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Automatic Allocation of Training Data for Speech Understanding
Based on Multiple Model Combinations∗

Kazunori KOMATANI†a), Mikio NAKANO††, Members, Masaki KATSUMARU†††, Kotaro FUNAKOSHI††,
Tetsuya OGATA†††, and Hiroshi G. OKUNO†††, Nonmembers

SUMMARY The optimal way to build speech understanding modules
depends on the amount of training data available. When only a small
amount of training data is available, effective allocation of the data is cru-
cial to preventing overfitting of statistical methods. We have developed a
method for allocating a limited amount of training data in accordance with
the amount available. Our method exploits rule-based methods for when
the amount of data is small, which are included in our speech understanding
framework based on multiple model combinations, i.e., multiple automatic
speech recognition (ASR) modules and multiple language understanding
(LU) modules, and then allocates training data preferentially to the mod-
ules that dominate the overall performance of speech understanding. Ex-
perimental evaluation showed that our allocation method consistently out-
performs baseline methods that use a single ASR module and a single LU
module while the amount of training data increases.
key words: spoken dialogue system, language understanding, rapid proto-
typing, limited amount of training data

1. Introduction

The objective of speech understanding in spoken dialogue
systems is to extract a semantic representation of a user’s
utterance. This process is composed of automatic speech
recognition (ASR) and language understanding (LU); ASR
transcribes the speech signals of a spoken utterance into text,
and LU fills in a slot structure in accordance with the ob-
tained text. The result represents the semantics of the ut-
terance. In this process, the main issue is how to construct
the speech understanding module for the target domain of
the spoken dialogue system because the vocabularies and
language expressions depend on its domain. This means
that training data are required for each system. In general,
the performance of speech understanding depends on the
amount of training data when ASR and LU are based on
statistical methods.

An important issue when collecting training data is
how to collect “real” data. In general, training data are bet-
ter when they are more similar to user utterances that are
observed at run time. A Wizard-of-Oz (WoZ) method is
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often used for collecting user utterances, but users tend to
speak to a WoZ system differently than to real systems us-
ing ASR. That is, the utterances collected by a WoZ system
are often different from those collected by a system using
ASR. Hence, a rapid prototyping technique, which enables
the construction of a prototype system even when only a
small amount of training data is available, that collects more
real data is required. More real data and their reference tags
lead to higher performance of statistical LU methods.

One key idea to realize such rapid prototyping is to use
multiple model combinations. We have been developing a
framework called “Multiple Language models for ASR and
Multiple language Understanding models (MLMU)” [2]. In
the MLMU framework, different kinds of ASR and LU
methods based on hand-crafted grammar and statistical
models are used, and the most reliable speech understand-
ing result is selected from candidates produced by the var-
ious model combinations. The framework can include a
hand-crafted grammar-based method, which is effective at
an early stage of system development because it does not
require training data. Since the different kinds of ASR and
LU methods work complementarily, this framework has bet-
ter speech understanding performance than ones that use a
single combination of ASR and LU methods.

The other key idea is to allocate limited available data.
When there is a small amount of training data, the data need
to be allocated appropriately to the modules based on statis-
tical models to prevent overfitting. There are three kinds of
modules in the MLMU framework:

1. ASR modules with language models (LMs),
2. LU modules with LU models (LUMs), and
3. a selection module.

If these modules are trained without data allocation, their
performances would degrade due to overfitting. This is the
case when there is a small amount of training data avail-
able because training of these modules on the same data set
would be considered as training under a closed-set condi-
tion. More specifically, the data used for training the selec-
tion module would include too many correct understanding
results. Such overfitting can be avoided by dividing the data
into sub-sets. If the amount of data available for training is
large, such overfitting does not occur because a variety of
data has already been obtained in the training set. Hence, all
available data should be used to train each statistical module
because using more training data generally improves perfor-
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mance.
We have developed a method for switching data al-

location policies as the amount of training data increases.
More specifically, two points are automatically determined
at which statistical modules having more parameters start to
be trained. As a result, our method consistently outperforms
baseline methods that use a single ASR module and a sin-
gle LU module while the amount of training data increases,
especially when a small amount of data is available.

