
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012
2377

PAPER

Cache-Aware Virtual Machine Scheduling on Multi-Core
Architecture

Cheol-Ho HONG†a), Young-Pil KIM†b), Nonmembers, Seehwan YOO†c), Student Member,
Chi-Young LEE†d), Nonmember, and Chuck YOO†e), Member

SUMMARY Facing practical limits to increasing processor frequen-
cies, manufacturers have resorted to multi-core designs in their commer-
cial products. In multi-core implementations, cores in a physical package
share the last-level caches to improve inter-core communication. To ef-
ficiently exploit this facility, operating systems must employ cache-aware
schedulers. Unfortunately, virtualization software, which is a foundation
technology of cloud computing, is not yet cache-aware or does not fully
exploit the locality of the last-level caches. In this paper, we propose a
cache-aware virtual machine scheduler for multi-core architectures. The
proposed scheduler exploits the locality of the last-level caches to improve
the performance of concurrent applications running on virtual machines.
For this purpose, we provide a space-partitioning algorithm that migrates
and clusters communicating virtual CPUs (VCPUs) in the same cache do-
main. Second, we provide a time-partitioning algorithm that co-schedules
or schedules in sequence clustered VCPUs. Finally, we present a theoret-
ical analysis that proves our scheduling algorithm is more efficient in sup-
porting concurrent applications than the default credit scheduler in Xen.
We implemented our virtual machine scheduler in the recent Xen hypervi-
sor with para-virtualized Linux-based operating systems. We show that our
approach can improve performance of concurrent virtual machines by up
to 19% compared to the credit scheduler.
key words: virtualization, cache-aware scheduling strategy, multi-core
processor

1. Introduction

For several years, new paradigms related to distributed com-
puting systems such as grid, utility, and cloud computing
have been introduced. Recently, among these paradigms,
cloud computing has drawn the most attention. Cloud com-
puting is intimately related to system virtualization technol-
ogy, which allows multiple operating systems (OSs) to be
consolidated simultaneously in a single physical machine.
In many cloud computing environments, virtualization is
the key enabling technology. For example, Amazons Elas-
tic Compute Cloud (EC2) [1] adopts the Xen hypervisor [2]
to offer Linux, Sun Microsystems’ OpenSolaris, Windows
Server 2008, and FreeBSD. By adopting a virtualization
layer, EC2 can share system resources between applica-
tions from different users while the applications are con-
solidated in each virtual machine (VM). In addition to the

Manuscript received April 25, 2012.
†The authors are with the Department of Computer Science

and Engineering, Korea University, Seoul, Korea.
a) E-mail: chhong@os.korea.ac.kr
b) E-mail: ypkim@os.korea.ac.kr
c) E-mail: shyoo@os.korea.ac.kr
d) E-mail: cylee@os.korea.ac.kr
e) E-mail: chuckyoo@os.korea.ac.kr

DOI: 10.1587/transinf.E95.D.2377

consolidation service, in the cloud environment, virtualiza-
tion technologies can provide additional and valuable bene-
fits, including improved system utilization and greater fault-
tolerance via reliable migration methods.

Current computing platforms used for distributed com-
puting systems have one or more multi-core processors, and
the number of cores is expected to see geometric increase
in the near future. As multi-core processors are more preva-
lent, the development of technologies to fully exploit their
capabilities is becoming an important research area. As re-
cent multi-core processors share some hardware resources
such as prefetching hardware, the front-side bus, and last-
level caches on the same chip, methods for smart and effi-
cient allocation of the shared resources need to be developed
for improved application performance [3]–[6].

Among the shared resources of the processor, exploit-
ing the locality of the last-level caches (L2 or L3 caches)
makes inter-core communication efficient. Figure 1 illus-
trates two Intel Core2 Quad processor packages with each
having four cores with two L2 caches. Each of the L2 caches
is shared and accessed by two cores. In these multi-core
topologies, if communicating threads are clustered among
cores that share the same last-level cache, performance will
increase as the threads can then reuse the cached data. By
avoiding a cache coherence protocol and main memory ref-
erences, hundreds of processor cycles on average can be
saved in the communication process [3]. To exploit the
multi-core topologies, cache-aware schedulers have been
suggested at the OS level [3]–[5]. They detect data sharing
patterns between threads and cluster them onto cores that
share the same cache domain.

Unfortunately, virtualization software is not cache-
aware or lacks the ability to fully exploit the locality of the
last-level caches by clustering communicating virtual CPUs
(VCPUs) into the same cache domain. For example, VM
schedulers in Xen [2], including BVT, SEDF, and the credit
scheduler, are not cache-aware. They implement a simple
load-balancing algorithm that migrates VCPUs regardless of
the multi-core topology. They migrate VCPUs on a physi-
cal core with high workloads to cores with lower workloads.
In contrast to Xen, the recent ESX scheduler in VMware
is cache-aware and has a smart load-balancing algorithm
that prefers intra last-level cache migration to inter last-level
cache migration [7]. The scheduler also supports clustering
of VCPUs via the vSMP Consolidate facility that can be en-
abled by the administrator. However, the clustering mech-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

2378
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

Fig. 1 A schematic view of two Intel Core2 Quad processors.

anism may not be honored depending on the availability of
physical CPUs. As this hypervisor is a commercial product,
we are not aware of its technical specifications. Therefore,
we do not know how frequently clustering requests may be
dismissed and the performance implications of this behav-
ior.

The goal of this study is to design, implement, and
evaluate a cache-aware VM scheduler on a multi-core ar-
chitecture. For the implementation of the scheduling al-
gorithm, we use the Xen hypervisor and its credit sched-
uler. We chose Xen because it is widely used and is an
open source hypervisor for data centers and cloud comput-
ing. Concretely, when a VM has VCPUs communicating
with each other, we proactively locate them in the same
cache domain. This is to prevent them from suffering a lot of
high-latency cross-chip or cross-cache domain communica-
tion. After clustering the communicating VCPUs, in order
to increase utilization of the last-level cache, we schedule
clustered VCPUs at the same time or in sequence. We have
found that just clustering the communicating or related VC-
PUs into the same cache domain is insufficient to improve
performance. The credit scheduler schedules VCPUs asyn-
chronously among multiple VCPUs while guaranteeing fair-
ness in sharing CPU bandwidth. Due to the asynchronous
scheduling, the time quantum of any unrelated VCPU, gen-
erally 30 ms, is long enough for the cached content writ-
ten by one of the communicating VCPUs to be displaced.
Therefore, we co-schedule or schedule in sequence the rela-
tive VCPUs and this mechanism enables better performance
in terms of last-level cache miss rates.

In scheduling clustered VCPUs, we assume that the
strict co-scheduling algorithm, which is adopted in [7], [8]
and keeps execution of VCPUs of an identical VM during
some time slots, may disregard the I/O boost mechanism of
the credit scheduler. The boost concept is introduced to im-
prove performance of I/O intensive VMs in terms of both
bandwidth and latency, and is implemented by prioritization
of I/O VCPUs [9]. Then, the co-starting and the co-ending
mechanism of the strict co-scheduling algorithm can pre-
empt VCPUs performing I/O requests or responses. In re-
verse, I/O boosted VCPUs may not grab the physical CPUs
while the co-scheduled VM is running.

To address this problem, we provide two scheduling
options, an aggressive and a smooth method. While the ag-
gressive method implements a strict co-scheduling mecha-
nism, the smooth one applies a loose mechanism by prefer-
entially respecting the I/O boosted VCPUs. Therefore, the
concurrent VCPUs are scheduled next to the I/O boosted

VCPUs. Administrators can choose these options on the
basis of whether they place emphasis on the performance
of the concurrent domain or the I/O domain while keeping
high utilization of the last-level cache.

The main contributions of this paper are as follows.
First, we provide a space-partitioning algorithm that mi-
grates and clusters related VCPUs on the same cache do-
main. Second, we provide a time-partitioning algorithm that
co-schedules or schedules in sequence clustered VCPUs. In
this scheduling algorithm, we provide both the aggressive
and smooth methods mentioned above. Finally, we present
a theoretical analysis that proves our scheduling algorithm is
more efficient in supporting concurrent applications than the
default credit scheduler in Xen. We evaluate our scheduler
using concurrent applications such as VolanoMark [10].

The remainder of this paper is structured as follows: In
Sect. 2, we explain the background of Xen and the credit
scheduler. In Sect. 3, we illustrate how our cache-aware
VM scheduler works. Section 4 presents the scheduling
model, and Sect. 5 describes the details of the implemen-
tation. Section 6 provides the evaluation results, and Sect. 7
explains related work. Section 8 presents discussion on sev-
eral cache-aware schedulers. Finally, we present our con-
clusions in Sect. 9.

2. Background

2.1 Xen

Xen [2] is an open-source hypervisor that adopts a para-
virtualization technique, rather than full virtualization, to
minimize virtualization overhead. The para-virtualization
technique enables collaboration between the hypervisor and
a guest OS by providing communication channels named
hypercalls. These calls are analogous to system calls be-
tween an OS and a user application. The hypercalls request
the hypervisor to execute the instructions on behalf of the
guest OSs. Hypercalls include processor state update op-
erations, for example, memory management unit (MMU)
updates and physical interrupt masking operations, that a
guest OS cannot execute directly. Source code of a guest
OS should be modified in the para-virtualized approach to
contain hypercalls.

