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PAPER

Efficient Candidate Scheme for Fast Codebook Search in G.723.1

Rong-San LIN†a), Member and Jia-Yu WANG†, Nonmember

SUMMARY In multimedia communication, due to the limited compu-
tational capability of the personal information machine, a coder with low
computational complexity is needed to integrate services from several me-
dia sources. This paper presents two efficient candidate schemes to sim-
plify the most computationally demanding operation, the excitation code-
book search procedure. For fast adaptive codebook search, we propose an
algorithm that uses residual signals to predict the candidate gain-vectors of
the adaptive codebook. For the fixed codebook, we propose a fast search
algorithm using an energy function to predict the candidate pulses, and we
redesign the codebook structure to twin multi-track positions architecture.
Overall simulation results indicate that the average perceptual evaluation
of speech quality (PESQ) score is degraded slightly, by 0.049, and our pro-
posed methods can reduce total computational complexity by about 67%
relative to the original G.723.1 encoder computation load, and with percep-
tually negligible degradation. Objective and subjective evaluations verify
that the more efficient candidate schemes we propose can provide speech
quality comparable to that using the original coder approach.
key words: G.723.1, fast codebook search, speech, low computation, twin
multi-track

1. Introduction

The ITU-T G.723.1, G.729.1 and G.729 [1]–[3] speech
coders are considered the best standards for very low bit
rate telephony services, and they have been suggested for
use in H.323 Internet phone systems and the H.324 digital
videophone service in public switching telephone network
(PSTN) systems [4], [5]. The G.723.1 speech coder, pro-
posed by the International Telecommunication Union (ITU),
has been used on the Internet extensively, such as the built-
in applied software “NetMeeting” in Microsoft’s windows
operation system and Voice over IP (VOIP) communica-
tion systems [6], [7]. Additionally, multimedia communica-
tion is integrated into a personal information machine (PIM)
nowadays [8], and due to the latter’s limited computational
capability, the need arises for low computational complex-
ity coders to match different working platforms and inte-
grate services of media sources. For an Internet or wireless
speech communicator, heavy computation uses more power
and contributes to higher pricing of the communicator or re-
duced battery life. If we can lower the computational needs
of the speech coder for multimedia communication, the PIM
may have enough computational capacity and power to han-
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dle other media tasks. Therefore, reduction of computa-
tional complexity for the speech coder is desirable for mod-
ern communication systems.

The G.723.1 coder is based on principles of linear pre-
diction analysis-by-synthesis (AbS) coding, and attempts to
minimize a perceptually weighted error signal. A coder
structure of this type can achieve high voice quality and
low bit rate. However, a shortcoming of this technology
is that the encoder requires much computational complex-
ity to search the codebook and perform the estimated gain-
vector calculation. It is due to the AbS scheme, used to
efficiently model the excitation signal, that the adaptive
codebook (ACB) and fixed codebook (FCB) search are the
G.723.1’s most computationally demanding functional rou-
tines. Since G.723.1 uses a fifth-order pitch predictor to
model the periodic component of the excitation signal, and
pitch delay and gains are searched simultaneously, the com-
putational complexity generated by this procedure results in
a heavy computation load. For the FCB stochastic code ex-
cited signal, the G.723.1 adopts the multi-pulse maximum
likelihood quantization (MP-MLQ) and the algebraic code
excited LPC (ACELP) for high rate (6.3 kbit/s) and low rate
(5.3 kbit/s) coders, respectively. Lee and Park et al., [9] an-
alyze the distribution of computational load for the encod-
ing process of the G.723.1 with Samsung’s DSP chip in a
cost-effective implementation. As Table 1 shows, the MP-
MLQ and ACB codebook search procedures constitute over
55% and 23%, respectively of the computations required in
the G.723.1 encoding process. To simplify these computa-
tions, a good trade-off between speech quality and codebook
search complexity is required.