The rest of the paper is organized as follows: Sect. 2
explains the concept behind our MLMU framework and de-
scribes its current implementation. Section 3 compares re-
lated work with our work. Section 4 presents our automatic
data allocation method, and Sect. 5 describes our experi-
mental evaluation. We conclude in Sect. 6 with a summary
of the key points and a mention of future work.

2. MLMU Framework

2.1 Concept

Many methods for improving robustness in speech under-
standing have been proposed. Most of them aim at accu-
rately extracting semantic representations from noisy ASR
results using unstructured statistical language models such
as N-gram models. When such models are used, the re-
sults may be ungrammatical. Robust language understand-
ing methods have been developed for obtaining semantic
representations by also using statistical methods. In addi-
tion, they improve understanding accuracy by ignoring rec-
ognized words with low confidence scores.

Most deployed spoken dialogue systems, however, still
use finite-state-grammar-based language models for speech
recognition. There seems to be two reasons for this. One
is that it is not easy to collect enough training data for sta-
tistical language models during system development, result-
ing in poor ASR accuracy. The other is that, if a user ut-
terance is covered by the finite-state-grammar, grammar-
based ASR tends to perform better than statistical-language-
model-based ASR. In most cases, users make in-grammar
utterances when using dialogue systems in a limited domain.

Nevertheless, robust speech understanding based on
statistical language models is desirable because users some-
times make out-of-grammar utterances, which are always
misrecognized by grammar-based ASR. We therefore need
a way to achieve both robustness using statistical-language
model-based methods and accuracy using grammar-based
methods.

One possible approach is to obtain the N-best ASR re-
sults with a statistical-model-based speech recognizer and
rescore them on the basis of whether they are covered by
grammar or whether parts of the utterances can be recog-
nized as grammatical phrases [3]. The problem with this ap-
proach is that an ASR result that is covered by grammar
may not appear in the N-best results. This problem could
be solved by setting N to a larger value, but this would in-
crease computation cost substantially. Another approach is

to use probabilistic finite-state grammars for the ASR lan-
guage models [4]. Although this would improve ASR accu-
racy, some utterances might be misrecognized due to their
structural constraints.

What we need is not high ASR accuracy but high
speech understanding accuracy. Therefore, the role of
speech recognition in speech understanding should be to
generate a set of recognition results that is highly likely to
include the correct ASR result or recognition results from
which the correct understanding result can be obtained. Se-
lecting a correct result is not the role of ASR but the role of
speech understanding.

The probability that the speech recognizer generates
the correct ASR result can be increased by using a variety
of language models, such as finite state grammar and statis-
tical language models. It is also important to use a variety
of language understanding methods [5], [6] such as ones us-
ing grammatical constraints and ones using less-structured
statistical models. This is because no single understanding
method achieves both robustness and accuracy.

We developed our MLMU framework [2] on the ba-
sis of these insights. As its name implies, it uses multi-
ple language models for ASR, such as finite-state-grammars
and N-gram statistical models, and multiple models for
language understanding, such as finite-state-transducers [7],
weighted finite-state-transducers [8], [9], keyphrase extrac-
tors, and conditional-random-field-based models.

2.2 Current Implementation

An overview of an MLMU implementation used in this pa-
per is depicted in Fig. 1. As mentioned, MLMU uses multi-
ple LMs for ASR and multiple LUMs for LU and selects the
most reliable speech understanding result from candidates
produced by the various module combinations.

Figure 2 depicts example speech understanding results
produced by multiple ASR modules based on LMs and mul-
tiple LU modules based on LUMs. Only two results are
shown here out of the four combinations of two ASR mod-
ules and two LU modules. This example shows that the cor-
rect speech understanding result can be obtained from a par-
ticular LM-LUM combination.

Each LM-LUM combination is referred to as a speech
understanding (SU) module (S Ui, where i = 1, . . . , n). It
produces a semantic representation consisting of a set of
concepts. A concept is either a semantic slot and its value
or the dialogue act type. Note that n = N × M when N LMs
and M LUMs are used. The LMs and LUMs are trained on
given training data if they are statistical ones; for example,
an N-gram LM is trained by using the available collected
utterances. A hand-crafted grammar rule and its ASR result
do not change when the amount of training data increases.

