
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012
2247

PAPER

Effective Fault Localization Approach Using Feedback

Yan LEI†a), Student Member, Xiaoguang MAO†b), Nonmember, Ziying DAI†,
and Dengping WEI†, Student Members

SUMMARY At the stage of software debugging, the effective inter-
action between software debugging engineers and fault localization tech-
niques can greatly improve fault localization performance. However, most
fault localization approaches usually ignore this interaction and merely uti-
lize the information from testing. Due to different goals of testing and fault
localization, the lack of interaction may lead to the issue of information in-
adequacy, which can substantially degrade fault localization performance.
In addition, human work is costly and error-prone. It is vital to study and
simulate the pattern of debugging engineers as they apply their knowledge
and experience to this interaction to promote fault localization effectiveness
and reduce their workload. Thus this paper proposes an effective fault lo-
calization approach to simulate this interaction via feedback. Based on re-
sults obtained from fault localization techniques, this approach utilizes test
data generation techniques to automatically produce feedback for interact-
ing with these fault localization techniques, and then iterate this process to
improve fault localization performance until a specific stopping condition
is satisfied. Experiments on two standard benchmarks demonstrate the sig-
nificant improvement of our approach over a promising fault localization
technique, namely the spectrum-based fault localization technique.
key words: fault localization, software debugging, program spectra, feed-
back

1. Introduction

Due to the sheer size and complexity of software, it is almost
impossible to produce faultless software. For these reasons,
software debugging is employed to find and fix bugs, and
so plays a vital role in improving software quality. How-
ever, debugging is one of the most time-consuming tasks in
the development and maintenance of software [1]. A typi-
cal process of debugging consists of four steps: failure re-
production, fault localization, fault repair and repair verifi-
cation, among which fault localization is usually a tedious
and difficult step [2]. With the aim at decreasing the cost of
debugging, many researchers try to optimize the process of
fault localization and improve its performance [1]–[25].

Although fault localization has made great progress in
recent years, the published results are not so satisfactory.
Typically, the process of fault localization is as follows.
First, a software debugging engineer uses some fault local-
ization techniques to locate faults. Then, he/she analyzes
and deduces the primary results obtained from these fault
localization techniques. Next, based on the analysis and de-

Manuscript received March 14, 2012.
Manuscript revised May 24, 2012.
†The authors are with School of Computer, National University

of Defense Technology, 410073, Changsha, China.
a) E-mail: yanlei@nudt.edu.cn
b) E-mail: xgmao@nudt.edu.cn (Corresponding author)

DOI: 10.1587/transinf.E95.D.2247

duction, some new test cases are generated to feed back to
fault localization techniques to verify and improve the pri-
mary results. The above steps would be iterated until faults’
locations are identified. It can be seen that there exists an
interaction between software debugging engineers and fault
localization techniques. This interaction is of great impor-
tance to promote fault localization performance.

However, most fault localization approaches usually
ignore this interaction [8]–[21]. They assume that test cases
satisfying a certain test adequacy criterion can provide ade-
quate information for fault localization, and there are no new
test cases to provide required feedback [5]. In addition, the
goal of testing is to reveal faults instead of locating faults.
Due to different goals of testing and fault localization, test
cases satisfying a certain test adequacy criterion may fail to
offer adequate information to fault localization. As inad-
equate information can greatly influence fault localization
performance, it is vital to generate new test cases via the
interaction to address the issue of information inadequacy.

At present, some interactive fault localization ap-
proaches have been already presented that can interact with
debugging engineers [22]–[25]. Because the interaction re-
flects the brainpower of debugging engineers, it is genuinely
difficult for fault localization approaches to analyze and de-
duce like engineers. Therefore, these approaches usually fo-
cus on how to narrow down debugging engineers’ attention
to a smaller searching scope. The core work of analyzing
and deducing faults’ locations still strongly depends on the
knowledge and experience of debugging engineers, which
incurs the intensive workload of debugging engineers in lo-
cating faults. To whatever extent, it is essential to study and
simulate the pattern of debugging engineers as they apply
their knowledge and experience to this interaction. If we can
simulate part of or even the whole interaction process, fault
localization performance can be improved and the burden
on debugging engineers’ shoulder can be further alleviated.

From what has been discussed above, this paper pro-
poses an effective fault localization approach using feed-
back to simulate the interaction between debugging engi-
neers and fault localization. This approach iteratively ana-
lyzes and deduces the results obtained from fault localiza-
tion techniques, and produces feedback for these fault local-
ization techniques to gradually verify and improve these re-
sults. The feedback here is automatically provided by new
test cases. New test cases are generated by test data gen-
eration techniques to cover current most suspicious state-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

2248
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

ments extracted from current fault localization result. With
the help of new test cases, the fault localization technique
obtains more useful information and its performance would
be improved. In essence, our approach, to some extent, im-
itates the way of debugging engineers as they apply their
knowledge and experience to fault localization. In order
to fully demonstrate the effectiveness of our approach, we
apply our approach to a promising fault localization tech-
nique, namely spectrum-based fault localization (SFL) [9].
Typically, SFL exploits the correlations between program
entities and program failures by statistically analyzing cov-
erage information. SFL has been widely studied and used in
the field of fault localization [2]–[5], [8]–[21], and the prior
research [2], [3] has empirically proven that SFL yields a
promising ability in locating faults.

In this paper, our approach is applied to three repre-
sentative ranking metrics of SFL, namely Ochiai [9], Jac-
card [10] and Tarantula [11]. The experimental study is con-
ducted on two standard benchmarks, the Siemens suite and
Space [27], with 154 faulty versions. The experimental re-
sults demonstrate the significant improvement of our ap-
proach over the three typical ranking metrics of SFL.

The main contribution of this paper can be summarized
as:

(1) A new approach is proposed to simulate the inter-
action between debugging engineers and fault localization.
The strength of our approach is validated analytically and
empirically.

