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PAPER

Active Learning Using Phone-Error Distribution for Speech
Modeling

Hiroko MURAKAMI†∗, Nonmember, Koichi SHINODA†a), Senior Member, and Sadaoki FURUI†, Fellow

SUMMARY We propose an active learning framework for speech
recognition that reduces the amount of data required for acoustic modeling.
This framework consists of two steps. We first obtain a phone-error distri-
bution using an acoustic model estimated from transcribed speech data.
Then, from a text corpus we select a sentence whose phone-occurrence dis-
tribution is close to the phone-error distribution and collect its speech data.
We repeat this process to increase the amount of transcribed speech data.
We applied this framework to speaker adaptation and acoustic model train-
ing. Our evaluation results showed that it significantly reduced the amount
of transcribed data while maintaining the same level of accuracy.
key words: active learning, speaker adaptation, acoustic modeling, phone
error distribution, Kullback-Leibler divergence

1. Introduction

Statistical methods such as hidden Markov models (HMMs)
have been successfully applied to speech recognition. A
large amount of transcribed speech data is usually provided
for model estimation to achieve sufficiently high recogni-
tion accuracy. However, it is costly to collect such a large
amount of data. Many studies have been done with the
objective of reducing the amount of transcribed data while
maintaining the same level of accuracy. There are two ma-
jor approaches, unsupervised learning and active learning.
Unsupervised learning effectively uses speech data without
transcription, whereas active learning selects speech data to
be transcribed.

Active learning has been extensively studied for acous-
tic modeling in speech recognition [1]–[6]. In most of these
studies, it has been used to select utterances from untran-
scribed speech data. Their focus has been on finding an
effective uncertainty measure for each utterance; those ut-
terances whose transcriptions seem to be highly uncertain
are preferred as training data. Several methods have used
active learning in a different way, where they first select a
sentence set from a text corpus and collect its read-speech
data [7]–[10]. We take this latter approach in this paper.

The key problem with this approach is finding good cri-
teria for sentence selection. Iso et al. [7] proposed design-
ing a phonetically balanced sentence set, which employs a
maximum entropy criterion for selecting sentences. While
this approach is useful to avoid the data sparseness problem,
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it does not directly increase the recognition performance.
Huo et al. [10] selected vocabulary consisting of words that
are expected to be highly confusable in a given task. This
method is indeed effective, but may not be significantly ef-
fective in general large vocabulary continuous speech recog-
nition (LVCSR). We therefore need sentence selection crite-
ria that directly relate to error reduction and that can be used
for general large vocabulary speech recognition.

In this study, we try to improve the overall recogni-
tion accuracy by improving the acoustic models of phones
having relatively high recognition errors. Assuming that the
more speech data for training, the better the model becomes,
we collect a training sentence set having phone-occurrence
distribution which is similar to the error distribution among
phones.

We propose a novel active learning framework for
acoustic modeling in speech recognition. It consists of
two steps. We first obtain a phone-error distribution using
an acoustic model estimated from transcribed speech data.
Then, from a text corpus prepared beforehand, we select
a sentence whose phone-occurrence distribution is close to
the phone-error distribution, and collect its speech data. We
use Kullback-Leibler divergence (KLD) [11] as the distance
measure between the two distributions. We repeat this pro-
cess to increase the amount of transcribed speech data. We
apply this framework to two tasks, speaker adaptation [12]
and acoustic model training for LVCSR [13].

Speaker adaptation techniques (e.g., [14], [15]) that in-
volve using a small number of utterances from users to
improve speech recognition performance are often used in
many applications. These techniques fall into two cate-
gories: supervised adaptation and unsupervised adaptation.
In supervised adaptation, users are asked to speak sentences
prepared beforehand. Our focus is hence on how to design
an adaptation sentence set for each speaker in supervised
adaptation. Each speaker has different acoustic character-
istics; for example, the phones with low recognition accu-
racies vary from user to user. Collecting utterances rich in
those phones is expected to be an effective way to improve
adaptation performance or to reduce the amount of adapta-
tion data while maintaining the same level of recognition ac-
curacy. We evaluated this method in Japanese phone recog-
nition.

