated the delay of the issue queue of the CAM or-
ganization by simply summing the delay of the critical path
of each component. Unfortunately, using this simple calcu-
lation to obtain the issue queue delay is incorrect, because
the critical paths of all the components are not connected
logically.

Regarding tag RAM, Goshima et al. assumed a mono-
lithic RAM in their evaluation, but did not consider banking
it†. For a large queue, however, the bitline delay is signifi-
cant, and thus banking is effective.

Regarding the selection logic, Goshima proposed a cir-
cuit using prefix-sum logic [11]. This logic uses adders to
count the number of requests with a higher priority than a
specific request. If the calculated number for a particular re-
quest is smaller than the issue width, the request is granted.
Unlike Palacharla’s arbiter logic circuit, this logic circuit
does not significantly increase the delay depending on the
number of requests granted. The drawback, however, is that

the delay of the adders is large. Goshima attempted to re-
duce this delay by improving the adders through elaborative
encoding of their input and output.

3. Processor Organization

In this section, we explain the processor organization as-
sumed to narrow down the organization of the issue queue
discussed in this paper. Figure 1 shows a block diagram
of the organization of the processor. Multiple instructions
are fetched from the L1 instruction cache, and are decoded.
The logical registers of the decoded instructions are then
renamed to appropriate physical registers, with the physi-
cal register numbers used as tags identifying dependences.
The renamed instructions are inserted into the issue queue,
where they await the resolution of their dependences. In-
structions with all dependences resolved are issued and ex-
ecuted in a function unit with their source operands fetched
from either the register file or the bypass logic. Complet-
ing instructions broadcast their destination tags to the issue
queue making it known that their results are ready to use.
The results are written into the register file. The L1 data
cache provides memory accesses of load and store instruc-
tions.

In general, there are two main processor organizations,
with the first of these shown in Fig. 1. In this type of orga-
nization, the register file contains both committed and tem-
porary values for completed instructions that have not yet
committed, and provides source operand values to the is-
sued instructions. It should be noted that the issue queue
does not hold source operand values. Processors with this
organization include the MIPS R10000 [12], Digital Equip-
ment Alpha 21264 [13], Intel Sandy Bridge [1], and AMD
Bulldozer [10].

The other major organization is the one introduced in
the Intel P6 family of processors [14]. Unlike the former
organization, temporary values for completed instructions
that have not yet committed are held in a structure called the
reorder buffer, which controls the commit of values, while
the register file holds only committed values. Instructions
inserting into the issue queue read source operand values
from the register file or the reorder buffer, and write them to
the issue queue. This type of issue queue is called a reser-
vation station. The point to be noted is that, unlike the is-
sue queue in the former organization, the reservation station
holds source operand values. Thus, for instructions waiting
in the reservation station to obtain the results of completing
instructions, execution results, together with the destination
tags, are broadcast to the reservation station and the entry
with a tag match acquires a result. Owing to holding source
operand values and the necessity for broadcasting the result,

†They evaluated issue queues with up to 32 entries. In such
small queues, banking is not very effective, and the issue queue
delay obtained by simple summation is not much different to the
delay of the correct critical path, based on our evaluation described
in Sect. 7.4. Therefore, the evaluation results obtained under their
assumptions and experimental setup are correct.
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Fig. 1 Processor organization.

Fig. 2 Organization of issue queue.

the reservation station is larger and less power-efficient than
the issue queue. Thus, many recent processors have adopted
the former organization, including the Intel Sandy Bridge
and AMD Bulldozer.