Several efficient fast search methods have been pro-
posed in the existing literature to reduce codebook search
complexity [10]–[17]. For the ACB search approach, Jung
et al., [14], [15] proposed a first-order closed-loop pitch
predictor to predict pitch gains and pitch lag of the fifth-

Table 1 The distribution of CPU computational load in the encoders.
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order closed-loop pitch predictor. Considering FCB search,
Jung’s proposed approach used a depth-first search instead
of original focused search. Additionally, to reduce search
computation, they used the ACELP structure instead of the
original MP-MLQ structure in the G.723.1 (6.3 kbps) coder.
Jung’s proposed codebook structure arrangement could lose
significant excitation pulse at the last track. Lin et al., [16]
provided a search method to reduce the computation re-
quired of MP-MLQ and Chen et al., [17] provided two com-
plexity scalability approaches to reduce the computation re-
quirements of the ACELP and MP-MLQ.

In this paper, we propose two efficient candidate
schemes for fast search of the ACB and FCB, respectively.
First, we propose a fast ACB search algorithm to reduce
computational complexity. This scheme utilizes third- or-
der open-loop pitch gains and first-order closed-loop pitch
predictor to predict the pitch lag and candidate gain-vectors
of the ACB. As for the MP-MLQ search, to further improve
speech quality of [15], [16] we proposed twin multi-track
positions architecture for even and odd subframes, respec-
tively.

This paper is organized as follows: in Sect. 2, the
G.723.1 speech coding algorithms are briefly reviewed; in
Sect. 3, we describe the proposed fast codebook search
methods for G.723.1 coder. To verify the efficiency of the
proposed techniques, experimental results are presented in
Sect. 4. Conclusions are presented in Sect. 5.

2. ITU-T G.723.1 Speech Coder

The ITU-T G.723.1 encoder operates on blocks (30 ms
frames) of 240 samples each. Each frame is first divided
into four subframes of 60 samples each. For every subframe,
a set of 10th order linear prediction coefficients (LPC) are
computed using the unprocessed input signal. The LPC set
of the last subframe is converted to LSP parameters and is
then quantized using a predictive split vector quantization
(PSVQ) and transmitted to the decoder. The un-quantized
LPC are used to construct the short-term perceptual weight-
ing filter, which is used to filter the entire frame and to
obtain the perceptually weighted speech signal. For every
two subframes, the open-loop pitch period is computed us-
ing the weighted speech signal. This pitch estimation is
searched in the range from 18 to 142 samples. Every sub-
frame speech signal is then encoded by the ACB and FCB
search procedures. ACB search is performed using a fifth-
order pitch predictor. Finally, stochastic excitation pulses
are approximated by the MP-MLQ excitation for high bit
rate (6.3 kbit/s), and an ACELP for low bit rate (5.3 kbit/s).

2.1 Standardized ACB Search

The ACB search, in G.723.1 estimates the closed-loop pitch
lag and gains simultaneously. The ACB is searched by mini-
mizing the square error (MSE) between the weighted speech
signal, t(n), and the weighted synthesis speech of the pitch
predictor, p̂(t), and this is denoted as:

MSEACB =

N−1∑
n=0

⎛⎜⎜⎜⎜⎜⎜⎝t(n) −
2∑

i=−2

βki p̂(n − L + i)

⎞⎟⎟⎟⎟⎟⎟⎠
2

(1)

For a given pitch lag L, the optimum pitch gains βki are ob-
tained by MSEACB as stated in Eq. (1), where βki values are
the pitch predictor gains, N is the subframe length, and k
are the adaptive gain-codebook indices. In practice, the op-
timum pitch lag and gains are searched to maximize the fol-
lowing term in (2).