To consolidate multiple OSs, Xen provides CPU, mem-
ory, and I/O device virtualization. In CPU virtualization, it
replaces sensitive instructions, which modify system states
and are executed in the supervisor mode of guest OSs, with
hypercalls. It also places guest OSs at a lower privilege level
than the hypervisor so that they are protected from OS mis-
behavior. Guest OSs also register descriptor tables for ex-
ception and trap handlers that should be executed in the su-
pervisor mode. In memory virtualization, it provides mem-
ory protection between a hypervisor, guest OSs, and appli-
cations. Although it allows guest OSs to have direct read
access to hardware page tables, it validates all the page table
update requests of the guest OSs. This mechanism prevents
one guest OS from reading from or writing to the system

HONG et al.: CACHE-AWARE VIRTUAL MACHINE SCHEDULING ON MULTI-CORE ARCHITECTURE
2379

memory of the other guest OSs. In device virtualization,
domain0, which is an administrator VM, runs most of the
native device drivers. DomainU, which is an unprivileged
domain, implements the front end device drivers for block
and network interfaces to indirectly access the hardware that
only domain0 has permission to use.

2.2 Credit Scheduler

In recent versions of Xen, the credit scheduler, which is a
proportional fair share CPU scheduler, is used by default.
Each domain has two properties associated with the sched-
uler, a weight and a cap. The weight decides allowance of
the physical CPU time that the domain will obtain. The cap
represents the maximum amount of CPU bandwidth that a
domain will be able to consume [11].

The credit scheduler schedules domains fairly based on
the credit amount, which is determined by the weight that
each domain receives. Credit refers to CPU time or CPU
bandwidth for which each domain can run. A VCPU of a
domain consumes its credit every 10 ms; a global account
thread recharges each VCPU’s credit amount according to
its weight every 30 ms.

The credit scheduler maintains per-CPU run queues,
and at every scheduling moment, the next VCPU to run is
chosen from the head of each run queue. The local run
queue of each core is sorted by VCPU priority. Three
VCPU priorities are defined in the current Xen implemen-
tation: UNDER (value of −1), OVER (−2), and BOOST
(0). The VCPU’s priority is determined by the remaining
credit amount of the VCPU while the global account thread
is running. If the credit amount of the VCPU is positive,
the VCPU’s priority is UNDER. Conversely, if the credit
amount is negative, the VCPU’s priority becomes OVER.
BOOST priority is introduced to improve I/O performance
of domains in terms of both bandwidth and latency. When-
ever an I/O event is sent to a sleeping VCPU, the VCPU
wakes up and changes its priority to BOOST and preempts
a running VCPU immediately.

In a multi-core system, the credit scheduler supports
VCPU load-balancing over all physical cores to guarantee
fair share of total CPU bandwidth in the system. When a
core cannot find a VCPU of UNDER priority on its local
run queue, the core will search for any VCPU of UNDER
priority on other cores. In addition, if any core has no VC-
PUs on its local run queue, it will search for any runnable
VCPUs on other cores before it goes idle.

3. Cache-aware Scheduler

In this section, we cover the details of the cache-aware VM
scheduler design. Our scheduler is based on the Xen hyper-
visor and modified from the credit scheduler. Figure 2 il-
lustrates the structure of the Xen hypervisor with the cache-
aware scheduler. Our scheduler depends on administrator’s
annotations and the detection module of concurrent applica-
tions. The former identifies which VM has concurrent appli-

Fig. 2 The structure of Xen hypervisor with the cache-aware scheduler.

cations with large shared regions, and the latter dynamically
recognizes whether concurrent applications are running or
not in the VM designated by the administrator. The detec-
tion module is implemented outside the scheduler. When the
workloads in the VM are concurrent applications, our sched-
uler clusters the related VCPUs on the same cache domain.
Then, the scheduling of the VCPUs occurs almost simulta-
neously by these two algorithms: the space-partitioning and
time-partitioning algorithm. When the workloads of VCPUs
of any domain are not concurrent, our scheduler schedules
the VCPUs asynchronously according to the default propor-
tional share algorithm of the credit scheduler.

3.1 Identifying Communicating VCPUs

In our work, the more global memory regions communicat-
ing VCPUs share, the more they will benefit from the last-
level cache utilization by the cache-aware VM scheduling.
For this purpose, we require system administrators annota-
tions to identify which VM has concurrent applications with
large shared regions. The information can be obtained from
prior research [12], [13] or from developers. In fact, it is
very difficult or inefficient to detect the amount of shared
regions automatically without the support of special hard-
ware performance monitoring units (PMUs). The PMUs se-
lect data addresses on cache misses of the remote cache [3],
[4]. The approach using PMUs uses a special data address
register (DAR) for sampling data addresses and calculates
similarity metric between threads. However, the hardware
support is not available in many micro architectures includ-
ing our Intel quad-core evaluation system; for reference, the
hardware support is available in the IBM POWER5, Intel
Itanium, Sun UltraSparc, and AMD Barcelona and Shang-
hai processors.

To support smart cache-aware scheduling of the des-
ignated VMs enabled by the administrator, we provide the
detection module of concurrent applications. The module
is implemented outside the scheduler and feeds informa-
tion, into the cache-aware scheduler, about whether concur-
rent applications are running or not in the designated VM.
In addition, it informs the scheduler of which VCPUs the
applications are running on. The mechanism the module

2380
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

uses is adopted from [5]. Generally, concurrent applications
with shared regions interact with other threads by invoking
mutex-related system calls when accessing the shared re-
gion. Using this characteristic, the detection module counts
mutex-related system calls per VCPU of the designated VM
in the hypervisor. When the preset threshold is reached on at
least two VCPUs, the module makes the clustering informa-
tion that contains interacting VCPUs in the designated VM
(in our experiment, the preset value is 5 times per 10 ms).
The clustering information is implemented as a list, and the
hypervisor regards the head element of the list as a cluster
representative.

The above-mentioned mechanism is conducted by the
system call interception in the hypervisor. Therefore, in or-
der to capture mutex-related system calls, we do not need
to install any instrumentation on guest OSs. However, in-
tercepting system calls in the hypervisor level has a high
cost as illustrated in the evaluation section. Therefore, using
timer interfaces in Xen, we periodically enable the detection
module for a period of time disabling the module for the
rest of the time; in our experiment, we enable the module
for 100 ms per second. In current Xen-x86 implementation,
because system calls bypass the hypervisor [14], we modify
the hypervisor slightly and make system calls go through the
hypervisor. The detail of x86 specific modification will be
provided in the implementation section.

The advantage of both taking administrator’s annota-
tions and the detection module is simplicity. This approach
can provide uncomplicated and practical mechanisms for
the architecture that does not support data address sampling
features. However, the disadvantage is that our technique
used in the detection module does not cover several kinds
of synchronization mechanisms. If user-level spin-lock li-
braries are used, interaction between VCPUs might not be
detected. Nevertheless, we have tried to cover conventional
thread libraries including NPTL(Native POSIX Thread Li-
brary) in Linux and the standard Java threads library that
uses mutex-related system calls.

3.2 Space-Partitioning

The space-partitioning algorithm makes spatial scheduling
partitions based on each cache domain and assigns commu-
nicating VCPUs in the same partition. It uses the cluster-
ing information created by the detection module in order to
identify communicating VCPUs. With this algorithm, clus-
tered VCPUs can reduce cost consumed by cache coherence
protocols. Generally, in multi-core processors, if any data
that are also located on another cache domain are modified,
the duplicate copy of the data should be invalidated. Access
from other cache domains to these invalidated data leads to
cache coherence misses. These processes cause high latency
inter-cache domain communications. Clustering the com-
municating VCPUs on the same cache domain can address
this problem in the virtualization environment.

The algorithm periodically checks whether the clus-
tering information lists are created or updated by the de-

Fig. 3 Space-partitioning.

tection module. After identifying the created or updated
cluster lists, the algorithm distributes the created clusters
evenly among all of the cache domains. The reason for this
is to utilize all cores across the system and guarantee the
fairness policy of the credit scheduler. Concretely, the al-
gorithm searches cache domains that have some idle cores
first. When any cache domain with idle cores is found, the
scheduling algorithm assigns a created cluster to the found
cache domain. When no cache domain is found in the first
phase, we assign the created cluster to the cache domain
with lightweight workloads, which can be identified with
the total length of the run queues of any cache domain.

The space-partitioning algorithm is internally accom-
plished by using affinity interfaces provided by Xen.
Affinity-related functions in Xen receive, as parameters, an
address of a VCPU and a CPU mask structure that can des-
ignate the runnable cores in the target cache domain. Us-
ing the CPU mask variable, we migrate the communicat-
ing VCPUs in the cluster list to the same cache domain. In
Fig. 3, the left side is the default system state where com-
municating VCPUs are located in different cache domains.
Then, two cluster lists are formed to contain each two com-
municating VCPUs by the detection module. The space-
partitioning algorithm assigns each cluster into the different
cache domains by mapping the cache domain id, which is
determined by the order in the multi-core topologies, to the
descriptor of each cluster. Then, the algorithm migrates VC-
PUs in each cluster list to the assigned location using affinity
interfaces as the right side of Fig. 3.

The advantage of the space-partitioning algorithm is
that it can reduce the inter-cache domain communication
cost by reducing cache coherence misses. The more global
memory regions communicating VCPUs share, the more the
algorithm can improve performance of concurrent applica-
tions. In addition, as the mutex lock variables, which are
employed in threads in order to synchronize themselves, can
be located in the same cache domain, the algorithm prevents
the threads from wasting cycles consumed by a cache snoop-
ing mechanism.