4. Issue Queue Organization and Circuit

As described in Sect. 3, the issue queue holds renamed in-
structions and determines instructions to be issued. It com-
prises the wakeup logic, selection logic, tag RAM, and pay-
load RAM, as illustrated in Fig. 2. The wakeup logic is a
one-dimensional array, with each entry holding the tags of
two source operands attached at renaming, and ready flags
indicating the data dependence state (resolved or not) for the
corresponding instruction. If both data dependences are re-
solved, an issue request (simply denoted by request in the
figure) is sent to the selection logic, which grants some re-
quests by considering resource constraints. The grant sig-
nals are sent to the payload RAM, which outputs informa-
tion regarding the issued instructions. The signals are also
sent to tag RAM, and the destination tags are read. These
tags are broadcast to the wakeup logic to update the ready
flags.

The critical path of the issue queue begins at the
wakeup logic, goes via the selection logic to the tag RAM,
and finally returns to the wakeup logic. This paper evaluates
the delay of this critical path.

As stated in Sect. 2, various circuits have been pro-
posed for the wakeup and selection logic. Here, we assume
a circuit comprising CAM for the wakeup logic, since the
RAM organization has the serious drawback that it is dif-
ficult to compact the issue queue (A simple way to avoid
this drawback is to implement the issue queue using a circu-
lar buffer, although because of wrap-around this gives incor-
rect priority information of the issue requests to the selection
logic. A more elaborate solution is to use the age matrix [15]
for the selection logic; it is, however, difficult to extend this
circuit to grant multiple requests). For the selection logic,

Fig. 3 Wakeup logic.

Fig. 4 CAM cell circuit for tag comparison.

we assume a circuit composed of prefix-sum logic, because
contrary to what happened with arbiter logic, the delay in
this circuit does not increase much as the number of granted
requests increases.

4.1 Wakeup Logic

Figure 3 illustrates the wakeup logic comprising CAM. IW
destination tags (depending on the context, we refer to a des-
tination tag simply as a tag) read from the tag RAM are
broadcast to all entries of IQS in the wakeup logic, driven
by tag drivers. Here, IW and IQS denote the issue width and
issue queue size, respectively. Each entry has two source
operand tags, which are compared with the destination tags
broadcast. If there is a match, the ready flag is set. If both
ready flags are set, an issue request is output.

Figure 4 shows the circuit of a CAM cell that performs
tag comparison. A single entry of the wakeup logic com-
prises a row of CAM cells, depending on the number of tag
bits. The SRAM cell on the left of the figure holds a single
bit of the source operand tag. The horizontal lines, called
match lines, indicate that the tags are matched. The two
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Fig. 5 prefix-sum circuit with N = 16.

stacked transistors are pull-down transistors that discharge
the match lines, depending on the result of the tag compari-
son.

The circuit operates as follows. First, the match lines
are pre-charged, and then the destination tags are driven.
If any bit in the pair of source and destination tags is un-
matched, the match line corresponding to the pair is pulled
down by the stacked transistors. If all bits are matched, the
match line remains high.

4.2 Selection Logic

We assume that the selection logic is implemented by prefix-
sum logic, as described at the beginning of Sect. 4. In gen-
eral, prefix-sum logic has N inputs and N outputs, where the
i-th (0 ≤ i ≤ N − 1) output is the sum of the values of the
0-th to i-th input. Figure 5 shows a circuit diagram of the
prefix-sum logic [11] with N = 16, as an example. Note that
the number of adders on the critical path is log2 N.

When using this logic as the selection logic, we assume
each input is the Boolean value of the issue request, and the
logic adds the input values arithmetically. If the (i − 1)-th
output is less than the issue width and the i-th issue request is
true, the request is granted. Figure 6 shows the grant signal
output circuit, using the one-hot encoding adder described
below. Note that signal grantiu is connected to the u-th (0 ≤
u ≤ IW − 1) wordline for the cell of the i-th entry in the tag
RAM.

A new adder circuit was proposed by Goshima to
lessen the delay [11]. In the selection logic, it is sufficient
that the input and output of the adder represent only five
values, that is, “0”, “1”, “2”, “3”, and “≥ 4” when IW = 4
for example. Goshima represented the input and output us-

Fig. 6 Grant output circuit with IW = 4.