The development of LVCSR systems requires a large
amount of speech data with transcription for acoustic model
training. More than 100 hours of data are needed to
achieve sufficient recognition accuracy, but collecting such
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a large speech database is very expensive. This is a seri-
ous problem, especially when developing an LVCSR sys-
tem for resource-deficient languages, because their mar-
kets may be too small to afford such a high cost. Each
language has different acoustic characteristics, and hence,
the phones with low recognition accuracy vary from lan-
guage to language. We applied our framework to collect
utterances rich in those phones and proved its effectiveness
in Japanese LVCSR. Additionally, in order to apply our
method to the first category of active learning, in which ut-
terances are selected from untranscribed speech data, we
examine a semi-supervised utterance selection framework,
where the hypothesis transcription obtained from automatic
speech recognition is used instead of manual transcription.
We also report the results of its evaluation.

This paper is organized as follows. Section 2 ex-
plains our active learning framework and Sect. 3 explain
our sentence selection algorithm. Sections 4 and 5 explain
our speaker adaptation method and our acoustic modeling
method, respectively. Section 6 reports on our evaluation
experiments using Japanese speech databases, and Sect. 7
concludes the paper.

2. Two-Step Active Learning

Our proposed active learning framework can be used both
for selecting sentences from a text corpus and generat-
ing sentences from scratch. For simplicity, we explain the
framework for sentence selection. A flowchart for this is
shown in Fig. 1.

First, we prepare an acoustic model M and a small
amount of data, Data E, and we recognize Data E using M to

Fig. 1 Flow of two-step active learning.

estimate the distribution of error occurrences. Let Data A be
another transcribed data set, which will be augmented by ac-
tive learning. In acoustic model training, Data A consists of
transcribed speech data used to construct the acoustic model
M. In speaker adaptation, Data A is empty, and the speaker-
independent model is used as M.

Let U be a set of phones. The phone-error distribution
P(u) over phones u ∈ U is defined as:

P(u) =
r(u)∑

u∈U r(u)
, (1)

where r(u) is the number of recognition errors for phone u.
We count not only the number of u being misrecognized as
another unit, but also that of the other units being misrecog-
nized as u.

Next, from a large text corpus (sentence set), S , pre-
pared beforehand, we select those sentences whose distribu-
tion of phone occurrences is close to the phone-error distri-
bution P. Let cX(u) be the number of occurrences of phone
u in a set X and CX be the total number of occurrences of all
phones in X. Then, the phone-occurrence distribution QT of
a set T of selected sentence is defined as:

QT (u) =
cT (u)
CT
. (2)

Kullback-Leibler divergence (KLD) [11] between them,
D(P||QT ), is used as a distance measure. We will explain the
sentence selection procedure in the next section. We collect
the read speech data for the selected sentences and add them
to Data A.

We can iterate this two-step process by adding the se-
lected data to Data A and updating the acoustic model M
using Data A. The resulting phone-error distribution P will
become more precise because the data amount for estimat-
ing M increases. It will also represent more precisely the
distribution of recognition errors of the updated model M.
Accordingly, this iteration may enhance the effectiveness of
our active learning framework.

We should address several issues when we apply this
framework to acoustic modeling. Two major issues are:

1. How large should the amount of transcribed data, Data
E, be at the beginning? If it is too small, the phone-
error distribution P would be unreliable. On the other
hand, we would like to keep it as small as possible to
save on the transcription cost.

2. How often should we update model M? There is a
trade-off between the performance and the computa-
tional cost. We can update it every time we select one
sentence to obtain the highest performance. However,
this frequent updating is very costly, since we should
train model M and recognize Data E each time.

Apparently, we have no theoretically correct answers for
these issues. In this study, we determine those two param-
eters, the data size E and the update frequency, empirically
(i.e., in heuristic ways). We leave their optimization to our
future work.
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3. Sentence Selection Algorithm

We employ a suboptimal greedy algorithm for the sentence
selection. Initially the set of selected sentences, T , consists
of the transcribed texts of the utterances in Data A (it is
empty in speaker adaptation). For every sentence s in the
large text corpus S , we calculate D(P||QT∪{s}), and KLD be-
tween P and the phone-occurrence distribution QT∪{s} of the
set T ∪ {s}.