βopt = min
β

⎧⎪⎪⎨⎪⎪⎩
N−1∑
n=0

t2(n) − Φ(β)

⎫⎪⎪⎬⎪⎪⎭ , where

Φ(β)

=

N−1∑
n=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩2t(n)
2∑

i=−2

βki p̂(n−L+i)−
⎛⎜⎜⎜⎜⎜⎜⎝

2∑
i=−2

βki p̂(n−L+i)

⎞⎟⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭

(2)

The closed-loop pitch lag is computed as a small differ-
ential value around the open-loop pitch lag estimate or the
previous subframe pitch lag. In other words, for subframes
0 and 2 the closed loop pitch lag is selected from around the
appropriate open-loop pitch lag in the range ±1 and coded
using 7 bits. For subframes 1 and 3, the closed-loop pitch lag
is coded differentially using 2 bits, and may differ from the
previous subframe lag only by −1, 0, 1, or 2. Therefore, ev-
ery subframe on average requires 3.5 iterations to search the
gain-codebook. The quantized and decoded pitch lag values
will be referred to as Li from this point on. The pitch pre-
dictor gains are vector quantized using two gain-codebooks
(GB) with 85 or 170 entries for the high bit rate and 170
entries for the low bit rate. The 170 entry codebook is the
same for both rates. For the high rate if L0 is less than 58 for
subframes 0 and 1 or if L2 is less than 58 for subframes 2
and 3, then the 85 entry codebook is used for the pitch gain
quantization. Otherwise the pitch gain is quantized using
the 170 entry codebook. For the 170 entry codebook, Jung
et al., [14] analyzed the standard ACB search method used
in the G.723.1 coder and found it requires 49415 multiplica-
tion operations for every subframe. The contribution of the
pitch predictor is then subtracted from the weighted speech
signal, t(n) to obtain the weighted residual (speech) signal,
r[n], for FCB search.

2.2 Standardized MP-MLQ Codebook Search

After the short-term analysis and long-term prediction, the
weighted residual (speech) signal, r[n], is obtained as a
new target signal for stochastic excitation processing. The
stochastic excitation search, which performs estimation and
quantization for the target vector, involves the determination
of pulse positions and amplitudes. The criterion of code-
book search is to minimize the square error E between the
target signal, r[n], and the synthesis residual (speech), r′[n],
as follows:
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E =
N−1∑
n=0

|r[n] − r′[n]|2 (3)

To achieve a good approximation of the target vector, r[n],
the encoding process by r′[n] is denoted as:

r′[n] =
n∑

j=0

h[ j] · v[n − j], 0 ≤ n ≤ N − 1 (4)

where N is the subframe length and v[n] denotes the exci-
tation to the synthesis filter h[n]. v[n] can be expressed as
[1]:

v[n] = G
M−1∑
k=0

αkδ[n − mk], 0 ≤ n ≤ N − 1 (5)

where δ[n] is a Dirac function and G is the common gain
factor for each pulse, mk denotes the excitation pulse posi-
tion with αk = ±1 for k = 0, 1, · · · ,M − 1, and M represents
the number of pulses, which is 6 for even subframes and 5
for odd subframes. There is a restriction on pulse positions,
i.e. the positions can either be all odd or all even, which is
indicated by a grid bit. Consequently, the purpose of opti-
mization is to estimate the unknown parameters G, {αk} and
{mk} for k = 0, 1 . . .M − 1, such that the mean square of the
error signal, err[n], is minimized, and is expressed by

err[n] = r[n] − r′[n] = r[n] −G
M−1∑
k=0

αkh[n − mk] (6)

According to the property of maximum likelihood, the
cross-correlation function, d[ j], between the impulse re-
sponse, h[n], and the target signal, r[n], is first computed:

d[ j] =
N−1∑
n= j

r[n] · h[n − j], 0 ≤ j ≤ N − 1 (7)

Moreover, the optimal gain Gmax is estimated by:

Gmax =
max{|d[ j]|} j=0...N−1

N−1∑
n=0

h[n] · h[n]

(8)

Finally, the combination of the quantized parameters that
yield the minimum mean square of the error signal, err[n],
is selected.