(2) The effectiveness of our approach is systematically
studied via the experimental study conducted on three typi-
cal ranking metrics of SFL (Ochiai, Jaccard and Tarantula)
and representative standard benchmarks (the Siemens suite
and Space), providing an initial quantification of the benefits
to applying the proposed approach.

(3) Our findings suggest that test cases from testing are
likely to offer information that is inadequate for conducting
efficient fault localization, and the proper simulation of the
interaction between debugging engineers and fault localiza-
tion has great potential for improving fault localization ef-
fectiveness.

The remainder of this paper is organized as follows.
Section 2 introduces the background of spectrum-based
fault localization. Section 3 details the problem of insuf-
ficient interactions and its solution. Section 4 describes the
overview of our approach and an illustrative example. Sec-
tion 5 presents empirical results of the proposed approach
over SFL. Section 6 discusses related work. Finally, the
conclusion is summarized in Sect. 7.

2. Background of SFL

Spectrum-based fault localization (SFL) [9] is a dynamic
program analysis technique ranking program entities whose
activity correlates most with the failures. SFL utilizes pro-
gram spectra both from passed and failed runs. Passed runs
are executions of a program that output as expected, whereas
failed runs are executions of a program that output as unex-

Fig. 1 Input to SFL.

pected. A program spectrum is a collection of data that pro-
vides a specific view on the dynamic behavior of software.
The program spectrum is collected at run-time, and typi-
cally records the coverage information for program entities.
There are various types of program entities, such as blocks,
functions, branches, paths, etc. This study adopts the most
widely used type of program entities, namely statements.

First, we assume that a program P comprises a set of
statements S = {s1, s2, . . . , sN} and runs against a set of test
cases T = {t1, t2, . . . , tM} that contains at least one failed test
case (see Fig. 1). Hence, |S | = N and |T | = M. The above
matrix M × (N + 1) represents the input to SFL. An element
xi j is equal to 1 if statement s j is covered by the execution of
test run ti, and 0 otherwise. The error vector e at the right-
most column of the matrix represents the test results. The
element ei is equal to 1 if test run ti failed, and 0 otherwise.
Except the error vector, the rest of the matrix is expressed
in terms of matrix A. The ith row of A shows whether a
statement was covered by test run ti. The jth column of A
indicates that statement s j was covered by which test runs,
and also represents the statement spectra of s j.

SFL usually measures the suspiciousness of a state-
ment to be faulty from the similarity between its statement
spectra and error vector in the above matrix (see Fig. 1), and
finally outputs a ranking list of all statements in descend-
ing order of suspiciousness. The similarity is quantified by
ranking metrics. Ochiai [9], Jaccard [10] and Tarantula [11]
are three typical ranking metrics of SFL, and their formulas
are shown as follows:

S Ochiai(s j) =
a11(s j)

√
(a11(s j) + a01(s j)) ∗ (a11(s j) + a10(s j))

(1)

S Jaccard(s j) =
a11(s j)

a11(s j) + a01(s j) + a10(s j)
(2)

S Tarantula(s j) =
(a11(s j)

a11(s j)+a01(s j)
)

(a11(s j)
a11(s j)+a01(s j)

) + (a10(s j)
a10(s j)+a00(s j)

)
(3)

Where apq(s j) = |{ti | (xi j = p) ∧ (ei = q)}|, and p, q ∈
{0, 1}. The following shows the meaning of each variable.

(1) xi j = p denotes whether s j was executed (p = 1) in
the execution of ti or not (p = 0).

(2) ei = q represents whether ti was failed (q = 1) or
not (q = 0).

(3) a00(s j) denotes the number of passed test cases that
does not execute s j, and a01(s j) represents the number of

LEI et al.: EFFECTIVE FAULT LOCALIZATION APPROACH USING FEEDBACK
2249

failed test cases that does not execute s j.
(4) a10(s j) represents the number of passed test cases

that execute s j, and a11(s j) represents the number of failed
test cases that execute s j.

(5) S Ochiai(s j), S Jaccard(s j) and S Tarantula(s j) represent
the suspiciousness of s j computed by Ochiai, Jaccard and
Tarantula respectively.

SFL is independent of any specific model of system and
incurs low time and space overhead. Due to the feature of
statistics and its simplicity, SFL is widely accepted and stud-
ied as a promising technique in the fault localization com-
munity [2]–[5], [8]–[21], and the research [2], [3] has also
empirically proven that SFL has high effectiveness of lo-
cating faults. Therefore, our approach is applied to SFL to
fully demonstrate its effectiveness.

3. Problems and Solution

3.1 Problems

This section uses the program P and the set of test cases
T defined in Sect. 2. To explain the problems simply, we
further assume that P contains only one faulty statement.
Please note that the following analysis is also applicable to
multiple faults because it is based on the principle of SFL
that has been empirically proven to be effective in the con-
text of multiple faults [4]. A metric named failed probability
(referred as FP) is defined as follows:

FP(stm,T) =
f ailedNum(stm,T)
totalNum(stm,T)

(4)

In Eq. (4), stm denotes a statement in the program P.
The f ailedNum(stm,T) represents the number of failed test
cases in T that executed stm. The totalNum(stm,T) is the
number of test cases in T that executed stm. FP(stm,T)
represents the failed probability of all test cases covering
stm in T . When T comprises all data in whole input space,
FP(stm,T) is named global failed probability (referred as
GFP(stm)). GFP(stm) indicates the failed probability of
all test cases executing stm in whole input space. The set
of statements whose GFP is lower than that of the faulty
statement is called affected set (see Fig. 2).

The previous research [8] used the FP of a statement as
an indication of how consistent the activity of the statement
is with failures in a set of test cases. They investigated the
relationship between the performance of SFL and fault con-
sistency, and found that SFL assigns higher suspiciousness
to the faulty statement when its FP is higher. In other words,
when the activity of a statement is more consistent with fail-
ures, SFL would assign higher suspiciousness to the state-
ment. This finding implies that a statement with a higher
FP should be more suspicious to be faulty (referred as FL
Rule), and FL Rule considerably impacts on SFL as it eval-
uates the suspiciousness of each statement. Therefore, it can
be concluded that SFL has explicitly or implicitly adopted
the idea of FL Rule [8]–[21].