D(P||QT∪{s}) =
∑
u∈U

P(u) log
P(u)

QT∪{s}(u)
. (3)

Then, we select the sentence with the smallest KLD and
move it from S to T . We repeat this selection process until
D(P||QT ) stops decreasing.

When the number of phones is large, for example,
when we use triphones in LVCSR, a relatively high com-
putational cost is required to calculate KLD in Eq. (3) for
every sentence s in a large corpus S . To reduce the cost,
we approximate the difference Δs between the present KLD
D(P||QT∪{s}) with a new sentence s and the KLD D(P||QT )
in the previous step by using Taylor expansion.

First, Δs can be rewritten as follows:

Δs = D(P||QT∪{s}) − D(P||QT ),

=
∑
u∈U

P(u) log
QT (u)

QT∪{s}(u)
,

=
∑
u∈U

P(u) log

(
cT (u)
CT

· CT +C{s}
cT (u) + c{s}(u)

)
,

=
∑
u∈U

P(u)

(
log

(
1 +

C{s}
CT

)
− log

(
1 +

c{s}(u)

cT (u)

))
. (4)

Note that Δs should be negative to decrease KLD between P
and Q.

Then, since it can be safely assumed that c{s}(u) �
cT (u) for all u, C{s} � CT , and c{s}(u)/cT (u) and C{s}/CT

are in the same order,

Δs ∼
∑
u∈U

P(u)

(
C{s}
CT
− c{s}(u)

cT (u)

)
,

=
C{s}
CT

⎛⎜⎜⎜⎜⎜⎝1 −
∑
u∈U

P(u)
Q{s}(u)

QT (u)

⎞⎟⎟⎟⎟⎟⎠ , (5)

where Q{s} is the phone-occurrence distribution in sentence
s. When we use a large set of recognition units such as
triphones, most of them do not appear in a single sentence s.
Since we can skip the addition in Eq. (5) for such units, the
computational cost required for calculating Eq. (5) is much
smaller than that for Eq. (3).

We calculate Δs for all sentences in S and choose the
sentence which gives the smallest Δs. We repeat this sen-
tence selection process until when Δs for all the remaining
sentences in S becomes Δs ≥ 0.

In the sentence selection, we ignore phones that rarely

appear since their effect on the overall recognition accuracy
is very small. We use the set of phones U, each phone of
which occurs over a threshold δ in the original S .

4. Speaker Adaptation

4.1 MLLR

While we can apply our framework to any adaptation
techniques, we apply it to one of the major techniques,
maximum likelihood linear regression (MLLR) [15]. This
method restricts the mapping from the initial model to the
target speaker’s model to be an affine transformation in
the feature space, and it estimates the mapping parame-
ters from the user’s utterances. It updates the mean vector
μ = (μ1, · · · , μn)t in each Gaussian component in the output
probabilities of the HMMs as follows

μ̂ = Aμ + b, (6)

where n is the dimension of the input feature vectors, A is
an n × n matrix, and b is an n-dimensional vector. A and b
are obtained by maximum likelihood estimation. A speaker-
independent (SI) model is often used as the initial acoustic
model for adaptation.

4.2 Active Learning in Speaker Adaptation

We apply our active learning for supervised adaptation,
where each user speaks predetermined sentences to register
their voice in the speech recognition system.

First we collect a certain amount of data, Data E, to
measure the recognition accuracy. We do not collect Data A,
since we can use the initial SI model for recognizing Data
E. Then we move to the sentence selection process. Let
us assume we would like to select N additional sentences
in total in this process. There are two possible approaches:
batch adaptation and sequential adaptation.

In batch adaptation, we select all the N sentences at the
same time by using the phone-error distribution estimated
by using the SI model to recognize Data E. Then, we col-
lect speech data corresponding to the selected N sentences
and carry out speaker adaptation using both Data E and
this speech data where the SI model is used for the initial
model for adaptation. In sequential adaptation, we update
the acoustic model by speaker adaptation every time we col-
lect one utterance. That is, we repeat N times the two-step
process in Sect. 2. We employ batch adaptation in this study
because it is much simpler and requires a lower computa-
tional cost.