Table 1 One-hot encoding for adder input and output (IW = 4).

value 0 1 2 3 ≥ 4
encoding 1000 0100 0010 0001 0000

Fig. 7 Adder for selection logic (IW = 4).

Fig. 8 Top-level diagram of selection logic.

ing four-bit one-hot encoding, as shown in Table 1, and or-
ganized the circuit as a domino circuit, as shown in Fig. 7.
Here, a four-bit a is added to b, and the four-bit sum c is
output. As intuitively found, this circuit is faster than a con-
ventional adder, and thus we used it in our evaluation.

Figure 8 shows the top-level diagram of the selection
logic.

4.3 Tag RAM

Tag RAM consists of SRAM without the address decoder. It
has IW ports, with IW-bit grant lines per entry (see Fig. 6)
from the selection logic directly connected to the IW word-
lines per entry. In a monolithic organization, up to IW desti-
nation tags held in the cells connected to the asserted word-
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Fig. 9 Banked normal RAM.

lines are read to bitlines, and output after being amplified
with senseamps.

As in a normal RAM, banking can reduce access time.
However, the organization of tag RAM is not straightfor-
ward, because it is not accessed via an address.

We first review banking normal RAM accessed by an
address. Figure 9 illustrates the organization of banked nor-
mal RAM. The locations of the RAM are interleaved for the
sake of explanation. Accessing this banked RAM is carried
out as follows. All banks are accessed simultaneously using
the upper portion of the address. Simultaneously, the lower
portion of the address is decoded, and the decoded signals
are used to select a target bank to be accessed. The output
of the selected bank is allowed to drive the global bitline
through the AND gate that enables the pull-down transistor.

In the case of tag RAM, selection of a bank is difficult
because there is no address identifying the target bank to be
accessed. Instead, we use the sums of the issue requests (the
outputs of the prefix-sum). Figure 10 ((a) overview and (b)
details of a bank) shows the organization of tag RAM with
banks of j entries and IW = 4. We add the gating logic,
which enables the outputs of a bank, tx0–tx3. The enabling
logic in the gating logic identifies which port of the corre-
sponding bank is valid by observing the total sum of issue
requests from the first entry of the queue to the last entry
of the corresponding bank and that of the previous bank.

For example, if
7∑

i=0

requesti = 1 and
15∑

i=0

requesti = 3, with

(a) Overview

(b) Details of a bank (IW = 4)

Fig. 10 Organization of banked tag RAM.

j = 8, the logic identifies that the 1st and 2nd ports of the
0th–3rd ports of bank1 are valid, and thus only tx1 and tx2

are allowed to be output to the global bitlines. Table 2 gives
the complete truth table for the enabling logic. Note that c0–
c3 are the outputs of the last adder associated with the sum
output, which is one-hot encoded (see Table 1 and Fig. 7).
The third row in the second section in the table depicts the
case in the previous example.

Unlike banking in normal RAM, there are two critical
paths in accessing a bank; one is the grant signal to the tag
output via a banked RAM, while the other is the sum of
requests to the tag output via the gating logic.

4.4 Layout

The assumed layout of the wakeup logic, selection logic,
and tag RAM is shown in Fig. 11. This circuit layout was
manually drawn, assuming MOSIS design rules [16]. Since
the height of a single entry in each component is nearly
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Table 2 Truth table of enabling logic (IW = 4).

prev sum sum enable
c0–c3 c0–c3 en0–en3
1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 1 1 1 1 0
1 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0 1 1 0
0 1 0 0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 11 Layout of wakeup logic, selection logic, and tag RAM.

equal, we determined the height of a single entry of the is-
sue queue from the largest value. Thus, the issue request
and grant signal lines are laid out horizontally without jogs.