Apparently, the effectiveness of FL Rule depends on

Fig. 2 Ranking lists of all statements in terms of FP and GFP
respectively.

the set of test cases used because the values of FP are re-
lated to a set of test cases. Different sets of test cases, in
general, are biased toward different requirements, such as
different code coverage, and therefore create different ef-
fects on the effectiveness of FL Rule. It is vital to provide
a criterion to assess and improve the adequacy of the set of
test cases for fault localization. As GFP is acquired from
the whole input space rather than a subset of the whole in-
put space, it provides an unbiased and more comprehensive
indication of how consistent the activity of a statement is
with failures as compared to FP. This reveals that the place
of the faulty statement in the ranking list of all statements in
descending order of GFP is the theoretical reasonable posi-
tion where it should stay. It requires the place of the faulty
statement in the ranking list of all statements in descending
order of FP should be close to its position in that ranking list
in terms of GFP (See Fig. 2). Due to lower GFP, the state-
ments in affected set should be less suspicious to be faulty
compared with the faulty statement. Hence, the FP of the
faulty statement should be higher than that of statements in
affected set, which is the criterion that test cases for fault
localization should meet.

However, the goal of testing is to reveal faults rather
than locate faults. Test cases from testing should cover
as many different statements as possible to reveal as many
faults as possible. Apparently, these test cases are not de-
signed for satisfying the aforementioned criterion on test
cases for fault localization. This may lead to a higher FP
that some statements in affected set obtain than the faulty
statement. Consequently, it is more probable to judge these
statements in affected set to be a fault compared with the
faulty statement, which causes the effectiveness of FL Rule
drastically decreases. In addition, as the whole input space
is usually fairly large, it is unfeasible to obtain GFP by the
exhaustive method. It is vital to utilize the interaction to
address this inadequacy issue.

3.2 Solution

This section adopts the program P and set of test cases
T defined in Sect. 3.1. Let totalNum(stm,T) = K,
f ailedNum(stm,T) = I, r = I/K and the number of test
cases covering stm in whole input space be H. There is a
new set of test cases Tnew with L = |Tnew|. We assume that

2250
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

each test case in Tnew would execute stm and Tnew ∩ T = φ.
For each of test cases covering stm in whole input space ex-
cept T , we hypothesize its probability to be failed is q. Tnew

is added to T and the FP(stm,T∪Tnew) = (K∗r+L∗q)/(K+
L). In addition, GFP(stm) = (K ∗r+ (H−K)∗q)/H. Hence,
the difference between GFP(stm) and FP(stm,T ∪ Tnew) is
computed as follow:

|GFP(stm) − FP(stm,T ∪ Tnew)|
= |K ∗ r + (H − K) ∗ q

H
− K ∗ r + L ∗ q

K + L
| (5)

= |K ∗ (H − K − L) ∗ (r − q)
H ∗ (K + L)

|

As H is the number of all test cases covering stm in
whole input space, (H − K − L) ≥ 0. Through increasing
L, (H − K − L) becomes lower while (K + L) turns higher.
Hence the difference between GFP(stm) and FP(stm,T ∪
Tnew) could become smaller by increasing L (see Eq. (5)). It
can be concluded that it is more probable to make the FP
of a statement closer to its GFP by adding new test cases
covering this statement to initial test cases.

From the above analysis, the solution of our approach
is to extract current most suspicious statements from cur-
rent results outputted by fault localization techniques, and
feed back new test cases covering current most suspicious
statements to these fault localization techniques to obtain
new refined fault localization results. The above interaction
would be iterated until the change of fault localization re-
sults is less than a setting threshold. During the constant
interaction, new test cases would make the FP of current
most suspicious statements closer to their GFP, especially
reducing the FP of those current most suspicious statements
belonging to affected set. In the following, three cases are
used (See Fig. 3):

1) First of all, current most suspicious statement is the
faulty statement. The FP of the faulty statement becomes
closer to its GFP via new test cases.

2) Then, current most suspicious statement belongs to
affected set. As mentioned in Sect. 3.1, this kind of state-
ment should be ranked lower than the faulty statement. New

Fig. 3 Solution of our approach.

test cases would reduce unusual high FP of current most
suspicious statement to become closer to its GFP. As a re-
sult, it is more probable to make FP of this suspicious state-
ment lower than that of the faulty statement.

3) Lastly, current most suspicious statement is not the
faulty statement and does not belong to affected set. The
GFP of this kind of statement is higher than or equal to that
of the faulty statement. New test cases cannot make this
kind of statements less suspicious than the faulty statement.
However, due to high GFP of this statement, new test cases
covering this statement are more likely to fail. Failed test
cases should cover the faulty statement. Hence it is more
probable to make the FP of the faulty statement closer to its
GFP.

It can be seen that new test cases covering current
most suspicious statements can make the places of the faulty
statement of the two ranking lists in Fig. 2 become closer
and closer. This promotes the effectiveness of FL Rule. It
suggests that new test cases generated by the above solution
can achieve two effects. One is to partially deduce and verify
current fault localization result. The other is to improve cur-
rent result according to the deduction and verification. The
following experimental evaluation of the proposed approach
also conforms to this conclusion.

4. The Approach

4.1 Overview

As discussed in Sect. 3.1, SFL has explicitly or implicitly
adopted the idea of FL Rule. Thus the application of our
approach to SFL is implemented based on the solution de-
scribed in Sect. 3.2. As shown in Fig. 4, there are three
parts in our approach, namely SFL analyzer, most suspi-
cious statements extractor and random data generator and
data selector. The detailed steps of our approach are de-
scribed as follows:

1) To begin with, the execution information of initial
test case is inputted to SFL analyzer. It uses SFL to analyze
the statement coverage and test results, and compute the sus-
piciousness of each statement. Finally, it outputs a ranking
list of all statements in descending order of their suspicious-
ness.