5. Acoustic Model Training

5.1 Active Learning for Acoustic Model Training

While implementation of the proposed active learning to
acoustic model training is rather straightforward, a few is-
sues should still be discussed.
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The number of utterances we collect is usually very
large, more than ten thousand. Therefore, it is not afford-
able from the view point of computational cost to update the
model each time we collect one sentence, as explained in
Sect. 2. We apply the following strategy to avoid this prob-
lem. When we collect speech data of N sentences, we first
collect Data A and Data E with K sentences. Then we di-
vide the rest of N − K sentences to be further collected into
several blocks, and apply the two-step active learning pro-
cess for each block. The block size (the number of sentences
in each block) should be determined heuristically.

In LVCSR, we usually use triphones as recognition
units. Since the number of triphones is fairly large, usually
more than 1,000, its error distribution may not be reliable
when it is estimated from a small number of error samples.
We use the following strategy to avoid this problem. First,
we estimate monophone error distribution. When its KLD
from the monophone occurrence distribution converges, that
is, when we cannot find any sentences that reduce the KLD
in the provided text corpus, we stop the sentence selection
process using monophones. We repeat the same process for
diphone distributions and then move to triphones when the
KLD again converges.

5.2 Selection from Untranscribed Speech Data

We have so far explained our active learning method for
selecting a sentence set to collect read speech data. As
explained in Sect. 1, there is an alternative active learning
scheme for data collection, in which we select speech utter-
ances from untranscribed speech data and transcribe them.
This scheme is more suitable to collect data of spontaneous
speech. On the contrary, our framework can be used only
for collecting read speech data. Here we try to modify
our framework to be applicable also for collecting sponta-
neous speech, in order to broaden the field of its applica-
tion. For this purpose, we employ a semi-supervised learn-
ing method.

Basically, we apply a similar approach as in the pre-
vious sections. The difference is that the unlabeled speech
data are used as the training data. We obtain their hypothe-
sis transcription by recognizing them with a triphone acous-
tic model using the available training data. Since it is de-
sirable that the accuracy of these hypothesis transcriptions
be as high as possible, we use the phoneme sequences ob-
tained from LVCSR as the hypothesis transcription. Then,
we select utterances using the same algorithm, as discussed
in Sect. 2 and the previous subsection.

6. Experiment

We evaluated our active learning framework on speaker
adaptation and acoustic model training tasks. In both cases,
we simulated this framework by using fully transcribed
speech databases. This is because it was impractical to col-
lect speech data each time we updated the acoustic models.
In this simulation experiment, we assumed that the speech

data corresponding to the text corpus S were not available at
the beginning of the active learning process. Every time our
method selected a sentence s from S , it actually retrieved
the speech data corresponding to s, instead of recording read
speech for s. While we cannot measure the cost for collect-
ing speech, we can evaluate the recognition performance of
our framework as accurately as that in real situations.

6.1 Speaker Adaptation

6.1.1 Experimental Conditions

We evaluated our speaker adaptation method based on ac-
tive learning in concatenated phone recognition using mono-
phone HMMs. We used a database of Japanese newspa-
per article sentences (JNAS) [16] spoken by adults and se-
nior citizens. To create this database, each speaker speaks
about 100 sentences from newspapers and 50-100 phoneti-
cally balanced sentences. We used 522 speakers (261 speak-
ers for each gender) for training, and 44 speakers (22 speak-
ers for each gender) for testing.

The frame period for speech analysis was 10 ms, and
the frame width was 25 ms. The input feature vector was 25-
dimensional, consisting of 12-order mel-frequency cepstral
coefficients (MFCCs), 12-order delta MFCCs, and a delta
power. In the phone recognition experiment using mono-
phone HMMs, we built a three-state speaker-independent
HMM for each of 43 phone classes. There were 16 mix-
ture components in each state.