The confidence measure per utterance for the result of
the i-th speech understanding module S Ui is denoted as
CMi. The speech understanding result having the highest
confidence measure is selected as the final result for the ut-
terance. That is, the result is the output of S Um, where
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Fig. 1 Overview of MLMU speech understanding framework.

U1: It is June ninth.
ASR result:
- grammar “It is June ninth.”
- N-gram “It is June noon and”
LU result:
- grammar + FST “month:6 day:9 type:refer-time”
- N-gram +WFST “month:6 type:refer-time”

U2: I will borrow it on the twentieth.
(Underlined part is out-of-grammar.)

ASR result:
- grammar “Around two pm on the twentieth.”
- N-gram “Around two at ten on the twentieth.”
LU result:
- grammar + FST “day:20 hour:14 type:refer-time”
- N-gram +WFST “day:20 type:refer-time”

Combination of an LM and an LUM is denoted as “LM+LUM.”
(FST: finite state transducer, WFST: weighted FST)

Fig. 2 Example of speech understanding results in MLMU framework.

m = argmaxi CMi. The confidence measure is calculated
using logistic regression on the basis of the features of each
speech understanding result:

CMi =
1

1 + exp(−(ai0 + ai1Fi1 + · · · + ai7Fi7))
. (1)

We used the data mining software Weka [10] for training the
logistic regression function.

The functions are constructed for each speech under-
standing module i. Parameters ai0, . . . , ai7 are determined
by using training data†. In the training phase, teacher signal
1 is given when a speech understanding result is completely
correct; that is, when no error is contained in the result. Oth-
erwise, 0 is given. We use seven features, Fi1, Fi2, . . . , Fi7,
as independent variables. Each feature value is normalized
so as to make its mean zero and its variance one.

The features used are listed in Table 1. They were se-
lected by performing backward stepwise feature selection
from more features we previously prepared. For example,
features such as utterance duration in seconds and the av-
erage number of concepts in ten-best ASR candidates, used
previously [2], were removed during the selection process.
Feature Fi1 and Fi2 represents the reliability of the current
ASR result. Feature Fi1 is the acoustic score for the ASR

Table 1 Features of speech understanding result obtained from S Ui.

Fi1: Acoustic score normalized by utterance length
Fi2: Difference between Fi1 and normalized acoustic

score of verification ASR
Fi3: Average concept CM in understanding result
Fi4: Minimum concept CM in understanding result
Fi5: Number of concepts in understanding result
Fi6: Whether any understanding result is obtained
Fi7: Whether understanding result is yes/no

CM: confidence measure

result with the current LM. The score is normalized by the
utterance length. Fi2 is the difference between Fi1 and the
acoustic score of another ASR with a domain-independent
large vocabulary LM for utterance verification [11]. Fi3 and
Fi4 are calculated for each concept in the LU result on the
basis of the posterior probability of the ten-best ASR candi-
dates [12]. Fi5 is the number of concepts in the LU result.
This feature is effective because the LU results of lengthy
utterances tend to be erroneous in a grammar-based LU. Fi6

represents the case when an ASR result is not accepted by
the subsequent LU module. In such cases, no speech un-
derstanding result is obtained, which is regarded as an error.
Fi7 represents that affirmative and negative responses, typ-
ically “Yes” and “No,” tend to be correctly recognized and
understood.

3. Related Work

Many statistical LU methods have been developed, e.g.,
[13]–[16]. Raymond et al. developed a sequential decision
strategy for LU results [5]. Hahn et al. employed six dif-
ferent LU methods with a single ASR result and combined
them using a weighted ROVER method [6]. These methods
outperform grammar-based LU methods in general when a
sufficient amount of training data is available. However, suf-
ficient training data are not always available when develop-
ing spoken dialogue systems, i.e., at an early stage of devel-
opment.

Several LU methods were constructed using a smaller

†No specific initial values were set to ai j; the default setting of
Weka was used in the experiment.
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amount of training data [8], [9], [17]. Fukubayashi et al. [8]
constructed an LU method based on the WFST model, in
which filler transitions accepting arbitrary inputs and transi-
tion weights are added to a hand-crafted FST model. This
method falls between grammar-based and statistical meth-
ods because a statistically selected weighting scheme is ap-
plied to a hand-crafted grammar model. Therefore, the
amount of training data can be smaller than with general
statistical LU methods. However, this method does not out-
perform statistical ones when plenty of training data are
available. Potamianos and Kuo [9] also developed a se-
mantic parser based on WFST, which combines handcoded
rules and probabilities. Dinarelli et al. [17] used a generative
model for which overfitting is less prone to occur than with
discriminative models when the amount of training data is
small, but they did not use a grammar-based model, which
is expected to achieve reasonable performance even when
the amount of training data is very small.