2) Next, current ranking list of all statements is inputted

Fig. 4 Overview of the approach.

LEI et al.: EFFECTIVE FAULT LOCALIZATION APPROACH USING FEEDBACK
2251

to most suspicious statements extractor. The extractor se-
lects current most suspicious statements from current rank-
ing list in terms of suspiciousness.

3) Furthermore, current most suspicious statements are
inputted to random data generator and data selector. Ran-
dom data generator generates a set of random data. In this
set of data, test cases that cover any one of current most sus-
picious statements are chosen by data selector. These cho-
sen test cases as the feedback are added to current test cases.
Considering the cost and simplicity, our approach chooses
random data generation technique. Note that other types
of test data generation techniques, such as goal-oriented
test generation and path-oriented test generation [26], can
be also chosen by this step according to specific require-
ments.

4) Finally, the chosen test cases are feeding back to cur-
rent test cases to constitute a new set of test cases. The exe-
cution information of the new set of test cases are inputted to
SFL analyzer to output a new ranking list of all statements
in descending order of suspiciousness. Step 2) to step 4) are
iterated until the difference between two adjacent iterations’
fault localization results is less than a setting threshold or
it exceeds the maximum number of iterations according to
new cost limit.

It is essential for our approach to set a proper value of
the threshold. A high value of the threshold may cause that
the iteration is too quickly terminated, and therefore an in-
sufficient number of new test cases may be generated. That
can restrict our approach to fully show its ability. In contrast,
a low value of the threshold may cause that the iteration is
too slowly terminated, and consequently an excessive num-
ber of new test cases may be produced. That can make the
effectiveness of new test cases considerably decrease. The
previous research [9] has found that the fault can be located
by inspecting an average of the top 20% of statements in the
ranking list given by SFL. Base on this finding, this study
sets the threshold as the top 20% of statements in the rank-
ing list†. In other words, if the top 20% of statements of the
two adjacent iterations’ ranking lists keep the same as each
other, the iteration will be terminated.

SFL analyzer is implemented based on Gcov tool.
Gcov tool is a test coverage program used in concert with
Gcov. Ochiai [9], Jaccard [10] and Tarantula [11] are all im-
plemented by SFL analyzer. Random data generator is im-
plemented by utilizing random data generation algorithm of
C language library. The statements are ranked in descending
order of their suspiciousness assigned by the SFL. For the
statements with the same assigned suspiciousness, we rank
them according to their original order in the source code.

4.2 An Illustrative Example

This section illustrates an simple example to show just how
our approach is to be applied. Figure 5 (a) presents a faulty
program that contains a faulty statement s7. Figure 5 (b)
shows how our approach runs in one ranking metric of SFL.
The cells below each statement indicate whether the state-

Fig. 5 Example illustrating the approach.

ment was covered by the execution of a test case or not
and the rightmost cells represent whether the execution of
a test case is failed or not. The detailed description of the
cells can refer to the input matrix of SFL presented in Fig. 1.
As shown in Fig. 5 (b), based on the statement coverage and
test results of initial five test cases, Ochiai outputs a ranking
list of all statements in descending order of suspiciousness:
{s5,s8,s7,s1,s2,s3,s4,s6,s9,s10}. As s5 is ranked the most sus-
picious statement by Ochiai, three new test cases covering s5

(t6, t7 and t8) are generated and added into initial test cases
in the first iteration. According to the coverage and test re-
sults of the eight test cases, Ochiai generates a new ranking
list, {s8,s7,s5,s1,s2,s3,s4,s6,s9,s10}, in the first iteration. The
top 20% of statements in ranking list of the initial running
are {s5,s8} while those of the first iteration are {s8,s7}. As
{s5,s8} is different from {s8,s7}, the iteration will continue.
As s8 is ranked the most suspicious statement in the first it-
eration, another three new test cases covering s8 (t9, t10 and
t11) are generated and added into all previous test cases in
the second iteration. Based on the coverage and results of
the eleven test cases, Ochiai produces a new ranking list,
{s8,s7,s1,s2,s3,s4,s6,s5,s9,s10}, in the second iteration. The
top 20% of statements in the ranking of the first iteration are
{s8,s7} and those of the second iteration are {s8,s7}. Because

†A systematic study of other proper values of the threshold is
part of our future work.

2252
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

they are the same †, our approach will terminate the itera-
tion and output the ranking list of the second iteration as the
localization result. Observe that the faulty statement s7 is
ranked third without feedback whereas s7 is ranked second
after applying our approach.

5. An Experimental Study

5.1 Experimental Setup

To evaluate the effectiveness of our approach, the experi-
mental study chooses the Siemens suite and Space as our
benchmarks because they are two widely used benchmarks
in the field of fault localization [2], [4], [8], [9], [11], [12],
[15]–[21], [25]. They cover a wide spectrum of faults with
high quality, such as predicate faults, assignment faults,
missing code, etc. They can be acquired from Software In-
formation Repository [27]. The Siemens suite was originally
developed at the Siemens Research Corporation and con-
tains 7 programs and 132 faulty versions of these programs.
The Space was first written by the European Space Agency
and contains 38 faulty versions. In Siemens suite, each
faulty version contains exactly one seeded fault. In Space,
each faulty version includes exactly one realistic fault. Ta-
ble 1 lists the programs, the number of faulty versions of
each program, lines of statements, lines of executable state-
ments, number of all test cases, as well as the functional
descriptions of the corresponding program. The lines of ex-
ecutable statements are obtained by ignoring unexecutable
source code such as macro definitions, function and vari-
able declarations, blank lines, comments, and function pro-
totypes.

There are test suites satisfying different test criteria in
the Siemens suite and Space. The experiment selects the
universe suite †† whose test adequacy is the most powerful
among all test suites of the Siemens Suite and Space. As the
universe suite consists of a large number of test cases, the
information should be fairly adequate for fault localization.
If our approach obtains significant improvement, it can also
fully demonstrate that test cases from testing are likely to
offer information that is inadequate for conducting efficient
fault localization. The universe suite contains all test cases
in Table 1.