For each test speaker, we used 100 sentences from
newspaper articles, i.e., 60 sentences for adaptation and 40
sentences for testing. From the 60 sentences for adaptation,
we randomly chose 5 sentences for Data E in the first adap-
tation step and used the remaining 55 sentences as the sen-
tence pool in the second sentence selection step.

We used the batch adaptation framework. For the sec-
ond step of this framework, we added a predetermined num-
ber of sentences to the 5 sentences selected in the first step
and used these sentences in the supervised adaptation using
MLLR. In all the experiments, the number of clusters for
MLLR was 32, which gave the best performance when all
the adaptation sentences were used.

We evaluated our method by using three different sen-
tence sets in the first step (Sets 1, 2, and 3) in order to ex-
clude unexpected biases in the evaluation. Figure 2 illus-
trates the data set design.

In the sentence selection, we ignored phone classes that
rarely appeared, since their effect on the overall recognition
accuracy was very small. We used the 27 phones indicated
in Table 1.

In the evaluation, we employed concatenated phone
recognition using a grammar representing the Japanese syl-
lable structure. We used phone accuracies as the evaluation
measures.
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Fig. 2 Data set design for each speaker. The number of utterances from
each speaker was 100.

Table 1 The 27 phone classes used in our speaker adaptation evaluation.
Here, /Q/ is sokuon, /N/ is hatsuon, and /u:/ and /o:/ are long vowels.

/a/,/i/,/u/,/e/,/o/,/u:/,/o:/,/N/,/w/
/y/,/j/,/ky/,/t/,/k/,/ts/,/ch/,/b/,/d/
/g/,/z/,/m/,/n/,/s/,/sh/,/h/,/r/,/Q/

Fig. 3 Comparison of proposed method with random selection. Random
1, Random 2, and Random 3 are results obtained using three different ran-
dom selections of adaptation sentences.

6.1.2 Results

First, we evaluated the proposed method on different num-
bers of the sentences selected in the second step. We chose
Set 1 as the initial adaptation set. We compared our method
with a random selection method, where the adaptation sen-
tences used in the second step were randomly selected from
the 55 sentences. We tested the random selection method
three times with different seeds. The results averaged over
all the phones are shown in Fig. 3 and Table 2. The phone
accuracy obtained by the speaker-independent model aver-

Table 2 Phone accuracies of the proposed method and the three random
selections (%). This table conveys the same information as Fig. 3.

No. of
utterances

Proposed Random 1 Random 2 Random 3

10 69.1 69.4 68.7 68.7
15 71.2 69.9 69.7 70.5
20 72.3 71.8 71.7 71.7
25 72.9 72.4 72.0 72.4
30 73.2 72.9 72.9 72.9
40 73.8 73.7 73.7 73.8
60 74.2 74.2 74.2 74.2

Fig. 4 Results of proposed method using different initial adaptation data.

aged over all the test speakers was 64.0%.
The proposed method performed better than random

selection in almost all cases; one random method performed
better than the proposed method in the adaptation using 10
sentences. The improvement from the random selection
level was the largest when 15 sentences were used. The ac-
curacy was 1.1 absolute points higher than the average of the
three random selection results. We also found that the dif-
ference between the accuracy of our method and each of the
other two methods was statistically significant at 1% level
when the numbers of utterances were 15, 20, 25, 30. These
results indicate the effectiveness of the proposed method.
Since there were 55 sentences in the sentence pool, the ac-
curacies obtained by the proposed method and by the ran-
dom selection converged to the same values as the number
of sentences increased.

If the initial adaptation set is different, the additional
sentences to be selected in the second step may also be dif-
ferent. To confirm the robustness of our method to chang-
ing the initial adaptation set, we changed the initial adap-
tation sentence set (by selecting Set 1, Set 2, or Set 3) and
compared the corresponding results. Each of these sets con-
tained 5 sentences. The results, shown in Fig. 4, proved to
be almost the same as those for the initial adaptation set. It
is therefore safe to say that the sentence selection for the
initial adaptation set does not affect the performance of our
method.

Figure 5 shows the results of the proposed method for
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each speaker when there were 15 additional sentences. The
accuracies for most speakers increased.