Raymond and Riccardi [15] compared the perfor-
mances of statistical LU methods for various amounts of
training data. They used a statistical finite-state transducer
(SFST) as a generative model and a support vector machine
(SVM) and CRF as discriminative models. The generative
model is more effective when the amount of data is small,
and the discriminative models are more effective when it is
large. This shows that the performance of an LU method de-
pends on the amount of training data available and supports
our assertion that LU methods need to be switched automat-
ically.

Wang et al. [18] developed a two-stage speech under-
standing method by applying statistical methods first and
then grammatical rules. They also examined the perfor-
mance of the statistical methods at their first stage for var-
ious amounts of training data and showed that the perfor-
mance is not very good when a small amount of data is used.

Schapire et al. [19] showed that the accuracy of call
classification in spoken dialogue systems is improved by in-
corporating hand-crafted prior knowledge into their boost-
ing algorithm. Their idea is the same as ours in that
they improve system performance by using hand-crafted hu-
man knowledge when a small amount of training data is
available. We furthermore try to solve the data allocation
problem because there are multiple statistical models to be
trained in speech understanding, while their call classifica-
tion has only one statistical model.

4. Automatic Allocation of Training Data

Here we describe how a limited amount of training data is
allocated to the modules in the MLMU framework in accor-
dance with the amount of data. The data need to be allocated
to the SU modules (i.e., statistical LM and statistical LUM)
and the selection module. If more data are allocated to the
ASR and LU modules, the performances of these modules
improve, but the overall performance degrades because the
performance of the selection module is degraded. On the
other hand, even if a lot of training data is allocated to the

Fig. 3 Flowchart of data allocation.

selection module, the performance of each ASR and LU
module remains low. That is, we need to allocate limited
available data by considering the total amount of data and
the characteristics of each module.

4.1 Allocation Policy

The performance of the selection module is important be-
cause poor selection results in incorrect selection of the final
LU result even if correct LU results were obtained as candi-
dates. Furthermore, if only a small amount of training data
is available, grammar-based ASR and LU methods can out-
put a correct result in the MLMU framework. We therefore
adopt an approach in which available training data are

1. allocated to the selection module first and
2. then allocated to models for ASR and LU after a mini-

mal amount of training data is secured for the selection
module.

There are three phases of allocation, as depicted in Fig. 3
and explained below.

In the first phase, the first priority is given to the se-
lection module, so all available data are used to train the
selection module. When a very small amount of training
data is available, the output from an SU module that uses
a grammar-based LM and LUM would be the most reliable
because its performance is better than that of other statisti-
cal modules. In such a case, we give up training the statisti-
cal LM and LUM and concentrate on training the selection
module.

In the second phase, training data are also allocated to
the SU modules. The aim is to improve the performance of
these modules by allocating as much training data to them
as possible after the performance of the selection module
converges. The amount of training data is fixed in this phase
to the amount allocated to the selection module in the first
phase. The remaining data are used to train the SU modules.

When the performances of all the SU modules stabi-
lize, allocation proceeds to the third phase. We assume that
overfitting no longer occurs in this phase because sufficient
training data are available. All available data are used to
train all modules without dividing the data.

4.2 Determining When to Switch Allocation Policies

We next explain how to determine the two points that divide



2302
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.9 SEPTEMBER 2012

the three phases described above. We focus on the conver-
gence of the logistic regression functions as the amount of
training data increases. The convergence is defined as the
change in their coefficients, which will be shown later as
Eq. (2).

Automatic switching from one phase to the next re-
quires determination of two points in the number of train-
ing utterances k: when the selection module first converges
(konlysel) and when the SU modules all become stable (knodiv).
These points are determined by the changes in the coeffi-
cients of the logistic regression functions as the number of
utterances used as training data increases. If the sum of the
changes in the coefficients becomes small enough, we con-
sider the training process to have converged. The points are
determined individually using the following algorithm.