In the G.723.1, the optimal combination of pulse posi-
tions and gain is encoded. 2 × C30

M , combinatorial numbers
are used for the pulse positions where M = 5 or 6. However,
for real-time applications, the number of combinations of all
possible pulse positions is too large to be searched. Thus,
reducing the number of combinations of possible pulse po-
sitions in the G.723.1 MP-MLQ search algorithm helps im-
prove encoder efficiency.

3. The Proposed Fast G.723.1 Search

In this paper, two candidate schemes for the ACB and the

MP-MLQ search algorithms are proposed to significantly
reduce computational complexity. To evaluate the perfor-
mance of the proposed methods objectively we use method
such as PESQ (ITU-T Rec.P862) [18], and subjective evalu-
ation using informal MOS testing.

3.1 Fast ACB Search

The pitch predictor gains are vector quantized and every
gain-vector has 20 elements. We need to find the best gain-
vector to maximize Φ(β) in Eq. (2) by substituting all gain-
vectors of GB. For the fifth-order predictor, each gain-vector
requires 20N multiplications to computeΦ(β) by looking up
the codebook gain-table.

For example, considering 170 entries GB, to obtain op-
timal closed-loop pitch lag and the related gain-vector, one
must search 4 × 170 gain-vectors of the ACB for subframes
1 and 3, and 3 × 170 gain-vectors for subframes 0 and 2.
Thus ACB search in G.723.1 requires heavy computation.
The efficiency of the G.723.1 encoding speech is improved
by reducing the number of gain-vectors searched. We pro-
posed a fast ACB search algorithm for this purpose. Our
scheme utilizes third-order open-loop pitch predictor to pre-
select candidate gain-vectors and the related open-loop pitch
lag, followed by the use of the first-order closed-loop pitch
predictor to estimate pitch lag.

The flow chart of the proposed scheme is shown in
Fig. 1. First the target signal t(n) was filtered by a 1/H(z)
filter to generate the excitation signal E[n], and using open-
loop pitch lag L and ACB gains to generate the excitation
signal e′k[n]. The functions are given by:

E[n] = t(n) −
9∑

i=0

a(i)t(n − i), 0 ≤ n ≤ N − 1 (9)

e′k[n] =
i=1∑

i=−1

βkie[n − L + i], 0 ≤ n ≤ N − 1 (10)

where a(i) are LPC coefficients, e[n] is the previous excita-
tion signal, and βki are ACB gain-vectors. The third-order
open- loop pitch gain-vectors are searched by using Eq. (11)

MSEk =

N−1∑
n=0

(E[n] − e′k[n])2,

0 ≤ n ≤ N − 1, 0 ≤ k ≤ GB − 1

(11)

We adopt Minimum squared error (MSEk) as the criterion
to estimate M candidate gain-vectors from GB (170 or 85
entries) and open-loop pitch lag L3

olp, where k denotes the
indices of GB. The above process is an open-loop search,
which requires less computation than a closed-loop search.
So each subframe requires 9(GB + N) multiplications by
looking up the codebook gain-table. Additionally, in the es-
timation above, the pitch lag L3

olp is selected from a range
similar to that in Eq. (2) earlier. In the 3-tap open-loop pro-
cess stage, the proposed method searches 3.5 × GB gain-
vectors on average to preselect the M candidate gain-vectors
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Fig. 1 Flow chart of the proposed fast ACB search algorithm.

and the prediction pitch lag L3
olp.

A first-order closed-loop pitch lag is then computed
to minimize the mean square error between the weighted
speech signal and the weighted synthesis speech, p̂(n − L),
given by:

MSEone =

N−1∑
n=0

(t(n) − βp̂(n − L))2 (12)

where the weighted synthesis speech requires 10(N−1) mul-
tiplications for every subframe. In practice, we need to find
the best closed-loop pitch lag L1

clp, to maximize the fol-
lowing term in Eq. (13) by substituting the given M can-
didate gains β and the pitch lag L. The pitch lag L1

clp is
searched a range similar to that in Eq. (2) earlier. In the
1-tap closed-loop process stage, the proposed method only
searches 3.5 × M candidate gain-vectors on average to pre-
dict the pitch lag L1

clp.