Although there are 170 versions in total, we were un-
able to adopt all of them. Because there were no failed test
case in version 32 of replace, version 9 of schedule2 and
versions 1, 2, 34 of Space, we excluded the five versions.
Moreover, our interests focus on executable statements, so
the modifications of header files and definition/declaration
errors were ignored. Hence versions 4 and 6 of print tokens,
version 12 of replace, versions 13, 14, 36, 38 of tcas and
versions 6, 10, 19, 21 of tot info were also discarded. In all,
3 faulty versions of Space and 13 faulty versions of Siemens
suite were discarded by the experiment. Finally, 154 faulty
versions were used for the experiment.

As SFL is a representative and promising technique
widely used and studied in the fault localization commu-

Table 1 Description of the Siemens Suite and Space.

Program versions LOC Ex Test Description
print tokens 7 563 203 4130 Lexical analyzer

print tokens2 10 508 203 4115 Lexical analyzer
replace 32 563 289 5542 Pattern recognition

schedule 9 410 162 2650 Priority scheduler
schedule2 10 307 144 2710 Priority scheduler

Tcas 41 173 67 1608 Altitude separation
tot info 23 406 136 1052 Information measure
Space 38 9564 6218 13585 ADL interpreter

nity [2]–[5], [8]–[21], our approach is applied to three typ-
ical ranking metrics of SFL techniques that are Ochiai [9],
Jaccard [10] and Tarantula [11] respectively. Our approach
is implemented according to the implementation in Sect. 4.1.
Additionally, our approach is compared with two SFL re-
finement approaches (referred as ISSFL [20] and TG [21]).

ISSFL gives those unexecuted statements in all failed
test cases the lowest suspiciousness, and the suspiciousness
of the other statements is assigned by SFL. TG first sorts
statements executed by the same number of failed test cases
into a group. Then, the group with a larger number of failed
test cases is ranked a higher position. Finally, the statements
of each group are ranked in descending order of suspicious-
ness assigned by SFL.

5.2 Evaluation Metric

The performance of SFL is widely evaluated by the per-
centage of code that needs to be examined (or not exam-
ined) to find the fault [2]–[5], [8], [9], [11]–[15], [17]–[21].
This evaluation assumes that debugging engineers will ex-
amine all statements from top to bottom according to the
ranking list given by the SFL until they encounter the faulty
statement. Following this convention, we define the fault-
localization accuracy (referred as Acc) as the percentage of
executable statements to be examined before finding the ac-
tual faulty statement [21]. A lower value of Acc indicates
better performance.

For a more detailed comparison, a metric named per-
formance improvement (referred as Imp) is adopted by the
experiment. Imp is the relative decrease in Acc after apply-
ing our approach [20] (see Eq. (6)).

Imp = (Accb − Acca)/Accb (6)

In Eq. (6), Accb is the Acc of SFL before applying our
approach. Acca is the Acc of SFL after applying our ap-
proach. A lower value of Imp shows better improvement
that our approach obtains.

In addition, relative effectiveness (referred as R) is de-
fined to compare the effectiveness of new test cases with that

†The comparison includes the ranking order of the statements.
For example, {s8,s7} is different from {s7,s8} because the ranking
orders of the statements in the two sets are different.
††In the universe suite, each executable statement and edge in

the program or its control flow graph was exercised by at least 30
test cases.

LEI et al.: EFFECTIVE FAULT LOCALIZATION APPROACH USING FEEDBACK
2253

Fig. 6 Acc comparison between original SFL and our approach in all
faulty versions.

of initial test cases as follows:

R =
((1 − Acca) − (1 − Accb))/NewTestNum

(1 − Accb)/InitialTestNum

=
(Accb − Acca)/NewTestNum
(1 − Accb)/InitialTestNum

(7)

In Eq. (7), the meanings of Accb and Acca refer to
Eq. (6). NewTestNum denotes the number of new test cases
that are added to initial test cases. InitialTestNum is the
number of initial test cases. (Accb − Acca)/NewTestNum
represents new test cases’ average contribution to the perfor-
mance of SFL, whereas (1− Accb)/InitialTestNum denotes
initial test cases’ average contribution to the performance of
SFL. When R > 1, it indicates that the average effectiveness
of new test cases is higher than that of initial test cases.

When using the metrics above, two types of faults
should be specified how they are examined. One is the single
fault spanning multiple statements. We assume that when
examining any of these multiple statements, programmers
can locate this type of fault. The other is the single fault re-
lated to missing code. The previous strategy [11], [17] only
considers the statement preceding the missing code to be the
faulty statement. Besides the preceding one, we would con-
sider the statement succeeding the missing code because the
two statements would attract programmers’ attention to the
missing code. We assume that developers can identify the
missing code when inspecting any of the two statements.

5.3 Results and Analysis

Figure 6 presents Acc comparison between the original SFL
and SFL with our approach in all faulty versions. The x-
axis represents the percentage of executable statements to
be examined. The y-axis denotes the percentage of faulty
versions. A point in Fig. 6 represents when a percentage of
executable statements is examined in each faulty version,
the percentage of faulty versions has located their faults.

As shown in Fig. 6, the curves of Ochiai, Jaccard and
Tarantula with our approach are always higher than they
alone. That suggests the performance of all three ranking
metrics of SFL is apparently improved by our approach.

Figure 7 illustrates average Acc comparison between
original SFL and our approach in each type of faults. In

Fig. 7 Average Acc comparison between original SFL and our approach
in each type of faults.

Fig. 8 Distribution of Imp.

Fig. 7, O, J, T and (Feedback) represent Ochiai, Jaccard,
Tarantula and the corresponding approach using feedback
respectively. This study classifies all faults into four types,
namely missing code, assignment faults, predicate faults and
others. The type of others includes additional code, return
faults, multiple-positions faults, etc. As shown in Fig. 7, af-
ter applying our approach, the average percentage of exe-
cutable statements to be examined significantly decreases in
all three metrics of SFL as they locate each type of faults.
This result indicates that our approach improves all three
metrics of SFL in locating each type of faults.