5. Correct Critical Path

The path obtained by simply connecting the critical path of
each component is not logically connected. For example,
consider the configuration where the output of the tag RAM
and the tag driver in the wakeup logic are connected at the
last entry, as shown in Fig. 12. Suppose that a signal starts
from mark (1) and goes via marks (2) to (5) before returning
to (1), traversing the critical paths of the wakeup logic and
selection logic. In this case, the signal does not go through
the critical path of the tag RAM (marks (6) to (5), bitline
traversing).

Possibly correct critical paths are shown in Fig. 13,
with different configurations, where the output of the tag
RAM and the tag driver in the wakeup logic are connected
(a) at the last entry and (b) at the first entry. Two differ-
ent configurations arise from the up-down asymmetry of
the selection logic. In configuration A, the path turns at
the n-th entry in the selection logic, whereas in configu-
ration B, it turns at the m-th entry in the wakeup logic
(0 ≤ n,m ≤ IQS − 1). Based on an evaluation, we first
find the longest path (i.e., find n and m) in configurations A
and B, respectively. Then, we determine that the configura-
tion with the shorter path is the better configuration, and the
associated path is the correct critical path.

Fig. 12 Path simply connecting the critical path of each component.

(a) Configuration A

(b) Configuration B

Fig. 13 Possibly correct critical paths.

6. Timing Assumptions

Before presenting the evaluation results, we describe the as-
sumptions with respect to timing.

6.1 Basic Assumption

Figure 14 (a) shows a simplified block diagram of the issue
queue to explain the basic assumption of timing. The sig-
nal starts at the synchronous SR-latches for the ready flags,
proceeds through the combination logic (the wakeup and se-
lection logic, and tag RAM), and returns to the ready flag
latches. Figure 14 (b) shows the timing chart for this block
diagram, where TS R and Tcomb are the delays of the SR-latch
and combination logic, respectively, and Tsetup is the setup
time for the SR-latch. The delay of the issue queue is the
sum of these three values. However, for simplicity, we as-
sume that the setup time is 0 in our evaluation. Thus, the
issue queue delay is given by TS R + Tcomb.
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(a) Circuit

(b) Timing chart

Fig. 14 Simplified block diagram of the issue queue.

(a) Circuit

(b) Timing chart

Fig. 15 Two-phase dynamic circuit.

6.2 Assumptions in Dynamic Circuits

As explained in Sect. 4, the circuits for the wakeup and se-
lection logic, and the tag RAM are basically composed of
dynamic circuits. In this section, we describe the timing as-
sumptions in dynamic circuits.

We introduce the two-phase clocking scheme shown
in Fig. 15 (a). This figure shows a general organization in
this scheme; a specific organization in the issue queue is
described in Sect. 6.3. In the figure, the box labeled “dy-
namic circuit” represents a single-stage dynamic circuit or
cascaded domino circuits.

Dynamic circuits 1 and 2 are precharged by a clock
with different phases, φ1 and φ2, respectively, while the
pass-transistors dynamically latch the value evaluated when
the clock falls. Two-phase clocking allows the precharge

Fig. 16 Insertion of clocks and latches.

(a) Circuit

(b) Timing chart

Fig. 17 Circuit from tag drive to selection logic.

time of a circuit to be hidden by the evaluation time of an-
other circuit driven by the other phase clock.

Figure 15 (b) shows the timing chart, where T1 is the
delay of dynamic circuit 1 including the AND gate with in-
put φ1, Tpass is the delay of the pass-transistors after circuit
1, and Tsetup is the setup time against the falling edge of
φ2. The substantive delay of dynamic circuit 1 is the sum of
these three values. However, for simplicity, we assume that
the setup time is 0 in our evaluation, as in Sect. 6.1, and thus
the delay of dynamic circuit 1 is T1 +Tpass. We also assume
that the clock edge falls at the exact time of the arrival of
a signal on a critical path, and rises before the arrival of a
signal. Under these assumptions, the delay we need to eval-
uate is where a signal goes through the circuit without tak-
ing clock timing into account. Note again that the precharge
time is hidden by the evaluation time of the dynamic circuit
in the other phase, and thus we do not need to consider this.