MAXone=β

N−1∑
n=0

(t(n) p̂(n−L))− 1
2
β2

N−1∑
n=0

p̂2(n−L) (13)

In Eq. (13) the first-order predictor requires 2(N + 1) mul-
tiplications for every subframe. These estimations are per-
formed before the original ACB search procedure.

Finally, the G.723.1 ACB coding process only searches
M candidate gain-vectors with the predicted pitch lags, L1

clp

Fig. 2 Average degradation PESQ with regard to different percentages
of preselected GB.

and L3
olp. The predicted pitch lags L1

clp and L3
olp, may or

may not be equal. When L1
clp = L3

olp the proposed algorithm

uses only one parameter, the predicted pitch lag L1
clp. Oth-

erwise, the algorithm uses both L1
clp and L3

olp. Since block

“(L1
clp = L3

olp)” branches stochastically with equal probabil-
ity in Fig. 1, the G.723.1 ACB coding process requires 1.5
iterations on average for every subframe.

The pitch gains of the fifth-order pitch predictor are
computed as in Eq. (2). We need to find the best gain-
vector, to maximize Φ(β) by substituting these M candi-
date gain-vectors. Therefore the proposed algorithm only
tests M × 1.5 candidate gain-vectors for every subframe. It
must be noted that the fast ACB search approach proposed
by Jung et al. [14] also required testing 85×2 = 170 (2 itera-
tions) gain-vectors for every subframe, saving 56.16% more
in terms of computational load compared to the G.723.1
ACB approach, and the related PESQ score degrades by
0.01.

We estimate speech quality relative to preselected can-
didate gain-vectors in our experiment. Figure 2 shows the
number of candidate gain-vectors M corresponding to dif-
ferent percentages of preselected GB. We observe that
the number of candidate gain-vectors from experimentation
produces GB × 20% = M gain-vectors and can achieve an
optimum in terms of speech quality and computational com-
plexity. For example, 20% of GB with lower value MSEk

using Eq. (11), were preselected as candidate gain-vectors.
Using GB = 170 entries, M = 34 gain-vectors are ob-
tained. It should be noted that the G.723.1 ACB coding
process only searches M × 1.5 = 51 candidate gain-vectors
for every subframe. However, the original G.723.1 ACB
search must test 170×3.5 = 595 (3.5 iterations) gain-vectors
for every subframe. Therefore, the proposed fast search al-
gorithm can reduce the computational complexity by about
91.42% (1− 3

7 ×20%) compared to the G.723.1 ACB search.
However, the preprocessing for deciding the candidate gain-
vectors and pitch lags requires an extra computational load
of about 18.7% (for 170 entries, 9231 multiplications). The
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Fig. 3 PESQ of the proposed method compared with original ACB full
search (average degradation 0.029).

preselected 20% gain-vectors from GB are used in the ex-
periment, and results show that the average of the PESQ
score is degraded slightly by 0.029, relative to the original
G.723.1 search procedure. However, the proposed method
can dramatically reduce the computational complexity by
about 72.7% with perceptually negligible degradation. The
true PESQ values of the proposed method compared with
original ACB search is shown in Fig. 3.

3.2 Multi-Track Fast MP-MLQ Search

For the 6.3 kbit/s coder, MP-MLQ excitation signal is used,
and the coder is based on the analysis-by-synthesis technol-
ogy. This type of coder structure can achieve high voice
quality and low bit rate, but a shortcoming of this technol-
ogy is that the encoder requires heavy computation com-
plexity. The MP-MLQ search algorithm calculates the MSE
of both the odd and even pulse positions for each subframe,
respectively, and then the least MSE is selected. It is pointed
out earlier in Eq. (5)–(8) that the MP-MLQ search algorithm
entails high computational complexity.