3.3 Time-Partitioning

After related VCPUs are clustered into the same cache

HONG et al.: CACHE-AWARE VIRTUAL MACHINE SCHEDULING ON MULTI-CORE ARCHITECTURE
2381

domain by the space-partitioning algorithm, the time-
partitioning algorithm makes each temporal scheduling par-
tition inside each space partition and assigns communicat-
ing VCPUs in the same temporal partition. By doing this,
the algorithm can schedule clustered VCPUs almost simul-
taneously and maximize utilization of the last-level cache in
terms of data reuses among the VCPUs. As the default credit
scheduler schedules VCPUs asynchronously among multi-
ple VCPUs, without this algorithm, other non-concurrent
VCPUs in the same cache domain can sweep out cached
contents that may be used by communicating VCPUs; this
situation prevents data reuses among communicating VC-
PUs and makes unavoidable cache misses (conflict misses).
Therefore, we schedule communicating VCPUs as close as
possible to each other in order to maximize the data reuses
and reduce last-level cache misses incurred by redundant
data evictions and reloads.

To gain the best performance of concurrent applica-
tions, it will be good to schedule communicating VCPUs
at the same time such as the strict co-scheduling algorithm,
which is adopted in [7], [8]. However, such a strict co-
scheduling algorithm, which keeps execution of VCPUs of
an identical VM during some time slots, may ignore the I/O
boost mechanism of the credit scheduler. The boost mech-
anism is introduced in the credit scheduler to improve I/O
intensive VMs in terms of both bandwidth and latency [9].
These improvements now make it an important character-
istic of the scheduler. The boost mechanism is activated
when a blocked VCPU is sent a virtual interrupt. As the
boosted VCPU has higher priority than normal VCPUs, it is
scheduled immediately. The problem is that co-starting and
co-ending mechanisms of strict the co-scheduling algorithm
can preempt the boosted VCPU. Conversely, the boosted
VCPU may not grab the physical CPU until the concurrent
VM releases the CPU. This situation may result in a deteri-
oration of the performance of other I/O bound domains.

Therefore, considering side effects of the strict co-
scheduling mechanism, we provide two options that ad-
ministrators can choose, aggressive and smooth meth-
ods. While the aggressive method implements a strict co-
scheduling mechanisms, the smooth one always respects the
I/O boosted VCPUs. Detailed explanations are as follows.

3.3.1 Aggressive Method

To schedule related VCPUs at the same time, we introduce
a new and highest ranked priority in the system: AGGRES-
SIVE (value of 2). When the head of a cluster list is se-
lected to run on any physical core, time-partitioning algo-
rithm changes priorities of other communicating VCPUs in
the same cluster list to AGGRESSIVE. Then, it puts the
VCPUs on the head of the run queue and tickles physical
cores to reschedule VCPUs. Because the AGGRESSIVE
priority is higher than BOOST priority, concurrent VCPUs
preempt I/O intensive VCPUs in this mechanism. The AG-
GRESSIVE priority lasts for at most 20 ms to prevent other
VCPUs from waiting a long time for CPU allocation. The

Fig. 4 Time-partitioning. The C-VCPUs indicate communicating VC-
PUs; the I-VCPUs indicate I/O bound VCPUs. The N-VCPUs mean nor-
mal VCPUs

left side of Fig. 4 illustrates the default system state, and the
middle side illustrates the system state where the aggressive
method is applied.

3.3.2 Smooth Method

While respecting the I/O boosted VCPUs, the smooth
method schedules in sequence communicating VCPUs in
the same temporal partition. It operates in a similar way
to the aggressive method. Instead of using AGGRESSIVE
priority, the method defines the SMOOTH priority (value of
0) less than BOOST priority. Because the value of UNDER
is −1, and BOOST is 0, we modify the value of BOOST
to 1 and put our priority for the smooth method in the mid-
dle of them. Similar to the aggressive method, when the
head of a cluster list is selected to run, the time-partitioning
algorithm changes priorities of other communicating VC-
PUs in the same cluster list. In contrast to the aggressive
method, concurrent VCPUs cannot preempt I/O intensive
VCPUs with BOOST priority and are put second to the last
I/O intensive VCPU with BOOST priority in the run queue.
The right side of Fig. 4 illustrates the system state where the
smooth method is applied.

3.3.3 Effects on Performance and Fairness

In terms of concurrent applications, the time-partitioning al-
gorithm, which is composed of the aggressive and smooth
methods, can improve performance by increasing data
reuses and reducing conflict misses of a last level cache. In
the smooth method, if there are a small number of boosted
VCPUs, the time-partitioning algorithm can still keep high
utilization of the last-level cache among communicating
VCPUs. However, if there are a lot of not only I/O inten-
sive but also memory-bound VCPUs that wait to be selected
to run in the entire system, the smooth method could not
have many opportunities to reuse cached data.

When the aggressive method is used, this algorithm can
also solve the synchronization problem in the concurrent ap-
plications as the hybrid scheduling framework [8]. The syn-
chronization problem in [8] occurs when threads in the same
VM synchronize with each other through barrier synchro-
nization, and the hypervisor adopts the asynchronous VM
scheduling. Then, some threads may be blocked for several

2382
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

time slots owing to the asynchronous CPU scheduling of the
hypervisor. This situation deteriorates the performance of
concurrent applications. By scheduling interacting VCPUs
at the same time, the synchronization problem in [8] can be
solved by using our aggressive method.

In regard to the fairness of the scheduler, we condi-
tionally set communicating VCPUs to high priorities when
the cluster representative is selected to run. We do not co-
schedule any communicating VCPU with OVER priority
(the credit amount is negative) to guarantee the fairness pol-
icy of the credit scheduler. As the credit scheduler puts a
de-scheduled VCPU into the tail of a run queue, uncondi-
tional and frequent preemption by communicating VCPUs
could compromise system-wide fairness.

4. Scheduling Model

In this section, we present a theoretical analysis of each
scheduling policy, For convenience, we borrow some no-
tations from [8], while building our scheduling model.

4.1 Scheduling Model

4.1.1 Concurrent Task Model

T = {T1,T2, . . . ,T|T |} denotes a concurrent task that consists
of |T | threads. Thread Ti = {Ti

1,Ti
2, . . . ,Ti

|Ti |} consists of
several thread units, where |Ti| is the number of thread units.
We define thread unit Ti

k such that Ti
k contains one compu-

tation part and one subsequent interaction part.
The interaction between threads is realized through

synchronization and communication operations. Among
the various thread synchronization methods, we focus on
methods that allow for asynchronous interaction in order to
simplify our scheduling model. In asynchronous interac-
tion, when a thread reaches the interaction code, it can ex-
ecute the interaction code without having to wait for other
threads [15]. Similarly, among the various communication
methods, we consider the method that achieves communi-
cation by accessing a shared memory.

In order to highlight the cache effect in the scheduling
model, we define an execution time of Ti

k, E(Ti
k), as fol-

lows:

E(Ti
k) = ρik ×Cik + (1 − ρik) × Mik

, where 0 ≤ ρik ≤ 1.
In E(Ti

k), ρik is the cache utilization of Ti
k, that is, the

ratio of cache hits to total memory references. Cik denotes
the average processing time of Ti

k under the condition that
all memory references induce cache hits. Further, Mik de-
notes the average processing time of Ti

k under the condition
that all memory references induce last-level cache misses.

Cache utilization ρik can vary with the scheduling pol-
icy. For example, when the space-partitioning or time-
partitioning algorithm is applied, the value of ρik increases
compared to the default scheduler because of reduced cache

coherence misses or conflict misses. Therefore, E(Ti
k) can

vary with the scheduling policy, even if the instructions of
Ti

k are identical.

4.1.2 Scheduling Model

P = {P1, P2, . . . , P|P|} indicates physical CPUs, where |P|
is the number of physical CPUs in the system. V =

{V1,V2, . . . ,V|V |} represents VMs running on the physical
CPUs, where |V | is the number of VMs in the system. The
weight of VM Vi is represented by ω(Vi), and this is a rel-
ative proportion of physical CPU consumption. Thus, we

have
|V |∑
i=1
ω(Vi) = 1. C(Vi) = {vi1, vi2, . . . , vi |C(Vi)|} indicates

VCPUs running on VM Vi, and the number of VCPUs is
|C(Vi)|.

To avoid the cost of thread migration, we assume that
each thread is fixed to a VCPU. Moreover, to avoid the
cost of frequent context-switching of threads on a VCPU,
we assume that |T | ≤ |C(Vi)|. Similarly, to avoid the cost of
context-switching of VCPUs that belong to the same VM on
a single CPU, we assume that |C(Vi)| ≤ |P|.

4.1.3 Scheduling Policy Analysis

In the following theorems, we let i∗ as the value of i when i∗
satisfies the following equation.

∑|Ti∗ |
k=1

E(Ti∗
k) = max

i

{∑|Ti |
k=1

E(Ti
k)
}

, where 1 ≤ i ≤ |T |.
In our work, time is divided into fixed intervals referred

to as time slots. We assume that a time slot is a time unit of
virtual machine scheduling. Therefore, the virtual machine
scheduler is called by the hypervisor at every time slot. In
other words, the size of a time quantum of any VCPU equals
that of a time slot. Then, E(Ti

k) is normalized in proportion
to the actual length of a time slot. At any moment, time t is
also normalized in proportion to the actual length of a time
slot.

Proportional-share scheduling. The proportional-
share scheduling policy allocates a certain amount of CPU
time to each VM in proportion to its weight.