The delay under these assumptions gives the lower



2242
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

bound of the delay. If a reader wishes to consider the timing
margin, add it to the delay given in this paper.

6.3 Inserting Two-Phase Clocks and Latches into the Issue
Queue

Figure 16 illustrates our assumptions underlying the inser-
tion of two-phase clocks and latches into the issue queue
circuit, where the shaded boxes represent the latches. The
latches clocked by φ1 are explicitly inserted, whereas the
latches clocked by φ2 are the already-existing ready flag
latches.

Figure 17 extracts the circuit from the tag drive to the
selection logic (a) and shows its timing chart (b). While
clock φ1 is HIGH, the comparators are precharged. When
clock φ1 falls, the tags are driven and the match line is
determined. After proceeding through the NOR and in-
verter gates, the signal is stored into the ready latch while
clock φ2 is HIGH. During this period, the selection logic is
precharged. When clock φ2 falls, the request signal is sent
to the selection logic, and the logic operates.

7. Evaluation

By means of a SPICE simulation, we evaluated the issue
queue delay, varying the size of the issue queue with IW = 4
and 8, respectively. We fixed the tag width at 8. The delay
variation with respect to tag width is small, and thus we omit
these evaluation results.

Assuming 32-nm technology, we used the predictive
transistor model [17], [18] developed by the Nanoscale In-
tegration and Modeling group of Arizona State University
as the transistor model for SPICE. We used the resistance
and capacitance per unit length of the wire predicted by
the International Technology Roadmap for Semiconductors
(ITRS) [19]. Repeaters were inserted in long wires to reduce
the delay, with the optimum interval of insertion selected by
experimentation.

7.1 Delay of Wakeup Logic

Figure 18 shows the evaluated delay of the wakeup logic
for various issue queue sizes. Each bar is divided into five
sections: delays of the tag drive, tag match (comparison
of tags), OR (ORing all comparison results), ready (going
through synchronous SR-latch for a ready flag), and AND
(ANDing two matching ORs). As shown in the figure, with

(a) IW = 4 (b) IW = 8

Fig. 18 Delay of wakeup logic.

both IW = 4 and 8, the delays of the tag match and ready
latch are equivalently the largest part in small queues, but
the delay of the tag drive increases significantly as the issue
queue size increases.

If IW increases from 4 to 8, the delay increases signif-
icantly. Since the CAM cell size is increased both horizon-
tally and vertically, the length of the tag and match line wires
increases. Thus the delays of the tag drive and tag match are
increased. Also, since the fanin of the OR gate is increased,
the delay of ORing all comparison results increases.

Figure 19 summarizes which parameter (IQS , IW, or
BS (bank size)) has an impact on the delay of the associ-
ated paths. The notation for the attributes on each path is as
follows.

attribute = param〈type, direction〉
param = {IQS | IW | BS }
type = {gate | wire}
direction = {+ | −}

Attribute denotes which type of delay of the associated path
is positively or negatively (direction) impacted, if param is
increased.

7.2 Delay of Selection Logic

Figure 20 shows the evaluated delay of the selection logic
for various issue queue sizes. Each bar is divided into three
sections: the sum of the adders’ delay, the sum of the wires’
delay, and the AND delay of the issue request and output of
the prefix-sum logic. As shown in the figure, the gate delay
of the adders is dominant with both IW = 4 and 8. The delay
increases by O(log2 IQS ), because the number of adders on
the critical path is log2 IQS , as discussed in Sect. 4.2.

Fig. 19 Parameters that impact delays in the wakeup logic.

(a) IW = 4 (b) IW = 8

Fig. 20 Delay of selection logic.
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Fig. 21 Parameters that impact the delay in the selection logic.

(a) IW = 4 (b) IW = 8

Fig. 22 Tag RAM delay for various bank sizes.