Previously, we proposed a fast search algorithm to re-
duce computational complexity of the MP-MLQ search al-
gorithm [16]. In this algorithm, we estimated candidate
pulse positions and used a single multi-track structure in-
stead of the original MP-MLQ structure to reduce the num-
ber of combinations of possible pulse positions. To further
improve speech quality, we modified our previous structure
of pulse positions in this paper.

The original ACELP method arranged the structure of
the excitation pulse positions; the structure can provide good
speech quality and low bit rate. The signal vector, b[n] is
used in AMR to search the algebraic codebook. To reduce
MP-MLQ search complexity, the proposed method uses the
signal vector, b[n] and the structure of the ACELP codebook
to preselect candidate pulse positions. Then, the original
G.723.1 MP-MLQ search algorithm is processed. In other
words, the structure of the ACELP codebook combining sig-
nal vector, b[n] is used merely to preselect candidate pulse
positions.

First every subframe, the 60 samples are divided into

Table 2 Multi-track structure of the even subframes.

Table 3 Multi-track structure of the odd subframes.

a multi-track structure as shown in Table 2 (for even sub-
frames) and Table 3 (for odd subframes). Previous research,
[15] has the problem of losing significant excitation pulse at
the last track for odd subframes, resulting in a degradation
of speech quality. Our proposed twin multi-track position
structure, thus, overcomes this issue.

b j[m] : m=

⎧⎪⎪⎨⎪⎪⎩[12i+2t+ j], 0≤ i≤4, 0≤ t≤5, even subframes

[10i+2t+ j], 0≤ i≤5, 0≤ t≤4, odd subframes

j = 0, 1 Pulse positions of the Multi-track

The flow chart of the proposed scheme is shown in
Fig. 4. Firstly, the target signal, r[n], was filtered by the A(z)
filter to generate the excitation signal, resLT P[n], for every
subframe, where an A(z) filter is defined as:

A(z) = 1 −
10∑
i=1

a[i]z−i (14)

where a[i] are LPC coefficients. The pulse-position
likelihood-estimate energy vector, b[n] [2], [19] is defined
as:

b[n] =
|resLT P[n]|√√√N−1∑

i=0

resLT P[i] · resLT P[i]

+
|d[n]|√√√N−1∑

i=0

d[i] · d[i]

,

0 ≤ n ≤ N − 1 (15)

where N is the subframe length and the d[n](7) is cross-
correlation function. Let bj[m] denote one of the K largest
values of b[n] and m denote the excitation pulse positions.
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Fig. 4 Flow chart of the proposed fast search algorithm for the
G.723.1MP-MLQ.

Fig. 5 Average degradation PESQ with regard to different number K of
pulse positions (original MP-MLQ, average PESQ = 3.575).

Firstly, the process preselects the K largest values of b[n] as
the candidate pulse positions for odd positions ( j = 1) in
each track, and likewise for even positions ( j = 0). The es-
timate candidate pulse positions process was performed be-
fore the original standard MP-MLQ search procedure. We
analyze the average degradation of PESQ relative to the
number of candidate pulse positions for every track in the
experiment and the results are shown in Fig. 5. It is observed
that preselecting K = 3 candidate pulse positions from both
the odd and even positions in each track, respectively, can
achieve an optimum in terms of speech quality and com-
putational complexity. In this case the number of combi-
nations of pulse positions will be reduced from 1187550
(2 × C30

6 ) to 37128 (2 × C6×3
6 ) for every even subframe. For

odd subframes, the number of combinations of the positions
will be reduced from 285012 to 6006. The computational
complexity of MP-MLQ coding is therefore significantly
reduced by using our proposed method. We preselected 6
candidate pulse positions (K = 3) for every track in the ex-
periment, and results show that the average degradation of

Fig. 6 PESQ of the original MP-MLQ approach in comparison with the
original ACELP method and the proposed method.

the PESQ score is about 0.016 relative to the original MP-
MLQ search procedure. However, the proposed method re-
duces the computational complexity by about 92.1% with
perceptually negligible degradation. Experimental results
are shown in Fig. 6. Comparing the true PESQ values of
the proposed method with the original MP-MLQ search ap-
proach and original ACELP method, we found that the av-
erage PESQ values of the proposed method and the original
ACELP method are 3.559 and 3.43 respectively. It must be
noted that the proposed method is based on the MP-MLQ
method which is a 6.3 kbit/s coding rate while the ACELP
method is a 5.3 kbit/s.