The phone error distributions were largely different
from speaker to speaker. Figure 6 shows their examples.
We also confirmed that, accordingly, the selected sentences
were also largely different from speaker to speaker. Also,

Fig. 5 Comparison of the proposed method with the average of the three
random selection methods. The “+” symbols indicate the result for each
speaker.

Fig. 6 Two examples of the phone error distribution.

we did not find any cases in which the selected sentences by
the proposed method coincidentally became similar to those
by the random method.

6.2 Acoustic Model Training

6.2.1 Experimental Conditions

We evaluated our acoustic model training method based
on active learning using lecture-speech data obtained from
male speakers in the Corpus of Spontaneous Japanese [17].
We used 198,807 utterances (152 h) from 666 speakers as
training data, and 2,328 utterances (1.95 h) from 10 speakers
as test data. We randomly selected 10 h (13,028 utterances)
of data from the training data, and half were used as Data A,
and the rest were used as Data E. The other data from the
training data (185,779 utterances, 142 h) were used as a text
corpus S .

The frame period for speech analysis was 10 ms, and
the frame width was 25 ms. The speech feature vector was
39-dimensional, consisting of 12-order mel-frequency cep-
stral coefficients (MFCCs) appended with energy, delta, and
delta-delta coefficients. We applied cepstral mean subtrac-
tion to all utterances.

We set the threshold δ described in Sect. 3 to 10,000.
There were 37 recognition units for monophones, 211 for
diphones, and 521 for triphones. We used the left diphones
as the diphones.

We used monophone hidden Markov models (HMMs)
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with three states in phone recognition to estimate phone-
error distribution P. There were 64 mixture components in
each state. We used concatenated phone recognition with
the same grammar as in Sect. 6.1

To evaluate recognition accuracy, we used triphone
HMMs with 3,000 states, each of which had a Gaussian-
mixture probability density function. There were 16 mix-
ture components in each state. We applied a two-pass
search for speech recognition. A 2-gram language model
was used in the first pass, and a 4-gram language model was
used in the second. A language model was trained with all
the training data. We used word accuracies as the evaluation
measures.

We compared our method with a random selection
method, with which the training sentences are randomly se-
lected from the text corpus, and with a phonetically balanced
selection method [7], which selects a sentence set such that
the entropy of its phone distribution becomes maximum.

6.2.2 Comparison with Other Methods

Figure 7 plots the recognition results. We compared the
proposed, random selection, and phonetically balanced sen-
tence selection methods. We tested the random selection
method three times with different seeds. Their averages are
shown in Fig. 7. Our proposed method performed signifi-
cantly better than the other two methods. To achieve a word
accuracy of 74.7%, the proposed method required only 76 h
of data, whereas the other methods required 152 h. At the
end of each phase, monophone, diphone, and triphone, the
improvements of our method from the other two methods
were statistically significant at the 1% level. The accuracy
of the phonetically balanced method was almost the same
as that with the random selection method. The phonetically
balanced method is effective when there is an insufficient
number of phones with low occurrence in the training data.
However, in our situation, the amount of training data was
large, and such phones occurred frequently enough in the
training data. Because of this, the phonetically balanced

Fig. 7 Comparison of proposed method with random selection (Ran-
dom) and phonetically balanced (Balance) methods.

method was not effective.

6.2.3 KLD Values

Figure 8 plots the change in KLD values between P and Q
in accordance with the increase in the number of selected
sentences. By changing the recognition units from mono-
phones to diphones and triphones, the reduction rate of KLD
values decreases, and the number of selected sentences in-
creases. The final KLD value for each recognition unit class
increases as the number of recognition units increases. Ac-
cordingly, it becomes more difficult to achieve Q closer to
P.

6.2.4 Approximation

Table 3 lists the results of the approximation using the Tay-
lor expansion. The accuracies of the proposed method using
approximation were almost the same as those without ap-
proximation. We reduced the computation time for sentence
selection by 55% for diphones and 44% for triphones. For
comparison, we report the time required for the other com-
putation processes: training an acoustic model and recog-
nizing Data E. For diphones, 6.5 h was required for training,
and 1.0 h for recognition. Therefore, our method reduced
the total computational costs by 16%. For triphones, 12.5 h
was required for training, and 1.0 h for recognition. Thus,
our method reduced the total computational cost by 9%. It
should be noted that a large cost is also required to collect
speech data.