Step 1 Construct two logistic regression functions for
speech understanding module S Ui by using k and
(k + δk) utterances out of kmax utterances, where kmax

is the amount of training data available at each point.
Step 2 Calculate the change in coefficients from the two lo-

gistic regression functions using

Δi(k) =
∑

j

∣∣∣ai j(k + δk) − ai j(k)
∣∣∣ , (2)

where ai j(k) denotes the parameters of the logistic re-
gression functions, shown in Eq. (1), for S Ui, when k
utterances are used to train the function.

Step 3 If Δi(k) becomes smaller than threshold θ, consider
that the training of the function has converged and
record this k as the point of convergence. If not, return
to Step 1 after k ← k + δk.

The δk is the minimum unit of training data containing vari-
ous utterances. We set it as the number of utterances in one
dialogue session, with 17 utterances on average.

The first point, konlysel, is determined using an SU mod-
ule that needs no training data. Specifically, we used “gram-
mar+FST” as S Ui. Note again that “LM+LUM” denotes a
combination of an LM for ASR and an LUM for LU. If the
function has converged after k utterances, we set k to konlysel

and fix the k utterances as training data used by the selection
module. The remaining (kmax−k) utterances are allocated to
the SU modules, that is, the LMs and LUMs. Note that, if k
becomes equal to kmax before Δi(k) becomes small enough,
all training data are allocated to the selection module; that
is, no data are allocated to the LMs and LUMs. In this case,
no output is obtained from the statistical SU modules, and
only outputs from the grammar-based modules are used.

The second point, knodiv, is determined using the SU
module that needs the largest amount of training data. The
amount of data needed depends on the number of param-
eters. In the current implementation, this module is “N-
gram+CRF”, and it is used as S Ui in Eq. (2). S Ui (i.e.,
“N-gram+CRF”) is trained with the same k and (k + δk) ut-
terances as used for the logistic regression functions before
they are trained in Step 1. This is because the process to
determine knodiv is to determine whether overfitting occurs

or not. The training data are not divided in this case: knodiv

is determined independently of konlysel. If the function has
converged, i.e., Δi(k) has become small enough, we assume
that the performances of all the SU modules have stabilized,
so overfitting does not occur. We then stop the allocation of
training data and use all available data to train the statistical
modules.

The point knodiv is determined by using information
from the selection module instead of from the LUM itself
although it is used to determine whether the LUM converges
or not. This is because our MLMU framework does not as-
sume specific LUMs. We therefore take into consideration
the number of LUM parameters only to select the LUM that
needs the largest amount of training data.

5. Experimental Evaluation

5.1 Target Data and Implementation

We used a data set collected by using a Japanese rent-a-car
reservation system [20] with 39 participants. Each partic-
ipant performed 8 dialogue sessions, and 5,900 utterances
were collected in total. Out of these utterances, we used
5,240 after eliminating those for which the automatic voice
activity detection (VAD) results agreed with manual anno-
tation. We divided the utterances into two sets: 2,121 by
16 participants as training data and 3,119 by 23 participants
as the test data [20]. The accuracies given in the following
sections were calculated using the test data.

We also constructed an enhanced version of the reser-
vation system to evaluate our allocation method. The system
had two language models (LMs) and four language under-
standing models (LUMs), so eight speech understanding re-
sults in total were obtained. The two LMs were a grammar-
based (“grammar,” hereafter) one and a domain-specific sta-
tistical (“N-gram”) one. The grammar model was described
by hand to be equivalent to the finite state transducer (FST)
model used for LU. The N-gram model was a class 3-gram
model and was trained on a transcription of the available
training data. The vocabulary size was 281 for the grammar
model and 420 for the N-gram model when all the train-
ing data were used. The ASR accuracies of the grammar
and N-gram models were 67.8% and 90.5% for the train-
ing data and 66.3% and 85.0% for the test data when all the
training data were used. We used Julius (ver. 4.1.2) as the
speech recognizer and a gender-independent phonetic-tied
mixture model as the acoustic model [21]. We also used a
domain-independent statistical LM with a vocabulary size
of 60,250, which was trained on Web documents [21], for
utterance verification. This score was used in the selection
module as one of the features.