Theorem 1. In proportional-share scheduling, the worst
completion time for a concurrent task T in VM Vi is as fol-
lows:

� Lag+�ET �−1
RI (vi j)

� + ET − (�ET � − 1)

, where Lag is the upper bound of deviations between
the ideally and the actually obtained CPU time, RI(vi j) =

|P|×ω(Vi)
|C(Vi)| , ET =

|Ti∗ |∑
k=1

E(Ti∗
k), and �ET � ≥ 2.

Proof. In an ideal fair scheduling model, the ideal amount
of CPU time for VCPU vi j is determined by the number
of processors, the weight proportion of the VM where the

HONG et al.: CACHE-AWARE VIRTUAL MACHINE SCHEDULING ON MULTI-CORE ARCHITECTURE
2383

Fig. 5 An example of the proportional-share scheduling strategy for
thread Ti in Vi, when |P| = 2, |V | = 2, |C(Vi)| = 2, ω(Vi) = 0.5, and
Lag = 1. The last time quantum is given at tp.

VCPU belongs, and the number of VCPUs in the VM. Re-
flecting these factors, we define ratio RI(vi j) that gives the
fair share of CPU to VCPU vi j as follows:

RI(vi j) =
|P|×ω(Vi)
|C(Vi)| (1)

Because Eq. (1) indicates a ratio, for t (time), we should
multiply t by RI(vi j), thus obtaining t × RI(vi j) as the ideal
amount of CPU time for VCPU vi j.

However, in practice, for various reasons, the actual
amount of obtained CPU time may be greater or smaller than
the ideal amount. Thus, we need to define the actual amount
of obtained CPU time of VCPU vi j from time 0 to t, and
we call it Ob(t, i, j). Then, the deviation between the ideal
and actual amount of CPU time from time 0 to t, n(t, i, j), is
defined as follows:

n(t, i, j) = t × RI(vi j) − Ob(t, i, j) (2)

This equation can be used in evaluating or controlling
the fairness of the proportional-share scheduling strategies.
The positive value of n(t, i, j) means that VCPU vi j has not
obtained CPU bandwidth less than what it ideally should;
the negative value means the opposite case. In general,
the proportional-share strategies confine the upper bound
of |n(t, i, j)| to guarantee the fairness of CPU sharing less
strictly than the ideal fair scheduling. Let us assign the up-
per bound of |n(t, i, j)| to Lag. Then, we obtain the condition
for fairness as follows:

∀t, i, j, |n(t, i, j)| ≤ Lag (3)

Now, we can estimate the worst-case completion time
of a task by using Eq. (3). For example, let us assume that a
task is inserted in the ready queue at time 0. Then the first
time quantum is given to VCPU vi j at time t1, and the last
quantum is given at time tp. We assume that p is larger than
1. This situation is illustrated in Fig. 5. In the figure, the
execution time of each thread unit is not equal. Thread units
are partitioned with different patterns of painting.

Then, the last time quantum can be given to VCPU vi j

while the condition |n(tp, i, j)| ≤ Lag is true, according to
Eq. (3). In order to consider the worst-case completion time,
we let n(tp, i, j) = Lag. Then, according to Eq. (2), we have

tp = � Lag+Ob(tp,i, j)
RI (vi j)

� (4)

Fig. 6 An example of the co-scheduling strategy for two threads in Vi,
when |P| = 2, |V | = 2, |C(Vi)| = 2, and ω(Vi) = 0.5. The last time quantum
is given at tp.

Because the virtual machine scheduler is called at every
time slot, we use the floor function in Eq. (4). At the time
of tp, we have Ob(tp, i, j) = p − 1 because VCPU vi j has
consumed (p − 1) time slots until that time. Therefore, we
have

tp = � Lag+p−1
RI (vi j)

� (5)

The absolute amount of time quantum for the comple-
tion of thread Ti∗ is determined by the sum of the normal-
ized execution time of each thread unit. When we let ET =
|Ti∗ |∑
k=1

E(Ti∗
k), the number of the required slots is �ET �. When

the last quantum is given at tp, the last quantum is the pth
time quantum. Thus, we obtain �ET � = p. Because we as-
sume that p is larger than 1, we have �ET � ≥ 2. Then, by
(5), it follows that

tp = � Lag+�ET �−1
RI (vi j)

� (6)

The point where a task is finished in the last time quan-
tum can be obtained by subtracting the amount of time until
the (p − 1)th time quantum from ET . The point is:

ET − (p − 1) = ET − (�ET � − 1) (7)

The maximum completion time for a task is obtained
by summing Eq. (6) and (7). It follows that

� Lag+�ET �−1
RI (vi j)

� + ET − (�ET � − 1) (8)

�

Co-scheduling. In this scheduling method, VCPUs in
a VM are co-scheduled to the physical CPUs in the system,
while the CPU bandwidth allocated to VMs is in proportion
to the number of their weights [7], [8]. The co-scheduling
policy forces every task to run on the VCPUs at the same
time, as illustrated in Fig. 6. The co-scheduling strategy in-
trinsically guarantees the ideal fair-share of CPU sharing be-
tween virtual machines at every periodic interval.

Theorem 2. In co-scheduling, the worst completion time for
concurrent task T in VM Vi is as follows:

� �ET �
RI (vi j)
� + ET − �ET �

, where RI(vi j) =
|P|×ω(Vi)
|C(Vi)| , ET =

|Ti∗ |∑
k=1

E(Ti∗
k), and �ET � ≥ 2.

2384
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

Proof. The co-scheduling method distributes CPU band-
width to each VCPU in proportion to its weight in every
periodic interval. Let us assume that a task is inserted in the
ready queue at time 0, and VCPU vi j has the final order in
the periodic interval. As shown in Fig. 6, in the first interval,
the time quantum of VCPU vi j starts at t1 and ends at t1 + 1.
In the last interval, the time quantum of VCPU vi j starts at
tp and ends at tp + 1. We assume that p is larger than 1.

Then, at the end of the last quantum, VCPU vi j receives
the ideal amount of CPU time by the scheduler. Then, by
Eq. (2), we have (tp + 1)×RI(vi j) = Ob(tp + 1, i, j). Because
VCPU vi j has received p time slots until that time, the value
of Ob(tp + 1, i, j) is p. Then, it follows that

tp = �Ob(tp+1,i, j)
RI (vi j)

� − 1 = � p
RI (vi j)
� − 1 (9)

The absolute amount of time quantum for the comple-
tion of thread Ti∗ is determined by the sum of the normal-
ized execution time of each thread unit. When we let ET =
|Ti∗ |∑
k=1

E(Ti∗
k), the number of the required slots is �ET �. When

the last quantum starts at tp, the last quantum is the pth time
quantum. Thus, we obtain �ET � = p. Because we assume
that p is larger than 1, we have �ET � ≥ 2. Then, by (9), it
follows that

tp = � �ET �
RI (vi j)
� − 1 (10)

The point where a task is finished in the last time quan-
tum can be obtained by subtracting the amount of time
until the (p − 1)th time quantum from ET . The point is
ET − (p−1) = ET − (�ET �−1). Then, by (10), the maximum
completion time for a task is obtained as follows:

tp +
(
ET − (�ET � − 1)

)
= � �ET �

RI (vi j)
� + ET − �ET � (11)

�

Now, we analyze our two scheduling policies using the
above models. First, we compare space-partitioning with
the proportional-share strategy. Second, we compare time-
partitioning with space-partitioning. These comparisons are
meaningful because we theoretically reveal that even a small
increase in cache utilization can improve the performance
of parallel threads between the scheduling policies. In addi-
tion, if the cache utilization of each scheduler is given, we
can estimate the performance improvement by obtaining the
deviation of the completion time of each scheduler.

Space-partitioning.

Theorem 3. When a concurrent thread shares some global
memory regions with other VCPUs in the same VM, space-
partitioning can improve the performance of the concurrent
task at worst compared to the default proportional-share
strategy.

Proof. In general, a scheduling algorithm with the lower

value of the worst completion time is preferable. There-
fore, we compare the worst completion time of default
proportional-share and space-partitioning scheduling. Then,
we prove Theorem 3 by showing that the deviation of the
worst completion time between default proportional-share
and space-partitioning scheduling, DS in the following con-
text, is always positive.

In the default proportional-share strategy, we assume
that parallel threads share large memory regions and are
placed on different CPUs that do not share the last-level
cache. Then, these threads would suffer from the coher-
ent cache misses. Let ρN be the cache utilization in this
case, and let ρS be the cache utilization in space-partitioning
scheduling. Then, we have ρN < ρS in all thread units
because space-partitioning reduces cache coherence misses
compared to the default proportional-share strategy by plac-
ing communicating threads in the same cache domain.