Fig. 8 Change in KLD values between the phone-error distribution and
the accumulated phone-occurrence distribution in accordance with the
number of selected sentences.

Table 3 Comparison of proposed method using approximation. Org in-
dicates results without approximation, and App indicates results obtained
from Eq. (5). The table shows recognition accuracy and time required for
sentence selection. An Intel (R) Xeon (R) CPU (E5540, 2.53 GHz) was
used for calculation. The memory size was 24.7 GB.

Diphone Triphone
Org App Org App

Accuracy (%) 74.3 74.2 74.6 74.7
Time (h) 4.0 1.8 5.3 3.2
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Fig. 9 Comparison of recognition results from semi-supervised training
framework, supervised training framework, and two other methods.

6.2.5 Selection from Untranscribed Data

Figure 9 compares the recognition results of our semi-
supervised learning method for selecting utterances from
untranscribed data, explained in Sect. 5. We compared this
method with the random selection and phonetically bal-
anced methods. We also show our supervised learning
method, where we assume correct transcriptions were given
(Oracle). When there was 76 h of training data (half of all
data), the accuracies were 74.5% for our semi-supervised
training framework, 74.7% for our supervised training
framework, 74.3% for the random selection method, and
74.2% for the phonetically balanced method. While the ac-
curacy of our method was slightly higher than those of the
other two methods, it was lower than that in our supervised
training framework. This is because we used erroneous
recognition results as the transcription for the training ut-
terances and used them in selection. Some phones with low
recognition accuracies may not have appeared very often in
the hypothesis transcription. It should be noted that the lan-
guage model we used was trained using the transcribed text
provided, which was not available in the real situation.

7. Conclusion

We have proposed an active learning framework for con-
structing a speech data set for acoustic modeling. It gener-
ates a text corpus for read speech data, whose occurrence
distribution of recognition units is expected to be close to
their error distribution. We used KLD as a distance mea-
sure between distributions. We applied this framework to
speaker adaptation and acoustic model training.

In speaker adaptation, our evaluation using phone
recognition confirmed that it improved the phone accuracy
by 1.1 absolute points from that of random selection. The
database we used in this study was not large, and there
were only 55 adaptation sentences in the adaptation sen-

tence pool. Our method should be able to improve recog-
nition performance even more if it is given more choices in
the sentence selection process. We are planning to build an
online evaluation scheme in which a large text-only database
is prepared beforehand, and the sentences to be spoken by a
subject are determined from the speech recognition results
of his/her previous utterances.

In acoustic model training, we evaluated our method
with simulation experiments using CSJ. Texts for 76 h of
training data were selected with our method, which achieved
recognition accuracy of 74.7%, while the conventional train-
ing methods required 152 h to achieve the same accuracy.
We also proved that our method can be applied to a semi-
supervised training framework using untranscribed speech
data, where a hypothesis transcription obtained by a speech
decoder was used. In the future, we first have to conduct fur-
ther investigations to achieve significant effectiveness in our
semi-supervised training framework. We believe it should
be combined with conventional active learning methods for
untranscribed speech data.

As we described in the end of Sect. 2, the two control
parameters in our active learning, the size of Data E and the
update frequency, were determined empirically in this study.
We need more study for their optimization.

While we used maximum-likelihood estimation for
model parameter estimation in our evaluation, the combina-
tion of our framework and discriminative learning is also ex-
pected to yield higher recognition accuracies. We would like
to implement them with our framework. In our evaluation
discussed above, we used a selection method with which we
selected sentences from a text corpus prepared beforehand.
In the future, we will apply our method in a more realistic
situation in which we generate texts whose corresponding
speech data are expected to be effective in reducing errors.
We plan to construct an on-line training system for this pur-
pose. We also plan to extend our method to recognition units
with longer contexts such as words.
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