Before applying the proposed approach, there are some
faulty versions whose actual faulty statements are ranked
first by SFL. These faulty versions are named impossible
faulty versions and the other faulty versions are named pos-
sible faulty versions. Due to the situation where the im-
provement is impossible, we excluded impossible faulty ver-
sions from the following analysis of Imp. Please note that
the faults of impossible faulty versions are still ranked first
after applying our approach.

For a more detailed comparison, Fig. 8 shows the distri-
bution of Imp in all possible faulty versions. The x-axis rep-
resents the intervals of Imp. The y-axis denotes the percent-
age of possible faulty versions that belongs to a specific in-
terval of Imp. There are seven intervals for Imp: <0, =0, 0–
20%, 20%–40%, 40%–60%, 60–80% and 80%–100%. The
interval of <0 indicates that our approach decreases the per-
formance of SFL. The interval of =0 represents that no im-
provement in SFL is obtained after applying our approach.
The other intervals suggest that our approach improves SFL.

2254
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

Fig. 9 Distribution of R for improved faulty versions.

The interval with a higher value of Imp represents the better
improvement.

As shown in Fig. 8, 61.5% of possible faulty versions
are improved by our approach with Ochiai, 67.9% with Jac-
card and 70.9% with Tarantula. An average of 30.2% of pos-
sible faulty versions is improved by our approach at the in-
terval of 0–20%, 13.6% at the interval of 20%–40%, 11.5%
at the interval of 40%–60% and 10.5% at the interval of
60%–80%. Few possible faulty versions obtain an Imp at
the interval of 80%–100%.

There are two reasons for the result as shown in Fig. 8.
One is that the three representative metrics of SFL have al-
ready output fine results for most faulty versions before ap-
plying our approach, which provides limited room for im-
proving SFL. The other is that whatever a fault localization
approach is, it is genuinely difficult to obtain an Imp at the
interval of 80%–100%. Even so, our approach still obtains
the significant improvement over SFL.

We observe that our approach decreases the perfor-
mance of SFL in several faulty versions. We find that these
statements are always highly associated with faulty outputs
according to data/control dependencies. Based on the de-
pendencies, we conjecture that these statements may have a
higher GFP than the faulty statement. If this conjecture is
established, it suggests that former ranking list is far away
from the theoretical reasonable result of FL Rule mentioned
in Sect. 3.1, and our approach just makes the localization re-
sult become more reasonable. Furthermore, our approach
only leads to a minor performance decrease in these faulty
versions. Thus the performance decrease can be ignored.

Figure 9 presents the distribution of relative effective-
ness for faulty versions whose performance of SFL has been
improved by our approach. The x-axis represents the inter-
vals of R. There are three intervals of relative effectiveness,
as R > 1, R = 1, 0 < R < 1. The y-axis denotes the percent-
age of faulty versions whose performance of SFL has been
improved by our approach. As shown in Fig. 9, for each type
of SFL, more than 93% of improved faulty versions are at
the interval of R > 1. This suggests that once SFL is im-
proved by our approach, the average effectiveness of new
test cases is always higher than that of initial test cases.

Table 2 lists the programs, the average number of new
test cases, the percentage of the average number of new test

Table 2 Description of new test cases.

Program Average new test cases
Average new test cases

in initial test cases
print tokens 98 2.37%
print tokens2 84 2.04%

replace 109 1.97%
schedule 63 2.38%
schedule2 80 2.95%

tcas 47 2.92%
tot info 34 3.23%
Space 252 1.85%

Fig. 10 Acc comparison between TG and our approach.

cases in the number of initial test cases. Table 2 shows that
the average number of new test cases only accounts for a
minor percentage of the number of initial test cases. It also
suggests new test cases have high effectiveness.

Because ISSFL is only applicable to the common met-
rics of SFL, it cannot be applied to the three fine metrics of
SFL adopted by this study. However, Acc comparison be-
tween two SFL refinement approaches can be made when
the two approaches are applied to the same metric of SFL.
Hence, this study cannot conduct the Acc comparison be-
tween ISSFL and our approach. In addition, there is an
assumption when using Imp to compare ISSFL with our ap-
proach. The assumption is that if the Imp in the better metric
of SFL is higher than that in the common metric of SFL, the
approach applied to the better metric of SFL should outper-
form the approach applied to the common metric of SFL. As
the original data from the TG’s published work [21] is not
sufficient to conduct the analysis of Imp, we implement the
TG according to its algorithm described in [21] to compare
TG with our approach in Imp. Following the same experi-
mental condition in ISSFL [20] and TG [21], our approach
will be compared with the two SFL refinement approaches
on the Siemens suite.

Figure 10 denotes the Acc comparison between TG and
our approach. As shown in Fig. 10, the curves of TG are
always slightly beneath their corresponding curves of our
approach. This indicates that our approach performs a bit
better than TG.

Figure 11 presents the average Imp comparison in
ISSFL, TG and our approach. As shown in Fig. 11, the av-
erage Imp of our approach is higher than ISSFL in all pro-
grams except the program of schedule. In the four out of

LEI et al.: EFFECTIVE FAULT LOCALIZATION APPROACH USING FEEDBACK
2255

Fig. 11 Average Imp comparison in ISSFL, TG and our approach.

seven programs, the average Imp of our approach is higher
than TG. On average, the Imp of our approach is also higher
than ISSFL and TG. Therefore, our approach significantly
outperforms ISSFL and obtains the minor improvement over
TG.

From all results discussed above, we can conclude that:
1) The proposed approach is effective to improve the perfor-
mance of SFL. 2) Merely relying on test cases from testing
are likely to offer information that is inadequate for conduct-
ing efficient fault localization.

5.4 Threats to Validity

First and foremost, the proposed approach assumes that fault
localization methods have explicitly or inexplicitly applied
FL Rule. As SFL has applied FL Rule, our approach ob-
tains the significant improvement in SFL. If a fault local-
ization method does not apply FL Rule, the result may be
misleading.