The space-partitioning algorithm basically adopts the
proportional-share strategy. Then, the deviation of the worst
completion time between the two scheduling algorithms,
DS , is obtained by subtracting Eq. (8) with ρS from Eq. (8)
with ρN . When ρN is used, we refer to the sum of the exe-
cution time of all thread units as ET N . Similarly, when ρS is
used, we refer to the sum of the execution time of all thread
units as ETS . Then, DS is:

DS =
(
� Lag+�ET N �−1

RI (vi j)
� + ET N − (�ET N� − 1)

)

−
(
� Lag+�ETS �−1

RI (vi j)
� + ETS − (�ETS � − 1)

)

=
(
� Lag+�ET N �−1

RI (vi j)
� − � Lag+�ETS �−1

RI (vi j)
�
)

+(ET N − �ET N�) − (ETS − �ETS �)

(12)

In Eq. (12), the value of (ET N − ETS) is as follows:

ET N − ETS =
|Ti∗ |∑
k=1

(
ρNi∗k ×Ci∗k + (1 − ρNi∗k) × Mi∗k

)

−
|Ti∗ |∑
k=1

(
ρS i∗k ×Ci∗k + (1 − ρS i∗k) × Mi∗k

)

=
|Ti∗ |∑
k=1

(
(ρS i∗k − ρNi∗k) × (Mi∗k −Ci∗k)

)

(13)

In Eq. (13), we have ∀k, ρS i∗k−ρNi∗k > 0, and ∀k, Mi∗k−
Ci∗k > 0 because Mi∗k means processing time of Ti∗

k on the
condition that all memory references induce last-level cache
misses, and Ci∗k means the opposite case. Therefore,

ET N − ETS > 0 (14)

Then, �ET N − ETS � ≥ 1. Therefore, we obtain the condition
as follows:

�ET N� − �ETS � ≥ 0 (15)

There are two cases to consider when �ET N� − �ETS � ≥
0. We first consider the case when �ET N� − �ETS � = 0. In
this case, we have DS = ET N − ETS in Eq. (12). By (14), we
have DS > 0.

Next, we consider the case when �ET N� − �ETS � > 0 in

HONG et al.: CACHE-AWARE VIRTUAL MACHINE SCHEDULING ON MULTI-CORE ARCHITECTURE
2385

(15). In this case, we have

DS =
(
� Lag+�ET N �−1

RI (vi j)
� − � Lag+�ETS �−1

RI (vi j)
�
)

+(ET N − �ET N�) − (ETS − �ETS �)
(16)

Then, in Eq. (16), the value of � Lag+�ET N �−1
RI (vi j)

� −
� Lag+�ETS �−1

RI (vi j)
� is as follows:

� Lag+�ET N �−1
RI (vi j)

� − � Lag+�ETS �−1
RI (vi j)

�

=

⎧⎪⎪⎨⎪⎪⎩
� �ET N �−�ETS �

RI (vi j)
� if { Lag+�ET N �−1

RI (vi j)
} ≥ { Lag+�ETS �−1

RI (vi j)
}

� �ET N �−�ETS �
RI (vi j)

� + 1 if { Lag+�ET N �−1
RI (vi j)

} < { Lag+�ETS �−1
RI (vi j)

}
(17)

Because we have �ET N� − �ETS � > 0, then it equals
that �ET N� − �ETS � ≥ 1. Moreover, the weight proportion
of VM Vi cannot exceed the ratio of the number of its vir-
tual CPUs to the number of physical CPUs in the system.
Therefore, ω(Vi) ≤ |C(Vi)|

|P| . Then, |C(Vi)|
|P|×ω(Vi)

= 1
RI (vi j)

≥ 1. Thus,

� �ET N �−�ETS �
RI (vi j)

� ≥ 1. Therefore, in both cases in (17), we obtain
the condition as follows:

� Lag+�ET N �−1
RI (vi j)

� − � Lag+�ETS �−1
RI (vi j)

� ≥ 1

In Eq. (16), because we have −1 < (ET N − �ET N�) −
(ETS − �ETS �) < 1, and � Lag+�ET N �−1

RI (vi j)
� − � Lag+�ETS �−1

RI (vi j)
� ≥ 1,

then DS > 0.
We get our result of Theorem 3 because the deviation

of the worst completion time between default proportional-
share and space-partitioning scheduling (Eq. (12)), DS , is
always positive. �

Time-partitioning.

Theorem 4. When a concurrent thread shares some global
memory regions with other VCPUs in the same VM, time-
partitioning with the aggressive method can improve the
performance of the concurrent task at worst compared to
space-partitioning.

Proof. Like the proof of Theorem 3, we compare the worst
completion time of the two scheduling algorithms. Af-
ter the space-partitioning algorithm is applied, the time-
partitioning algorithm with the aggressive method co-
schedules VCPUs in the same temporal partition. Let ρS be
the cache utilization in space-partitioning scheduling, and
let ρT be the cache utilization in time-partitioning schedul-
ing. Then, we have ρS < ρT in all thread units because
time-partitioning reduces cache conflict misses compared to
space-partitioning by co-scheduling communicating threads
in the same temporal partition.

The time-partitioning algorithm basically adopts the
co-scheduling strategy while the space-partitioning algo-
rithm adopts the proportional-share strategy. Then, the devi-
ation of the worst completion time between the two schedul-
ing algorithms, DT , is obtained by subtracting Eq. (11) with
ρT from Eq. (8) with ρS . When ρS is used, we refer to the

sum of the execution time of all thread units as ETS . Simi-
larly, when ρT is used, we refer to the sum of the execution
time of all thread units as ETT . Then,

DT =
(
� Lag+�ETS �−1

RI (vi j)
� + ETS − (�ETS � − 1)

)

−
(
� �ETT �

RI (vi j)
� + ETT − �ETT �

)

=
(
� Lag+�ETS �−1

RI (vi j)
� − � �ETT �

RI (vi j)
�
)

+(ETS − �ETS �) − (ETT − �ETT �) + 1

(18)

Then, in Eq. (18), the value of � Lag+�ETS �−1
RI (vi j)

� − � �ETT �
RI (vi j)
� is

as follows:

� Lag+�ETS �−1
RI (vi j)

� − � �ETT �
RI (vi j)
�

=

⎧⎪⎪⎨⎪⎪⎩
� (Lag−1)+(�ETS �−�ETT �)

RI (vi j)
� if { Lag+�ETS �−1

RI (vi j)
} ≥ { �ETT �

RI (vi j)
}

� (Lag−1)+(�ETS �−�ETT �)
RI (vi j)

� + 1 if { Lag+�ETS �−1
RI (vi j)

} < { �ETT �
RI (vi j)
}

(19)

Because we have ρT − ρS > 0, then like the proof of
Theorem 3, we have ETS − ETT > 0. This proof is omitted
due to similarity. Then, �ETS−ETT � ≥ 1. Therefore, �ETS �−
�ETT � ≥ 0.

Because general proportional-share strategies have the
value of Lag usually equal to or larger than one [8], we have
Lag − 1 ≥ 0. Moreover, according to the proof of Theo-
rem 3, we have 1

RI (vi j)
≥ 1. Thus, � (Lag−1)+(�ETS �−�ETT �)

RI (vi j)
� ≥ 0.

Therefore, in both cases in (19), we obtain the condition as
follows:

� Lag+�ETS �−1
RI (vi j)

� − � �ETT �
RI (vi j)
� ≥ 0

In Eq. (18), because we have 0 < (ETS−�ETS �)−(ETT−
�ETT �)+1 < 2, and � Lag+�ETS �−1

RI (vi j)
�−� �ETT �

RI (vi j)
� ≥ 0, then DT > 0.

Therefore, we get our result of Theorem 4 because
the deviation of the worst completion time between space-
partitioning and time-partitioning scheduling, DT , is always
positive. �

We are only concerned with the aggressive method
in time-partitioning because the smooth method actively
adopts both the co-scheduling and default proportional strat-
egy according to the existence of I/O boosted VCPUs.
Therefore, its performance would lie between that of the ag-
gressive method and the space-partitioning algorithm.

5. Implementation

This section describes the major implementation of our
cache-aware scheduler in the Xen hypervisor. We define a
new scheduler, sched cache-aware def, based on the credit
scheduler using common scheduler interface provided by
Xen.

5.1 System Call Interception in the Hypervisor

As explained in Sect. 3.1, we modify the hypervisor slightly
and make system calls go through the hypervisor to support

2386
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

the detection module. Xen-x86’s direct trap optimization,
which is also referred to as fast system call optimization,
allows the system calls to bypass the hypervisor. Therefore,
we disable the optimization by commenting the following
lines in do set trap table() function as illustrated in [14].

if (cur.vector == 0x80)
init int80 direct trap(curr);

Then, the system call number can be intercepted in
do guest trap() function by adding following lines.

static void do guest trap(
int trapnr, const struct cpu user regs ∗regs, int use error code) {

...... /∗ omitted ∗/

int system call number;
struct cpu user regs ∗user regs;
user regs = guest cpu user regs();

/∗ retrieve the system call number ∗/
system call number = (int) user regs−>eax;

...... /∗ omitted ∗/
}

5.2 Time-Partitioning Implementation

As illustrated in Sect. 3.3, when the cluster representative is
selected to run on any physical core, the hypervisor prepares
to co-schedule other related VCPUs. In the end of cache-
aware schedule() function, which is our do schedule() func-
tion, the hypervisor executes co-schedule() function indi-
rectly by softirq(), because cache-aware schedule() is in the
critical path and should be designed to be simple and fast.

/∗ cluster svc means a cluster representative. ∗/
if (cluster svc != NULL) {

raise softirq(COSCHEDULE SOFTIRQ);
}

The co-schedule function() is executed on the core
where the cluster representative is running. The objective of
the co-schedule() function is to change the priority of clus-
tered VCPUs to AGGRESSIVE or SMOOTH and to make
them get ready to run. If any related VCPU is in RUN-
STATE runnable state, the VCPU is already in the local run
queue. We change the priority of the VCPU to AGGRES-
SIVE or SMOOTH and set a CPU map variable to notify the
core, where the VCPU belongs, that run queue needs to be
sorted.

