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Voice Activity Detection Using Global Speech Absence Probability
Based on Teager Energy for Speech Enhancement

Yun-Sik PARK†, Nonmember and Sangmin LEE†a), Member

SUMMARY In this paper, we propose a novel voice activity detection
(VAD) algorithm using global speech absence probability (GSAP) based
on Teager energy (TE) for speech enhancement. The proposed method
provides a better representation of GSAP, resulting in improved decision
performance for speech and noise segments by the use of a TE operator
which is employed to suppress the influence of noise signals. The perfor-
mance of our approach is evaluated by objective tests under various envi-
ronments, and it is found that the suggested method yields better results
than conventional schemes.
key words: voice activity detection, speech absence probability, teager
energy

1. Introduction

In a variety of speech procedures, such as speech recogni-
tion and speech enhancement, the voice activity detection
(VAD) algorithm is indispensable because the performance
of these speech processing procedures depends critically on
the result of VAD. To determine the presence or absence
of speech by VAD algorithms, various feature parameters
to distinguish speech segments from other waveforms have
been adopted. Traditionally, the parameters that can specify
the characteristics of speech have been based on short-time
energy or spectral energy and zero-crossing rate (ZCR). All
of these parameters, however, are rather sensitive to noise
and cannot fully specify the characteristics of a speech sig-
nal. Therefore, several other parameters have also been pro-
posed, including power spectral deviation (PSD), linear pre-
diction coefficients (LPCs) and likelihood ratio (LR) based
on statistical models [1]–[4]. Although these parameters are
quite effective in expressing the characteristics of a speech
signal, the performance of the VAD using such parameters
remains poor in adverse environments. Therefore, a feature
parameter that can sufficiently specify the characteristics
of speech and be robust in noisy environments is urgently
needed to improve the performance of the VAD algorithm.

In this letter, we propose a novel approach to the
VAD algorithm in which global speech absence probabil-
ity (GSAP) [3], based on Teager energy (TE) [5], [6], is de-
rived to improve the performance of VAD in various noisy
environments. Statistical model-based GSAP is one of the
feature parameters which is widely adopted in the decision
rule for VAD, and it is used as the smoothing parameter for

Manuscript received March 12, 2012.
Manuscript revised June 28, 2012.
†The authors are with the Department of Electronic Engineer-

ing, Inha University, Incheon, Korea.
a) E-mail: sanglee@inha.ac.kr

DOI: 10.1587/transinf.E95.D.2568

updating the noise signal in the speech enhancement algo-
rithm. In addition, a TE operator which can provide better
characteristics of speech from noise is employed to suppress
the influence of noise signals. In practice, it has been ex-
perimentally observed that the TE operator can enhance the
ability to discriminate between speech and noise and further
suppress the noise components. Therefore, we utilize TE-
based GSAP as a feature parameter for VAD to derive better
performance of the speech enhancement algorithm by the
proposed VAD method in noisy environments. The perfor-
mance of the proposed algorithm is evaluated by an objec-
tive comparison and it is consequently demonstrated to be
better than those of conventional methods.

2. Review of the Teager Energy Operator

In this section, we briefly review the Teager energy (TE) op-
erator, which is employed to suppress the influence of noise
signals. In practice, since corrupted noise is effectively sup-
pressed by the TE operator, the TE operator can provide bet-
ter ability to discriminate speech characteristics from noise.
The TE operator is easily implemented through the time do-
main and is defined as given by [5], [6]:

Ψc[s(t)] = [ṡ(t)]2 − s(t)s̈(t) (1)

where s(t) is a continuous-time signal, and ṡ = ds/dt. In
discrete-time, the TE operator can be approximated by

Ψ[s(n)] = s(n)2 − s(n + 1)s(n − 1) (2)

where s(n) is a discrete-time signal. In practice, a clean
speech signal s(n) is corrupted by the additive noise signal
d(n). Assuming that speech is degraded by an uncorrelated
additive noise, the observed noisy speech signal y(n) is given
by

y(n) = s(n) + d(n) (3)

where s(n) and d(n) are zero mean and independent. Based
on this, the TE of y(n) is obtained by