The four LUMs were an FST model, a weighted FST
(WFST) model, a keyphrase-extractor (Extractor) model,
and a conditional random fields (CRF) model. In the FST-
based LUM, the FST was constructed by hand. Its vocabu-
lary size was 278, and its coverage was 81.3% for the train-
ing data. It uses ten-best ASR results as its input and out-
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puts the first parsing result for the ASR results acceptable
by the FST. The WFST-based LUM is based on the method
developed by Fukubayashi et al. [8]. The WFSTs were con-
structed by using the MIT FST Toolkit [22]. The weighting
scheme used for the test data was selected by using training
data. In the extractor-based LUM, the system tries to simply
extract as many concepts as possible from an ASR result.
We used open-source software, CRF++†, to construct the
LUM. As its features, we use a word in the ASR result, its
first character, its last character, and the ASR confidence of
the word [12]. Its parameters were estimated by using train-
ing data.

The metric used for speech understanding performance
was concept understanding accuracy, defined as

1 − SUB + INS + DEL
# of concepts in correct results

,

where SUB, INS, and DEL denote the number of substitu-
tion, insertion, and deletion errors for concepts.

5.2 Effectiveness of Using Multiple LMs and LUMs

The basic idea of the MLMU framework rests on our as-
sumption that ASR and LU modules work complementar-
ily. To verify whether this assumption is correct, especially
when the amount of data changes, we used oracle selection
when multiple ASR and LU modules were used; i.e., the
most appropriate result was selected by hand. Then we cal-
culated how much the performance of our framework de-
graded when one ASR or LU module was removed. The
result revealed the contribution of each ASR and LU mod-
ule to the overall performance of the framework. A module
is regarded as more important when the accuracy degrades
more when it is removed than when another one is removed.
Two cases, A and B, were defined: in case A, a small amount
of training data was available; in case B, a large amount of
training data was available. We used 141 utterances with 1
participant for case A†† and 2,121 utterances with 16 partic-
ipants for case B. The results are shown in Table 2.

For case A, the accuracy degraded by 12.0 points when
the grammar-based ASR module was removed and by 6.1
points when the N-gram-based ASR module was removed.
The accuracy thus degrades substantially when either ASR
module is removed. This indicates that the two ASR mod-

Table 2 Absolute degradation in oracle accuracy when a module was
removed.

Case A B

With all modules (%) 86.6 90.1
w/o grammar ASR −12.0 −1.1
w/o N-gram ASR −6.1 −7.7
w/o FST LUM −0.4 0.0
w/o WFST LUM −1.2 −0.5
w/o Extractor LUM −0.1 0.0
w/o CRF LUM −0.6 −3.7
(w/o FST & Extractor LUMs) −1.0 −0.1

A: 141 utterances, 1 participant
B: 2,121 utterances, 16 participants

ules work complementarily when only a small amount of
training data is available.

For case B, the accuracy degraded by 1.1 points when
the grammar-based ASR was removed. This means that this
module is less important when there are plenty of training
data because the coverage of the N-gram-based ASR be-
comes wider. In summary, an ASR module based on a hand-
crafted grammar is more important because of the low per-
formance of a statistical one when the amount of training
data is smaller.

In case A, the accuracy was degraded when any of the
LUM modules was removed. In case B, the CRF-based
module was particularly important. This is because CRF can
handle various utterance patterns when a sufficient amount
of data is available.

5.3 Evaluation of Automatic Allocation

Figure 4 shows the change in the sum of the coefficients, Δi,
with an increase in the amount of training data. The number
of training utterances (plotted on the x-axis) increases by δk,
that is, by the number in one dialogue session (17 on aver-
age). As shown in Fig. 4 (a), the change was large when the
amount of training data was small. It decreased dramatically
and converged when around 100 utterances were available.
Then, we set threshold θ to 8†††. By applying the threshold
to Δi, we set the first point, konlysel, to 111 utterances. That
is, up to that point, all the training data were allocated to the
selection module, as described in Sect. 4.1. Similarly, from
the results shown in Fig. 4 (b), we set the second point, knodiv,
to 207 utterances. That is, from that point, the training data
were not allocated.