/∗ cluster svc means an individual cluster member in traversing phase of
cluster list. ∗/

if (vcpu−>runstate.state == RUNSTATE runnable && cluster svc−>pri
>= CSCHED PRI TS UNDER) {

/∗ if the method is aggressive one. ∗/
cluster svc−>pri = CSCHED PRI TS AGGRESSIVE;
/∗ if the method is smooth one. ∗/
cluster svc−>pri = CSCHED PRI TS SMOOTH;
cpu set(cluster svc−>vcpu−>processor, co map);
}
/∗ if co map is set, the hypervisor tickles other cores ∗/
cpumask raise softirq(co map, SCHEDULE SOFTIRQ);

Fig. 7 A schematic view of an Intel Core2 Quad processor.

If any related VCPU is in RUNSTATE blocked state,
the co-schedule() function wakes the VCPU up. Then, the
function inserts the VCPU in the run queue according to
their priority and tickles the core where the processor field
of the VCPU belongs.

/∗ cluster svc means an individual cluster member in traversing phase of
cluster list. ∗/

if(vcpu−>runstate.state == RUNSTATE blocked && cluster svc−>pri
>= CSCHED PRI TS UNDER) {

/∗ the code of priority setting is omitted ∗/
co−schedule vcpu unblock(cluster svc−>vcpu);
}

6. Evaluation

We have implemented a cache-aware virtual machine sched-
uler on an Intel Q6600 quad-core platform that has four
2.40 GHz cores with two 4 MB of L2 caches, each of which
is shared by two cores. The CPU layout of this system is
illustrated in Fig. 7. The system is hosted by the recent Xen
4.0.1 and para-virtualized Linux-2.6.31 (paravirt ops ker-
nel) with a Xenoprofile patch.

Although our experiments are conducted on an In-
tel quad-core processor that has two cache domains, our
scheduler can also work for any SMP systems that have at
least two cache domains. A system that contains only one
cache domain naturally cannot take advantage of the space-
partitioning algorithm, but the time-partitioning algorithm
alone.

6.1 Workloads

6.1.1 Workloads for Concurrent VMs

VolanoMark [10] is a benchmarking program that consists
of a chat server along with a driver that simulates thousands
of chat client threads. When the program is run, chat threads
belonging to one chat room experience intensive data shar-
ing while communicating with each other. We designate the
VM that runs this benchmark as the concurrent VM with a
considerable number of shared regions. We run VolanoMark
with its default setting, where the program creates client
connections in groups of 20 for each loopback connection.

SPLASH-2 (Stanford Parallel Applications for Shared
Memory) [16] consists of scientific and graphical parallel
applications and is being used as a multi-processor bench-
marking program since many years. In SPLASH-2, we use
an LU kernel program, which factors a dense matrix into
the product of a lower triangular and an upper triangular

HONG et al.: CACHE-AWARE VIRTUAL MACHINE SCHEDULING ON MULTI-CORE ARCHITECTURE
2387

matrix. As the LU kernel is designed to reduce communi-
cations among the processors, the benchmark does not have
large shared regions. However, to observe the performance
implications when our scheduling algorithm is applied to
general parallel applications, we apply the space and time-
partitioning algorithms to the VM running LU by force. In
order to reflect the current multi-core’s performance, we ag-
gressively run the LU with large memory footprints. The
settings are n = 4096, and B = 16, and the number of pro-
cessors is 2.

For reference, according to the prior researches [3], [5],
other server benchmarking programs including
SPECjbb2005 [17] and RUBis [18] can benefit from our
cache-aware scheduling algorithms.

6.1.2 Workloads for Other VMs

In general, in the virtualization environment, as different
users run various applications, we attempt to cover miscel-
laneous types of workloads such as CPU-intensive or IO-
intensive applications.

Iperf [19] measures the maximum TCP and the UDP
bandwidth performance. We have another multi-core sys-
tem that stresses Iperf programs through the network.

SPEC CPU2006 [20] is a CPU-intensive benchmark
suite, stressing a system’s processor and the memory sub-
system. In our experiment, in order to stress both CPU and
memory, we use the mcf benchmark in CPU2006.

STREAM [21] is a benchmark program that measures
the sustained memory bandwidth at all levels of the cache
hierarchy.

Matrix is our own micro-benchmark for CPU-intensive
workloads. It calculates the matrix before a user termi-
nates it while using small memory footprints and generating
mainly CPU-intensive works.

6.1.3 Experimental Methodology

We only focus on the performance impact of the concurrent
VMs and the VMs running I/O intensive works because our
scheduler targets an improvement in the cache utilization
of the concurrent VMs while not sacrificing the I/O inten-
sive domains. We measure the performance of VolanoMark,
LU in SPLASH-2, or Iperf in each VM while running other
workloads repeatedly.

In this experiment, only in the case of the concurrent
VMs, we restrict the maximum number of VCPUs to be
equal to the size of the cache domain in order to thoroughly
exploit the locality of the last-level cache. For example, in
our quad-core systems, the number of VCPUs for the con-
current domain would be 2, and in dual six-core systems
with each processor sharing one last-level cache, the num-
ber of VCPUs would be 6.

6.2 Scheduling Fairness

As illustrated in Sect. 3.3.3, in order to guarantee fair

Table 1 Credit usage with space partitioning.

Cache Execution Credit
Domain Domain Time Amount

1 0 66.45 s 612,242
2 0 65.19 s 601,498
3 1 65.89 s 608,808
4 1 65.66 s 604,990

Table 2 Credit usage with time partitioning (aggressive method).

Cache Higher Execution Credit
Domain Domain Priority Time Amount

1 0 yes 61.78 s 575,669
2 0 no 62.44 s 584,265
3 1 yes 62.55 s 579,353
4 1 no 62.25 s 580,839

scheduling by the credit scheduler, we conditionally set VC-
PUs to a high priority when the cluster representative is se-
lected. In particular, we do not co-schedule the related VC-
PUs with the OVER priority. We carry out an evaluation to
know whether fairness is guaranteed or not.

We develop four virtual machines with each machine
having two VCPUs and running an LU kernel program in-
side them. First, we apply the space-partitioning algorithm
by force to all VMs. Because the space-partitioning algo-
rithm scatters groups of clustered VCPUs among cache do-
mains, there will be two domains in each cache domain. As
summarized in Table 1, the performances of the LU pro-
gram in all VMs are almost the same, and each LU pro-
gram consumes subequal credit amounts. This result is a
performance baseline. Second, while keeping the space-
partitioning algorithm, we apply the time-partitioning algo-
rithm with an aggressive method to only one of the VMs in
the same cache domain. Then, as summarized in Table 2, the
performances of the LU are slightly faster than those in the
case when using only the space-partitioning algorithm. This
is because, although the LU program does not have large
shared regions, the strict co-scheduling algorithm lightens
the synchronization problem in the LU as pointed out in [8].
In this experiment, although one of the VMs in the same
cache domain gets higher priority, each LU program con-
sumes subequal credit amounts. Therefore, we believe that
the strict co-scheduling algorithm certainly does not hamper
fairness.

6.3 Single Workloads

For testing the basic performance of our scheduler, we mea-
sure the throughputs of VolanoMark and LU. In each exper-
iment, either for VolanoMark or for LU, we configure two
virtual machines with two VCPUs, as summarized in Ta-
ble 3. Each VM’s weight is 256 and memory size is 384 M.
We measure the performance of each application when the
default (the credit scheduler in Xen), space, and time parti-
tioning with the aggressive method are used. As there are no
I/O intensive domains, the experiment involving the time-
partitioning algorithm with the smooth method is omitted.

2388
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

Table 3 Single workloads. IDD stands for isolated driver domain (IDD)
that runs most of the native device drivers. Domain0 plays the role of an
IDD in this configuration.

Dom Workloads VCPUs Memory Option
0 IDD 4 1024 M

VolanoMark designated
1 /LU 2 384 M VM

VolanoMark designated
2 /LU 2 384 M VM

Fig. 8 Performance of LU in the single workloads (lower is better).

Table 4 Average last-level cache misses of LU in the single workloads.
We measure samples of last-level cache (LLC) misses using Xenoprofile
with the reset counter value of 6,000.

Space
Config Default partitioned Aggressive

LLC-user 44,186 43,014 43,416
LLC-kernel 283 199 201

LLC-total 44,469 43,213 43,617

Figure 8 shows the impact of different scheduling poli-
cies on the performance of single LU program. Table 4
exhibits the average last-level cache misses. The results
indicate that there are few differences in performance and
cache misses for all scheduler settings. Because LU has few
shared regions between processes in a VM, exploiting the
topology of multi-core processors has little meaning to the
LU.

Figure 9 shows the performance of VolanoMark ac-
cording to the different scheduling policies. Table 5 exhibits
the average last-level cache misses. As the results show, our
scheduler improves the performance of VolanoMark by re-
ducing cost consumed by cache coherence protocols. Our
scheduler can decrease the last-level cache misses by up to
38% and improve the performance of the application by up
to 13% as compared to the default credit scheduler. In this
experiment, space and time-partitioning algorithms have al-
most the same performance impact, because there are no
other VMs except domain0 that is mainly in idle state.

6.4 Mixed Workloads

We construct mixed workloads, as described in Table 6.

Fig. 9 Performance of VolanoMark in the single workloads (higher is
better).

Table 5 Average last-level cache misses of VolanoMark in the single
workloads.

Space
Config Default partitioned Aggressive

LLC-user 30,224 19,916 19,795
LLC-kernel 35,821 21,487 21,200

LLC-total 66,045 41,403 40,995

Table 6 Mixed workloads.