Second, the distribution of GFP in all program state-
ments may affect the performance of our approach. For in-
stance, if there are many statements in affected set and their
GFPs are fairly close to that of the faulty statement. Due to
high degree of similarity, it is genuinely difficult for our ap-
proach to make the FP of these statements lower than that of
the faulty statement. Under this condition, the performance
of our approach may become weak.

Next, the improvement in SFL depends on the effec-
tiveness of initial test cases. To demonstrate test cases from
testing are likely to offer inadequate information for fault lo-
calization, the experiment chooses the universe suite that is
the most powerful test suite in the Siemens suite and Space.
However, maybe some other powerful test adequacy criteria
can make test cases provide adequate information for fault
localization. As a result, our approach may become mislead-
ing. It is vital to conduct a further study on the effectiveness
of our approach in different test adequacy criteria.

Another threat is the subject programs used by the ex-
periment. The Siemens suite and Space are two standard
benchmarks widely used in the field of fault localization.
The faults of the two benchmarks cover a wide spectrum
of realistic faults with high quality. Thus the experimental
results should be reliable. However, we studied only single-
fault versions. Apparently, the results obtained may not ap-

ply to all programs. For instance, a program, in reality, usu-
ally ships with multiple faults rather than a single fault as
used in our experiment. In addition, new test cases may
trigger and cause new failures. The recent research [4] has
found that multiple faults pose a negligible effect on the ef-
fectiveness of the fault localization, and it can be guaranteed
that even in the presence of many faults, at least one fault is
found by SFL with high effectiveness despite the effect of
fault-localization interference. These findings increase our
confidence in the effectiveness of our approach for locat-
ing multiple faults. Nevertheless, there are still many un-
known and complicated factors in the realistic debugging,
which may lead our approach to be misleading. Thus, it is
worthwhile to use more subject programs, such as multiple-
faults programs, to further validate the effectiveness of our
approach for fault localization.

6. Related Work

SFL has attracted considerable attention in recent years and
motivates plenty of research in the field of fault localiza-
tion. There are many ranking metrics of SFL, such as Op-
timal [8], ISSFL [20], TG [21] and the three representative
metrics of SFL adopted by this study [9]–[11]. To strengthen
the relationship among the elements of a program entity,
some new complex coverage types of program entities us-
ing dependences or flow are proposed for SFL, such as
mixed coverage [12], information flow coverage [13], and
control flow edge coverage [14]. To support locating mul-
tiple faults in parallel, Jones et al. [15] adopt a clustering
technique to divide failed test cases into different clusters
and each cluster represents one fault. Abreu et al. [16] pro-
pose a spectrum-based multiple fault localization approach
called Zoltar-M that integrates SFL with model-based di-
agnosis. To address the coincidental correctness problem
in coverage-based fault localization approaches, Wang et
al. [17] prescribe patterns for different types of faults and
modify the coverage vectors to locate faults with the fea-
ture of coincidental correctness. To solve test oracle prob-
lem, Abreu et al. [18] apply invariants to SFL and use error
detection to judge failures, and Xie et al. [19] apply meta-
morphic testing to SFL to perform SFL without test oracle.
It can be seen that current research on SFL usually ignores
the interaction between software debugging engineers and
fault localization. However, our approach simulates the in-
teraction to address the problem of insufficient interactions.
In addition, besides the three representative types of SFL
in this study, these approaches can be also adopted by our
approach, which is part of our current research.

Shapiro [22] proposes a diagnosis approach to realize
the interaction between debugging engineers and fault lo-
calization by asking debugging engineers questions and uti-
lizing answers to locate faults. Fritzson et al. [23] adopt the
category partition testing technique to refine the questions
for debugging engineers, and use slicing technique to fur-
ther narrow down engineers’ searching scope. To support
common users in debugging, three interactive fault local-

2256
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

ization approaches are presented in [24]. In addition, two
factors that influence interactive performance are also an-
alyzed in [24]. Hao et al. [25] use breakpoints to interact
with debugging engineers and can somewhat rectify mis-
takes made by engineers. The above interactive fault local-
ization approaches still need intensive workload of debug-
ging engineers in analysis and deduction which incurs a lot
of overhead. Unlike these interactive fault localization ap-
proaches, our approach simulates the pattern of debugging
engineers as they analyze and deduce faults in the interac-
tion to improve fault localization performance and further
reduce debugging engineers’ workload.

7. Conclusion

Following the interaction seen between software debugging
engineers and fault localization, this paper proposes an ef-
fective approach using feedback to simulate that interaction.
In essence, our approach attempts to simulate the approach
of debugging engineers as they apply their knowledge and
experience in this interaction. Although it is difficult to im-
itate debugging engineers’ brainpower, we still see that the
proper simulation of this interaction has great potential for
improving fault localization performance. Additionally, it
also indicates that test cases from testing are likely to offer
information that is inadequate for conducting efficient fault
localization. Using feedback is a practical approach to ad-
dress this problem.

In future work, we plan to evaluate the effectiveness of
our approach across a much broader spectrum of programs,
especially in the context of multiple faults. We also wish to
consider further optimizations to our approach that will lead
to more improvements in terms of fault localization effec-
tiveness, such as other proper values of the threshold. Ad-
ditionally, the applicability of our approach to other ranking
metrics of SFL will be also studied.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China under Grant No.91118007, 90818024
and 61133001, the National High Technology Research and
Development Program of China (863 program) under Grant
No.2011AA010106 and Program for New Century Excel-
lent Talents in University.

References

[1] A. Zeller, Why programs fail: A guide to systematic debugging,
Morgan Kaufmann, 2005.

[2] J.A. Jones and M.J. Harrold, “Empirical evaluation of tarantula auto-
matic fault-localization technique,” Proc. 20th International Confer-
ence on Automated software engineering, pp.273–282, Long Beach,
CA, USA, 2005.