To evaluate our method for allocating training data, we
compared it with two baseline methods:

• No-division method: All data available at each point
are used to train both the SU modules and the selection
module. That is, the same data set is used to train them.

• Naive-allocation method: Training data available at
each point are allocated equally (i.e., half to each) to
the SU modules and the selection module.

The results are shown in Fig. 5. The x-axis represents the
number of training utterances available on a log scale. The
points were 56, 104, 141, 278, 521, 1115, and 2121 utter-
ances, which correspond to the number of utterances by 3/8,
5/8, 1, 2, 4, 8, and 16 participants, respectively. One partic-
ipant made 133 utterances on average over 8 dialogue ses-
sions. We calculated the concept understanding accuracy at

†http://crfpp.sourceforge.net/
††This participant was selected simply because his ID was #1.

We aimed to select a small amount of utterances randomly.
†††The value of θ needs to be determined empirically. However,

we think it is possible for a system developer to determine it man-
ually. He/she can judge whether the training process converges or
not after seeing Δi(k) while training data are collected and their
amount increases. Since the value does not seem very critical after
seeing the results shown in Fig. 4, we did not conduct experiments
for other values of θ.
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(a) grammar+FST (b) N-gram+CRF

Fig. 4 Change in sum of coefficients, Δi, when amount of training data increased (“LM+LUM”
denotes combination of an LM and an LUM.).

Fig. 5 Results of allocation methods.

each point for each method.
Figure 5 shows that our method achieved the best con-

cept understanding accuracy when the amount of training
data was small, that is, up to 278 utterances. When the
amount of training data is small, our method mainly uses the
results of “grammar+FST”, which needs no training data.
As a result, its performance is equivalent or better to that
of “grammar+FST” if the selection module works correctly,
even when the performances of the other statistical SUs are
low. This is why we allocate the training data to the selec-
tion module until the first point, konlysel. In the no-division
method, the statistical SUs and selection module are trained
on the same data. Thus, overfitting occurs when sufficient
training data is not available. The overfitting of the selection
module especially hurts the overall concept understanding
accuracy.

When more utterances were available, the perfor-
mances of our method and the two baseline methods were
almost the same. This indicates that our method for allocat-
ing the available training data is effective especially when
the amount of training data is small.

Let us examine this result in more detail by using the
case in which 141 utterances were used as the training data
(participant 1): 111 (= konlysel) were used to train the se-
lection module and 30 were used to train the SU modules.
The results are shown in Table 3. We can see that the ac-
curacy with our method was 3.8 points higher than with the

Table 3 Concept understanding accuracy when small amounts of
utterances (those by one participant) were available.

Our Naive No
participant ID method allocation division

#1 (141 utterances) 77.9 73.5 74.1
#3 (99 utterances) 77.0 67.7 69.5
#5 (204 utterances) 73.5 72.4 68.2
#7 (151 utterances) 77.8 75.0 75.0

no-division baseline method. This was achieved by avoid-
ing overfitting of the logistic regression functions; i.e., the
data input to the functions was distributed similarly to that
of the test data, so the concept understanding accuracy for
the test set was improved. The accuracy with our method
was 4.4 points higher than with the naive-allocation baseline
method. This was because the amount of training data allo-
cated to the selection module was less than with our method,
so the selection module was not trained sufficiently.

We also conducted the same experiment for utterances
made by three other participants. The results are also shown
in Table 3. We can also see that our method outperformed
the two baseline methods for their utterances as well. This
indicates that the results do not depend on a specific set of
utterances.

5.4 Comparison with Methods Using a Single ASR and a
Single LU

Finally, we compared the concept understanding accuracy
of our method with those of eight baseline methods using
a single ASR module and a single LU module for various
amounts of training data. These baseline methods corre-
spond to conventional speech understanding methods with-
out the MLMU framework. Each module for comparison
was constructed by using all available training data at each
point as the amount of training data increased because these
methods have no selection module. Our method switched
the allocation phase at 111 and 207 utterances, as described
in Sect. 5.3.

The results are shown in Fig. 6. The accuracies of only
three speech understanding modules are shown, out of the
eight obtained by combining two LMs for ASR and four
LUMs. These three are the ones with the highest accuracies
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Fig. 6 Comparison with baseline methods using single ASR module and
single LU module.