Dom Workloads VCPUs Memory Option
0 IDD 4 1024 M

VolanoMark designated
1 /LU 2 384 M VM

VolanoMark designated
2 /LU 2 384 M VM
3 STREAM 4 256 M 4 processes
4 mcf 2 512 M 2 processes
5 Matrix 4 256 M 4 processes
6 Iperf 4 256 M 4 threads
6 Iperf 4 256 M 4 threads

The mixed workloads consist of two concurrent domains
(VolanoMark or LU workload), two I/O intensive domains
(Iperf), three other domains, and an IDD domain. Each do-
main’s weight is 256 and memory size varies according to
the workload characteristics. We measure the throughput
of concurrent VMs when the each execution of concurrent
applications is terminated. Because the space-partitioning
scatters groups of clustered VCPUs among the cache do-
mains, concurrent domains are located in the different cache
domains except the default scheduler.

Figure 10 shows the performance of LU in the mixed
workloads. Table 7 exhibits the average last-level cache
misses. Similar to the results of the single workloads, our
scheduler does not improve the performance of LU, because
LU has few shared regions. However, the execution time of
LU slightly becomes shorter when the time-partitioning is
used, because the co-scheduling algorithm lightens the syn-
chronization problem as pointed out in [8].

Figure 11 shows the impact of different scheduling
policies on performance of VolanoMark in the mixed work-

HONG et al.: CACHE-AWARE VIRTUAL MACHINE SCHEDULING ON MULTI-CORE ARCHITECTURE
2389

Fig. 10 Performance of LU in the mixed workloads (lower is better).

Table 7 Average last-level cache misses of LU in the mixed workloads.

Space
Config Default partitioned Aggressive Smooth

LLC-user 40,637 42,215 42,663 42,640
LLC-kernel 573 665 513 477

LLC-total 41,210 42,880 43,176 43,117

Fig. 11 Performance of VolanoMark in the mixed workloads (higher is
better).

Table 8 Average last-level cache misses of VolanoMark in the mixed
workloads.

Space
Config Default partitioned Aggressive Smooth

LLC-user 35,045 32,832 29,244 30,420
LLC-kernel 40,534 35,467 31,741 33,040

LLC-total 75,579 68,299 60,985 63,460

loads. Table 8 exhibits the average last-level cache misses.
As the results show, the space-partitioning in the mixed
workloads could slightly improve the performance, because
other VMs may sweep out cached contents due to the asyn-
chronous scheduling. After adopting the time-partitioning,
our scheduler can decrease the last-level cache misses by
up to 16% and improve performance of VolanoMark by up
to 19% as compared to the default credit scheduler. These
results indicate that the time-partitioning can maximize uti-

Fig. 12 Performance of Iperf when running LU in the mixed workloads.

Fig. 13 Performance of Iperf when running VolanoMark in the mixed
workloads.

lization of the last-level cache by reducing redundant data
evictions and reloads.

Figure 12 and 13 exhibit the bandwidths of Iperf in
each experiment. These results present the impact of the
aggressive method on the performance of I/O domains. The
aggressive method decreases the performance of Iperf by up
to 14% because the strict co-scheduling algorithm in the ag-
gressive method may disregard the I/O boost mechanism of
the credit scheduler. We can address this problem by adopt-
ing the smooth method that always respects the I/O boosted
VCPU. The smooth method also enables high utilization of
the last-level cache, and the result is summarized in Table 8.

6.5 Overhead of System Call Interception

We use the system call interception mechanism in the detec-
tion module of concurrent applications. We measure the cost
of system call interception using the lmbench program [22].
The cost of executing the system calls are listed in Table 9.
Unfortunately, the fast syscall implementation outperforms
our mechanism with respect to the execution of the read and
write calls. Our interception mechanism exhibits a slightly
slower performance than the original implementation with

2390
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

Table 9 Overhead of system call interception: lmbench system calls -
times in micro second.

null open
Config syscall read write stat close

Fast syscall 0.4 0.3 0.3 5.5 12.3
Interception 0.5 0.6 0.6 5.8 13.2

Table 10 Average throughput (messages/s) of each VolanoMark in four
VMs, each of which has a different number of VCPUs (1, 2, 3, and
4 VCPUs) from each other.

1 VCPU 2 VCPU 3 VCPU 4 VCPU
Config VM VM VM VM

Default scheduler 11340 8430 2336 1042
Time-partitioning 11250 9697 2111 927

respect to the execution of the null, stat, and open/close sys-
tem calls. Therefore, we periodically enable the detection
module for a certain time quantum in order to not degrade
system performance.

6.6 Discussion of Bad Cases

To evaluate the bad case of the space-partitioning algorithm,
we conduct an experiment in which the number of concur-
rent VMs is not even. In this experiment, the VCPUs of any
cluster should be executed across the cache domain in or-
der to maintain the fairness policy of the credit scheduler.
We develop three virtual machines, each of which has two
VCPUs, and run VolanoMark or LU on them.

In the case of VolanoMark, when the default credit
scheduler is used, the average throughput of the three
virtual machines is 12965 messages/s. When the space-
partitioning algorithm is applied, the average throughput is
14116 messages/s. The proposed algorithm improves the
performance by approximately 9% as compared to the de-
fault credit scheduler; in the best situation, the improve-
ment is 13%, as discussed in Sect. 6.2. In this experiment,
although any one of the three clusters is executed across
the cache domain, the other two clusters can benefit from
the space-partitioning algorithm. Therefore, our scheduler
can improve performance more significantly than the default
credit scheduler and cover this bad case adequately.

In the case of LU, because it is designed to minimize
communications among the processors, the benchmark does
not have large shared regions. Therefore, there is no perfor-
mance difference between the default credit scheduler and
our space-partitioning algorithm.

To evaluate the bad case of the time-partitioning algo-
rithm, we conduct an experiment in which the number of
the communicating VCPUs is different among VMs. We
prepare 4 VMs, each of which has a different number of
VCPUs (1, 2, 3, and 4 VCPUs) from each other, and run
VolanoMark or LU on them. The experimental result, in the
case of VolanoMark, is summarized in Table 10. Optimal
performance is achieved in the 2-VCPU VM case, and in
the 3- and 4-VCPU VM cases, the average throughput be-
gins to deteriorate gradually as compared to that in the case

of the default credit scheduler.
However, this performance decline is caused not by the

low utilization of the last-level cache but by the inherent
characteristic of VolanoMark. VolanoMark has the client-
server architecture; it consists of a chat server along with
a driver that simulates thousands of chat client threads. In
the worst case, if the co-executing VCPUs only have client
threads, the VCPUs cannot proceed because they have to
wait for the responses from a server thread that waits to be
executed in another time partition. Because of this reason,
the average throughput cannot help but decrease. Therefore,
in particular, when the workload has the client-server archi-
tecture, administrators have to pay attention to the decision
on the number of VCPUs in the concurrent VMs.

In the case of LU, there is no performance difference
as in the case of the space-partitioning algorithm.

7. Related Work

For the credit scheduler in Xen, several pieces of work, [8],
[9], [23], [24], present credit specific problems. Although
credit is widely accepted for general-purpose guest domains,
mixed workload and time sensitive applications still have
limitations since boost highly depends upon simple prioriti-
zation. So, original credit scheduling cannot support com-
plicated cases such as simultaneous boosting multiple guest
domains or complex domains that have mixed workloads.

[9] focused on the performances of multiple VMs when
all domains are boosted simultaneously. The authors re-
vealed that boost domain is always traversed from fixed
guest domain, and unfair performance is presented. The au-
thors have presented a fair-event-channel notification mech-
anism, with several optimizations, which includes preemp-
tion minimization, and VCPU ordering by remaining credit.

Another paper [23] tackles the performance problem of
mixed workload guest domains. Since the hypervisor cannot
understand the workload characteristics of the guest domain,
it simply boosts a domain whenever a guest OS triggers an
I/O event, so the authors make the hypervisor aware of the
workload characteristics of the guest domain. Using gray-
box knowledge, hypervisor can distinguish I/O bound do-
mains from the others, and separately boost guest domains.

Recently, another Xen scheduler for supporting soft
real-time VMs has been presented [24]. For VMs running
time-sensitive workloads, such as virtual media servers,
poor voice quality has presented even though credit has not
been consumed. By introducing laxity into VM scheduling,
the authors can accurately prioritize a VCPU so that the hy-
pervisor can timely schedule guest domains.

Regarding the co-scheduling of VCPUs in VMs, hybrid
scheduling [8] has been proposed. Since VCPUs in Xen are
asynchronously dispatched and scheduled by the hypervi-
sor, applications in a concurrent VM cannot take advantage
of co-scheduling algorithm inside guest OSs. The authors
proposed a new scheduling framework that can run both a
concurrent VM and a high-throughput VM. However, the
framework does not consider the cache awareness and the

HONG et al.: CACHE-AWARE VIRTUAL MACHINE SCHEDULING ON MULTI-CORE ARCHITECTURE
2391

boost mechanism in Xen as compared to our research.
In terms of cache-aware scheduler research, [3] deals

with cache sharing issues between parallel threads. The au-
thors proposed a thread clustering scheme based on sharing
patterns detected on-line. They dynamically identify threads
that frequently access shared data and group the threads to
the same cache domain. To identify shared regions between
threads, they used special features of performance monitor-
ing units available in Power5 processors. They concentrated
on a technique to detect shared regions rather than a schedul-
ing algorithm.

Another cache-aware scheduler [25] deals with the
cache contention issues between threads. The authors have
found that the co-executing memory-bound threads in the
same cache domain deteriorate the performance of threads
because of a shared resource contention including a last-
level cache in a processor. They show that scattering
memory-bound threads into different last-level caches in-
creases performance by reducing inter-core cache misses.