If IW increases from 4 to 8, the delay of adders in-
creases, because the drain capacitance that is parasitized to
the input node of the inverter outputting c7 (seventh-bit of
the output of the adder) with IW = 8 is larger than that out-
putting c3 with IW = 4 (see Fig. 7). Note that eight and
four stacked transistors are connected to the output inverter
with IW = 8 and 4, respectively. The delay of the wires also
increases because the height of the entry in the issue queue
increases.

Figure 21 summarizes which parameter has an impact
on the delay of the associated paths.

7.3 Delay of Tag RAM

Figure 22 shows the evaluated delay of the tag RAM for var-
ious issue queue and bank sizes. Note that the point where
the bank size is equal to the issue queue size (IQS ) rep-
resents the case in which banking is not carried out. With
IW = 4 and 8, for small queues (IQS ≤ 16), banking is
ineffective, because the length of the bitline is not long, and
the number of SRAM cells connected to the bitline is small.
On the other hand, banking is effective in large queues for
the opposite reason.

If IW increases from 4 to 8, the delay of tag RAM in-
creases, because the entry size of the issue queue increases
and thus the wire length increases. The optimal bank sizes
are the same (16 and 32) for both IWs with IQS = 32 and
64. On the other hand, they are different (64 in IW = 4 and
16 in IW = 8) with IQS = 128. This is because the bitline is
longer with IW = 8, and the tag RAM is more aggressively
divided into banks to reduce the delay.

(a) IW = 4 (b) IW = 8

Fig. 23 Delay of tag RAM with optimal bank configuration.

Fig. 24 Parameters that impact the delay in the tag RAM.

As described in Sect. 4.3, there are two critical paths in
accessing the bank. From the experiment, the longer path
goes via the gating logic only in the case of IQS = 32 with
IW = 4, whereas in the other banked cases for both IWs it
goes via a banked RAM.

Figure 23 shows the evaluated delay of the tag RAM
for various issue queue sizes with the optimal banking con-
figuration. Each bar is divided into two sections, containing
the appropriate values from the following four categories:
the SRAM bitline delay (no banking case, including the
senseamp delay), wordline delay (no banking case), bank
delay (banking case, including the gating logic delay if it is
on the critical path), and global bitline delay (banking case).
Note that, the tag RAM was not banked for IQS ≤ 16 with
both IWs, whereas it was banked for IQS ≥ 32. As shown
in the figure, the bitline delay dominates in small queues
(wordline delay is too small to be visible with IW = 4),
whereas the bank delay dominates in large queues, although
the delay of the global bitline also contributes a significant
part. Note that the bank delay for IQS = 128 with IW = 8
is smaller than that for IQS = 64 because the tag RAM is
divided into smaller banks in the former case.

Figure 24 summarizes which parameter has an impact
on the delay of the associated paths.

7.4 Critical Path

To find the critical path, we evaluated the delays in the
two configurations described in Sect. 5, varying the turning
points n and m. Figure 25 shows the evaluated delays of
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Table 3 Delay of slowest paths in configurations A and B.

4-issue 8-issue
issue queue size configuration A configuration B configuration A configuration B

n delay [ps] m delay [ps] n delay [ps] m delay [ps]
8 7 247 7 247 7 289 7 289

16 15 276 15 277 15 326 15 328
32 31 309 28 319 31 360 31 376
64 63 349 61 369 31 427 63 460
128 43 430 127 464 79 552 127 593

(a) Configuration A (b) Configuration B

Fig. 25 Delay of components for various turning points with IQS = 128
and IW = 4.

the components in a 128-entry issue queue with IW = 4,
for example, in configurations A and B, varying n and m,
respectively. The graph for configuration A shows the se-
lection logic delay, tag RAM delay, and their sum; the delay
of the wakeup logic is constant for n and is not shown. The
graph for configuration B shows the wakeup logic delay, se-
lection logic delay, and their sum; the delay of the tag RAM
is constant for m and is not shown.