[3] S. Ali, J.H. Andrews, T. Dhandapani, and W. Wang, “Evalu-
ating the accuracy of fault localization techniques,” Proc. 2009
IEEE/ACM International Conference on Automated Software En-
gineering, pp.76–87, Auckland, New Zealand, 2009.

[4] N. DiGiuseppe and J. Jones, “On the influence of multiple faults on
coverage-based fault localization,” Proc. 2011 International Sympo-
sium on Software Testing and Analysis, Toronto, ON, Canada, 2011.

[5] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” Proc. 28th International Conference on
Software Engineering, pp.82–91, Shanghai, China, 2006.

[6] J. Wang, X.D. Ma, W. Dong, H.F. Xu, and W.W. Liu, “Demand-
driven memory leak detection based on flow-and context-sensitive
pointer analysis,” J. Computer Science and Technology, vol.24, no.2,
pp.347–356, 2009.

[7] T. SHIMOMURA, “Critical slice-based fault localization for any
type of error,” IEICE Trans. Inf. & Syst., vol.E76-D, no.6, pp.656–
667, June 1993.

[8] L. Naish, H.J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodol.,
vol.20, no.3, pp.1–32, 2011.

[9] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, “On accuracy of
spectrum-based fault localization,” Proc. Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTA-
TION, pp.89–98, Windsor, UK, 2007.

[10] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pin-
point: Problem determination in large, dynamic internet services,”
Proc. 32nd International Conference on Dependable Systems and
Networks, pp.595–604, Maryland, USA, 2002.

[11] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” Proc. 24th International Confer-
ence on Software Engineering, pp.467–477, Orlando, Florida, 2002.

[12] R. Santelices and J.A. Jones, “Lightweight fault-localization using
multiple coverage types,” Proc. 31st International Conference on
Software Engineering, pp.56–66, Vancouver, Canada, 2009.

[13] W. Masri, “Fault localization based on information flow coverage,”
Software Testing, Verification and Reliability, vol.20, no.2, pp.121–
147, 2010.

[14] Z. Zhang, W. Chan, T. Tse, B. Jiang, and X. Wang, “Capturing
propagation of infected program states,” Proc. 7th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
pp.43–52, Amsterdam, The Netherlands, 2009.

[15] J.A. Jones, J.F. Bowring, and M.J. Harrold, “Debugging in paral-
lel,” Proc. 2007 International Symposium on Software Testing and
Analysis, pp.16–26, London, United Kingdom, 2007.

[16] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, “Simultaneous de-
bugging of software faults,” J. Systems and Software, vol.84, no.4,
pp.573–586, 2010.

[17] X. Wang, S. Cheung, W. Chan, and Z. Zhang, “Taming coincidental
correctness: Coverage refinement with context patterns to improve
fault localization,” Proc. 31st International Conference on Soft-
ware Engineering, pp.45–55, Vancouver, British Columbia, Canada,
2009.

[18] R. Abreu, A. González, P. Zoeteweij, and A.J.C. van Gemund, “Au-
tomatic software fault localization using generic program invari-
ants,” Proc. 2008 ACM Symposium on Applied Computing, Fort-
aleza, pp.712–717, Ceara, Brazil, 2008.

[19] X. Xie, W.E. Wong, T.Y. Chen, and B. Xu, “Spectrum-based fault
localization: Testing oracles are no longer mandatory,” Proc. 11th
International Conference On Quality Software, pp.1–10, Madrid,
Spain, 2011.

[20] X. Xie, T.Y. Chen, and B. Xu, “Isolating suspiciousness from
spectrum-based fault localization techniques,” Proc. 10th Interna-
tional Conference on Quality Software, pp.385–392, Zhangjiajie,
China, 2010.

[21] V. Debroy, W.E. Wong, X. Xu, and B. Choi, “A grouping-based
strategy to improve effectiveness of fault localization techniques,”
Proc. 10th International Conference on Quality Software, pp.13–22,
Zhangjiajie, China, 2010.

[22] E.Y. Shapiro, “Algorithmic program diagnosis,” Proc. 9th ACM
SIGPLAN SIGACT symposium on Principles of programming lan-

LEI et al.: EFFECTIVE FAULT LOCALIZATION APPROACH USING FEEDBACK
2257

guages, pp.299–308, Albuquerque, New Mexico, USA, 1982.
[23] P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimothy, “General-

ized algorithmic debugging and testing,” ACM Letters on Program-
ming Languages and Systems, vol.1, no.4, pp.303–322, 1992.

[24] J.R. Ruthruff, M. Burnett, and G. Rothermel, “Interactive fault lo-
calization techniques in a spreadsheet environment,” IEEE Trans.
Softw. Eng., vol.32, no.4, pp.213–239, 2006.

[25] D. Hao, L. Zhang, T. Xie, H. Mei, and J.S. Sun, “Interactive fault
localization using test information,” J. Computer Science and Tech-
nology, vol.24, no.5, pp.962–974, 2009.

[26] J. Edvardsson, “A survey on automatic test data generation,” Proc.
2nd Conference on Computer Science and Engineering, pp.21–28,
Linkoping, Sweden, 1999.

[27] SIR, http://sir.unl.edu.

Yan Lei is currently a Ph.D. candidate in
computer science at School of Computer,
National University of Defense Technology,
410073, Changsha, China. His research inter-
ests include software debugging.

Xiaoguang Mao is currently a full professor
at School of Computer, National University of
Defense Technology, 410073, Changsha, China.
He received his Ph.D. degree in computer sci-
ence from National University of Defense Tech-
nology in 1997. His research interests include
high confidence software, software development
methodology, software assurance, software ser-
vice engineering, etc.

Ziying Dai is currently a Ph.D. candi-
date in computer science at School of Com-
puter, National University of Defense Technol-
ogy, 410073, Changsha, China. His research in-
terests include software dynamic evolution.

Dengping Wei is currently a lecturer at
School of Computer, National University of De-
fense Technology, 410073, Changsha, China.
She received her Ph.D. degree in computer sci-
ence from National University of Defense Tech-
nology in 2011. Her research interests include
Semantic Web, Web service, information re-
trieval and program analysis.