[26] proposed cache-aware credit scheduler to achieve
high network bandwidth. Xen hypervisor processes net-
work packets by the inter-domain communication between
a network driver domain and a domain requesting network
processing. By clustering each VCPU of domain0 and do-
mainU into shared cache regions, they reduced network per-
formance overhead. Our research is different from their re-
search in that we focus on the intra-domain communication
to improve the performance of concurrent applications. In
addition, we provide a time-partitioning algorithm to maxi-
mize cache utilization.

8. Discussion

To exploit the multicore topologies, cache-aware schedulers
dealing with cache sharing and contention have been sug-
gested mainly at the OS level [3]–[5], [25]. In this sec-
tion, we present the reasons why we cannot simply apply
the existing cache-aware schedulers to our cache-aware VM
scheduler.

With respect to cache sharing, [3], [4], and [5] focus
on the thread-clustering scheme that gathers communicat-
ing threads to the same cache domain. These methods are
effective if the threads are scheduled on the same cache do-
main as close as possible in terms of time. Because these
methods assume that threads execute on a single operating
system, the above condition is met easily.

However, in the virtualization environment, there may
be many VCPUs from different operating systems. The
problem is that VCPUs are scheduled asynchronously in
many hypervisors including Xen. Therefore, as the number
of virtual machines increases, the communicating threads in
a single virtual machine have relatively few opportunities to
be scheduled as close as possible in terms of time. To ad-
dress this problem, we develop a new time-partitioning al-
gorithm that schedules the communicating VCPUs as close
to each other as possible in terms of time.

In terms of cache contention, [4] and [25] first identify

threads that continually evict the cache content of other ap-
plications and then arrange such threads in order such that
other applications are not hurt. In order to identify offensive
memory-bound threads, [4] makes the cache miss-rate curve
(MRC) online and [25] simply obtains the cache miss rate
using hardware performance counters.

They assume that all the threads in the system are in-
dependent and do not share any data. Therefore, they adopt
single-threaded and scientific benchmark programs such as
SPEC CPU2006 [20]. The problem here is that they develop
scheduling algorithms only for single-threaded programs.
Because these methods will not work appropriately with
parallel threads, we cannot apply them to our VM sched-
uler. For example, [25] distributes memory-bound threads
into different last-level caches to decrease cache contention.
In our case, if parallel threads in a VM are scattered into
different last-level caches, they certainly would suffer from
the coherent cache misses as shown in the evaluation of the
space-partitioning algorithm.

9. Conclusion

Virtualization software has become a foundation technology
of cloud computing. At the same time, as multi-core proces-
sors are pervasive in the cloud computing environments, the
issue of utilizing multi-core resources in the virtualization
layer has become a challenging problem. From that point of
view, we endeavored to design a cache-aware VM scheduler
that could allocate shared resources of the processor effi-
ciently on multi-core architecture.

In our cache-aware VM scheduler, we presented the
detection mechanism of concurrent applications in order to
support smart scheduling of the concurrent VMs. We also
provided a space-partitioning algorithm that clusters com-
municating VCPUs on the same cache domain and a time-
partitioning algorithm that co-schedules clustered VCPUs at
nearly the same time. Using these two algorithms, we could
exploit the locality of the last-level caches and improve the
performance of concurrent applications. Finally, we pre-
sented the theoretical analysis that proves our scheduling al-
gorithm is more efficient than the default credit scheduler in
Xen.

Acknowledgements

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MEST) (No.2011-0029848).

References

[1] E. Amazon, “Amazon elastic compute cloud,” Retrieved Feb, vol.10,
2009.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtual-
ization,” Proc. Nineteenth ACM Symposium on Operating Systems
Principles, pp.164–177, 2003.

2392
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

[3] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: Sharing-
aware scheduling on SMP-CMP-SMT multiprocessors,” Proc. 2nd
ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007, pp.47–58, 2007.

[4] R. Azimi, D. Tam, L. Soares, and M. Stumm, “Enhancing operat-
ing system support for multicore processors by using hardware per-
formance monitoring,” ACM SIGOPS Operating Systems Review,
vol.43, no.2, pp.56–65, 2009.

[5] S. Vaddagiri, B. Rao, V. Srinivasan, A. Janakiraman, B. Singh,
and V. Sukthankar, “Scaling software on multi-core through co-
scheduling of related tasks,” Linux Symp, pp.287–295, 2009.

[6] M. Bhadauria and S. McKee, “An approach to resource-aware co-
scheduling for CMPs,” Proc. 24th ACM International Conference
on Supercomputing, pp.189–199, 2010.

[7] E. VMware, “Server,” User Manual, Version, vol.1.
[8] C. Weng, Z. Wang, M. Li, and X. Lu, “The hybrid scheduling

framework for virtual machine systems,” Proc. 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution En-
vironments, pp.111–120, 2009.

[9] D. Ongaro, A. Cox, and S. Rixner, “Scheduling I/O in virtual
machine monitors,” Proc. Fourth ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments, pp.1–10,
2008.

[10] L. Volano, “VolanoMark benchmark,” 1999.
[11] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three

CPU schedulers in Xen,” Performance Evaluation Review, vol.35,
no.2, p.42, 2007.

[12] D. Wang, D. Gao, and D. Wang, “A sharing-aware actively pushing
cache on CMP,” 2010 The 2nd International Conference on Com-
puter and Automation Engineering (ICCAE), pp.286–291, 2010.

[13] C. Xu, Y. Bai, and C. Luo, “Performance Evaluation of Parallel Pro-
gramming in Virtual Machine Environment,” 2009 Sixth IFIP Inter-
national Conference on Network and Parallel Computing, pp.140–
147, 2009.

[14] F. Beck and O. Festor, “Syscall Interception in Xen Hypervisor,”
2009.

[15] K. Hwang and Z. Xu, Scalable parallel computing: technology, ar-
chitecture, programming, McGraw-Hill, 1998.

[16] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations,”
Proc. 22nd Annual International Symposium on Computer Archi-
tecture, pp.24–36, 1995.

[17] A. Adamson, D. Dagastine, and S. Sarne, “Specjbb2005—A year in
the life of a benchmark,” 2007 SPEC Benchmark Workshop, 2007.

[18] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani, W.
Zwaenepoel, E. Cecchet, and J. Marguerite, “Specification and im-
plementation of dynamic web site benchmarks,” 2002 IEEE Inter-
national Workshop on Workload Characterization, 2002, WWC-5,
pp.3–13, 2002.

[19] A. Tirumala, J. Ferguson, J. Dugan, F. Qin, and K. Gibbs, “Iperf,”
Avaliable from: http://dast.nlanr.net/Projects/Iperf

[20] J. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol.34, no.4, pp.1–17,
2006.

[21] J. McCalpin, “STREAM benchmark,” 1995.
[22] L. McVoy and C. Staelin, “lmbench: Portable tools for performance

analysis,” Proc. 1996 annual conference on USENIX Annual Tech-
nical Conference, p.23, 1996.

[23] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware virtual
machine scheduling for I/O performance.,” Proc. 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution envi-
ronments, pp.101–110, 2009.

[24] M. Lee, A. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
“Supporting soft real-time tasks in the xen hypervisor,” Proc. 6th
ACM SIGPLAN/SIGOPS international conference on Virtual exe-
cution environments, pp.97–108, 2010.

[25] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared

resource contention in multicore processors via scheduling,” ACM
SIGARCH Computer Architecture News, pp.129–142, 2010.

[26] G. Liao, D. Guo, L. Bhuyan, and S. King, “Software techniques to
improve virtualized I/O performance on multi-core systems,” Proc.
4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, pp.161–170, 2008.

Cheol-Ho Hong received the B.S. and M.S.
degrees in computer science and engineering
from Korea University, Seoul, Korea, in 2001
and 2003, respectively. He worked as a senior
researcher at Netville, Seoul, Korea, from 2003
to 2006. Currently, he is a Ph.D. candidate of
Korea University, Seoul, Korea. His research in-
terests include hypervisor, multi-core architec-
ture, and embedded system.

Young-Pil Kim received the B.S. and M.S.
degrees in computer science and engineering
from Korea University, Seoul, Korea, in 2002
and 2004, respectively. He is currently a Ph.D.
candidate at Korea University, Seoul, Korea.
His current interest is cloud computing.

Seehwan Yoo received the B.S. and M.S. de-
grees in computer science and engineering from
Korea University, Seoul, Korea, in 2002 and
2004, respectively. He is currently a Ph.D. can-
didate at Korea University, Seoul, Korea. His
current interest is system virtualization.

Chi-Young Lee received the B.S. degree
in computer science from Chungnam National
University, Daejeon, Korea, in 2006 and the
M.S. degree in computer science from Korea
University, Seoul, Korea, in 2008. Currently, he
is a Ph.D. candidate of Korea University, Seoul,
Korea. His research interests include network
and embedded virtualization.

Chuck Yoo received the B.S. degree in elec-
tronic engineering from Seoul National Univer-
sity, Seoul, Korea and the M.S. and Ph.D. in
computer science from University of Michigan.
He worked as a researcher in Sun Microsystems
Laboratory, from 1990 to 1995. He is now a pro-
fessor in department of computer science and
engineering, Korea University, Seoul, Korea.
His research interests include high-performance
networks, multimedia streaming, and operating
systems. He served as a member of the organiz-

ing committee for NOSSDAV 2001.