In configuration A, the delay of the selection logic in-
creases by O(log2 n), because the number of adders on the
signal path increases at this rate. On the other hand, the
delay of the tag RAM is roughly constant without a discon-
tinuous drop, which is caused by which bank the signal tra-
verses; the signal through the bank for lower entries must
traverse the global bitline completely. The slowest path is
found when the path turns at n = 43.

In configuration B, the delay of the wakeup logic in-
creases slowly as m increases (the discontinuous rise is
caused by a repeater inserted in the tag lines; the evaluated
signal does not go through the repeater when n ≤ 63). On
the other hand, the delay of the selection logic is almost con-
stant, because the number of adders to the output in the last
entry is constant and independent of the input position (see
Fig. 5); the slant is caused by wire delays. The slowest path
occurs when the path turns at m = 127.

Since the faster of the slowest paths in configurations
A and B is the one in configuration A, configuration A is the
better configuration, and the path in configuration A is the
critical path.

Figure 26 shows an 8-issue case. Characteristics simi-
lar to the 4-issue case are observed. Note that the discontin-
uous drops in the tag RAM delay in Fig. 26 (a) appear more
frequently than in the 4-issue case, because the tag RAM is
divided into smaller banks (16 entries).

Table 3 lists the evaluated delays of the slowest paths
in configurations A and B, together with the n and m values

(a) Configuration A (b) Configuration B

Fig. 26 Delay of components for various turning points with IQS = 128
and IW = 8.

(a) IW = 4

(b) IW = 8

Fig. 27 Total delay of issue queue with design optimizations.

of the paths, with IW = 4 and 8. The delays of the slowest
paths in configurations A and B are close, especially in small
queues, but those for configuration A are slightly better, with
either issue width.

7.5 Summary of Evaluation

Figure 27 summarizes the total delay of various sizes of the
issue queue with different design optimization. There are
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three design optimization classes. “Simple” does not divide
the tag RAM into banks, and the issue queue delay is ob-
tained by simply summing the critical path of each com-
ponent. “Not-banked” does not divide the tag RAM, but
a correct critical path is measured. “Optimized” divides
the tag RAM into banks if beneficial, and a correct criti-
cal path is measured (the proposal in this paper). Each bar
is divided into the delays of the wakeup logic, the selection
logic, tag RAM, and the connection. The connection delay
is the sum of the delays of the connection of the wakeup
logic, selection logic, and tag RAM. As the figure shows,
“optimized” reduces the issue queue delay more as the is-
sue queue grows. The reduction rates compared with “not-
banked” and “simple,” are 13% and 20%, respectively, for a
128-entry queue with IW = 4. With IW = 8, the values are
8% and 23%, respectively.

8. Conclusion

This paper showed the issue queue delay for various queue
sizes and issue widths of four and eight. Our evaluation
results are useful as a quick reference in the microarchitec-
tural design of a processor. In the evaluation, we designed a
banked tag RAM, and identified the correct critical path of
the issue queue. With these optimizations, the issue queue
delay is reduced by up to 20% and 23% for 4- and 8-issue
widths, respectively, for the sizes we explored, compared
with a simple design using a monolithic tag RAM and with
a simple calculation of the delay.
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Appendix: Delay Data

Table A· 1 gives the raw data of the evaluated delay of the
optimized class in Fig. 27.
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Table A· 1 Breakdown of issue queue delay.

(a) IW = 4

issue queue wakeup selection tag RAM connection total
size delay [ps] delay [ps] delay [ps] delay [ps] delay [ps]

8 86 61 44 55 247
16 90 80 52 54 276
32 97 100 58 54 309
64 112 124 59 54 349

128 146 119 110 54 430

(b) IW = 8

issue queue wakeup selection tag RAM connection total
size delay [ps] delay [ps] delay [ps] delay [ps] delay [ps]

8 108 62 50 69 289
16 113 83 61 69 326
32 125 109 56 69 360
64 152 109 96 69 427

128 206 170 107 69 552
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