4. Overall Performance Analysis

In this paper, we proposed two efficient fast search algo-
rithms for the G.723.1 speech coder. To evaluate the over-
all performance of the proposed schemes and the original
G.723.1 method, subjective preference tests are performed
together with objective speech quality evaluation and com-
putational complexity analysis. Subjective speech quality is
evaluated via a MOS test, and an objective speech quality
measure, PESQ is used.

4.1 Objective Speech Quality and Computational Com-
plexity Evaluation

In our experiments, the fast ACB search and the multi-track
fast MP-MLQ search algorithms were simultaneously im-
plemented in the G.723.1 coder. It must be noted that the
average PESQ score can be considered as an evaluation of
the overall performance, and our experimental results show
that the average PESQ score degraded slightly by 0.049, rel-
ative to the original G.723.1 coding. The true PESQ values
of the proposed methods compared to the original G.723.1
(6.3 kbit/s) approach are shown in Fig. 7.

We propose two fast search algorithms to reduce the
computation of the ACB and MP-MLQ coding for the
G.723.1 as discussed earlier in Sect. 3.1 and 3.2, respec-
tively. In contrast to the complexity shown in Table 1, we
proposed fast search algorithms can reduce the computa-
tional complexity by about 23.2% × 0.73 ≈ 16.9% and
54.5%×0.92 ≈ 50.1% relative to the original search compu-
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Fig. 7 PESQ of the original G.723.1 and the integrated two fast search
methods.

Table 4 Results of the listeners’ preference test (at 6.3 kbit/s bit rate).

tational complexity in the ACB and the MP-MLQ, respec-
tively. Overall, the proposed fast search algorithms can re-
duce total computational complexity by about 67% relative
to the original G.723.1 coding computation load.

4.2 Subjective Speech Quality Evaluation

To verify objective results of the PESQ measurements, a
simple and informal mean opinion score (MOS) assess-
ment is also offered in this paper. We implement a sub-
jective quality measurement called the A-B test. Twenty
speech files are tested for speech quality evaluation. These
speech files were recorded by 10 males and 10 females in
a general environment. A total of 20 non-expert partici-
pants working in the field of multimedia data compression
and processing were invited to perform the test. In the
tests, these untrained listeners were asked to give a score
from 1 (bad) to 5 (good) based on their preferences, us-
ing a headset. These MOS scores are summarized in Ta-
ble 4, and testing results show that the difference in sub-
jective quality between the proposed method and the orig-
inal G.723.1 is negligible. Results imply that the listeners
cannot distinguish the quality of the original G.723.1 cod-
ing from that of the proposed fast search methods. In Ta-
ble 4, the average MOS score of every column was cal-

culated. For example, (3 × 10 + 4 × 154 + 5 × 36) ÷
200 = 4.13. To accompany the subjective tests described
above, we have made the decoded sound files available at
http://faculty.stut.edu.tw/˜rslin/IEICElist.htm for subjective
evaluation by listening.

5. Conclusions

In this paper, we propose fast ACB search and twin multi-
track fast MP-MLQ search algorithms to reduce the com-
putational complexity of the G.723.1 coder. Using the pro-
posed methods, the number of MP-MLQ search pulse posi-
tions and ACB search gain-vectors can be reduced. Results
of subjective evaluation show that the proposed schemes
can produce speech quality equivalent to that of the original
G.723.1 coding. Simulation results also show that the aver-
age of the PESQ score is degraded slightly, by 0.049, and
our proposed methods can reduce total computational com-
plexity by about 67% relative to the original G.723.1 encod-
ing computation load with perceptually negligible degrada-
tion.
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