1. Divide training data into m data sets.
2. Use one of m sets as development data.
3. Use j sets for training LUMs and k sets for training selection module

( j + k + 1 = m).
4. Perform speech understanding using trained LUMs and selection

module.
5. Change development sets and calculate concept understanding ac-

curacies for each case by repeating steps 2 to 4 m times. Average
accuracy is the result for the current j and k.

6. Repeat steps 2 to 5 with k = 1, . . . ,m− 2 and find j and k with which
the highest concept understanding accuracy is obtained.

7. Allocate available training data: j/( j + k) to selection module and
k/( j + k) to LUMs.

Fig. 7 Procedure for allocating training data with cross validation-like
method.

at least at one point, when the amount of training data was
increasing.

Our method performed equivalently or better than all
the baseline methods at every point while the number of
training utterances increased. This is because the speech un-
derstanding results of multiple modules are complementary,
and our method selects the more reliable results. This is due
to allocating training data to the selection module when the
amount available is small.

5.5 Comparison with Cross Validation-Like Method

We also tested a cross validation (CV)-like method to allo-
cate available training data when the amount of training data
is small. CV is a commonly used technique to avoid over-
fitting of statistical methods in general when the amount of
training data is limited [23]. In this method, the optimal al-
location ratio is determined experimentally for the available
training data. The training data are then allocated to the se-
lection module and SU modules on the basis of the ratio.
The procedure is shown in Fig. 7. We used 141 utterances
by participant ID #1 consisting of 8 dialogues, which is the
same data as the latter half of Sect. 5.3. They were divided
into 8 sets per dialogue; that is, m = 8 at Step 1 in Fig. 7.
Next, j = 4 and k = 3 were found to give the highest con-
cept understanding accuracy for the training data: 77.0%.

The available data were allocated accordingly and used to
train the modules.

The calculated concept understanding accuracy for the
test set was 75.8%, 2.1 points lower than with our method
when the same training data were used, as shown in Table 3.
The reason the CV-like method underperformed our method
was that the allocation ratio was overfitted for the training
data set. This means that the performances of statistical
methods are not stable even with CV when the amount of
training data is small. Our use of grammar-based LM and
LUM is effective for such cases.

6. Conclusion

We have developed a method for automatically allocating
training data to the statistical modules in our “Multiple Lan-
guage models for ASR and Multiple language Understand-
ing models (MLMU)” framework [2]. The method prevents
performance degradation caused by overfitting. Experimen-
tal evaluation showed that concept understanding accuracies
achieved with our method were equivalent or better than
those of baseline methods based on all combinations of a
single automatic speech recognition (ASR) module and a
single language understanding (LU) module at every point
as the amount of training data increased. This includes a
case in which only a small amount of training data was avail-
able, meaning that our method is also effective for rapid pro-
totyping.

The two major contributions of this work are summa-
rized as follows:

1. We showed that ASR and LU modules based on multi-
ple language models (LMs) and language understand-
ing models (LUMs) work complementarily, especially
when a small amount of training data is available. This
is a key advantage of our MLMU framework, which
uses both statistical and grammar-based methods.

2. We alleviated the problem of overfitting when the
amount of training data is small by setting a data alloca-
tion policy that considers the data amount and module
characteristics.

When plenty of training data are available, there is lit-
tle difference between our method and the speech under-
standing method that requires the most training data, i.e.,
one based on an N-gram LM and a CRF-based LUM, in the
current implementation. It is possible that our method com-
bining multiple speech understanding modules would out-
perform it, as Schapire et al. [19] reported. There are some
examples in their data that only hand-crafted rules can parse.
Our method needs to be evaluated for other tasks, including
ones requiring more sophisticated structural analysis. The
parameters we set to determine the convergence of the sta-
tistical methods need to be verified for other tasks, too. This
remains as future work.

We have focused on speech understanding, especially
on how to construct language understanding modules, and
used limited amounts of domain-dependent data to train
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them. This is because language understanding is generally
domain-dependent. A well-known technique for language
models for automatic speech recognition is to mix a large
amount of domain-independent data and a small amount
of domain-dependent data. How to combine domain-
independent resources with our MLMU framework is an im-
portant issue that also must be addressed.
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