Ψ[y(n)] = Ψ[s(n)] + Ψ[d(n)] + 2Ψ̃[s(n), d(n)] (4)

where, Ψ[y(n)], Ψ[s(n)] and Ψ[d(n)] are the TE of noisy
speech, clean speech and additive noise, respectively. Also,
the cross-TE Ψ̃[s(n), d(n)] of s(n) and d(n) can be computed
as follows:
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Fig. 1 Block diagram of the proposed VAD algorithm.

Ψ̃[s(n), d(n)] = s(n)d(n) − 0.5s(n − 1)d(n + 1)

− 0.5s(n + 1)d(n − 1). (5)

Since s(n) and d(n) are zero mean and independent, the ex-
pected value of the cross-TE is equal to zero. Thus, the
expected value of Ψ[y(n)] is approximated as

E{Ψ[y(n)]} = E{Ψ[s(n)]} + {Ψ[d(n)]}. (6)

In fact, the TE of clean speech is much higher than that of
noise. Therefore, Ψ[d(n)] is negligible compared to Ψ[s(n)]
as given by [5], [6]

E{Ψ[y(n)]}≈E{Ψ[s(n)]}. (7)

For this reason, the TE operator can suppress the noise sig-
nal and provide better discrimination between speech and
noise. Therefore, TE-based feature parameters can enhance
the ability to discriminate speech and noise for effective
VAD in noisy environments.

3. Proposed VAD Using Global Speech Absence Prob-
ability Based on Teager Energy

In the previous section, it was noted that the TE operator
provides better ability to discriminate between speech and
noise by suppressing the noise signal. Based on this, we
propose a novel VAD algorithm using GSAP based on the
TE. GSAP based on the likelihood ratio employing statisti-
cal models has been shown as a good feature parameter for
detecting the presence of speech in noisy environment [3].
However, the performance of VAD algorithms using GSAP
as the feature parameter remains poor in the adverse noise
conditions. Therefore, in the proposed method, we derive an
improved feature parameter based on GSAP by taking ad-
vantage of the TE, in contrast with the conventional GSAP-
based method. Figure 1 presents an overall block diagram
of the proposed VAD algorithm which utilizes the proposed
TE-based GSAP (TE-GSAP). For this, we first assume that
the following two hypotheses, H0 and H1, indicate speech
absence and presence from the signal derived from the TE

operator [3]:

H0 : speech absent : Ψ[Y(i)] = Ψ[D(i)] (8)

H1 : speech present : Ψ[Y(i)] = Ψ[D(i)] + Ψ[S(i)] (9)

where Ψ[Y(i)] = [Ψ[Y(i, 1)], Ψ[Y(i, 2)], . . . ,Ψ[Y(i,M)]]
represents the Fourier domain spectra of noisy speech
based on the TE with a frame index i, and M(=16) is
the total band size of each frame. Here, Ψ[Y(i, k)] de-
notes an estimate of the Fourier spectrum of noisy speech
based on the TE compared to the conventional Fourier
spectrum Y(i, k) with a time index i and frequency in-
dex k in the discrete Fourier transform (DFT) domain.
Also,Ψ[D(i)] = [Ψ[D(i, 1)],Ψ[D(i, 2)], . . . ,Ψ[D(i,M)]] and
Ψ[S(i)] = [Ψ[S (i, 1)],Ψ[S (i, 2)], . . . ,Ψ[S (i,M)]], respec-
tively, represent the Fourier spectra derived from the TE
of the noise and clean speech signal. Under the assump-
tion that Ψ[D(i, k)] and Ψ[S (i, k)] are statistically indepen-
dent, Ψ[D(i, k)] and Ψ[S (i, k)] are characterized by zero-
mean complex Gaussian distributions such that [3]:

p(Ψ[Y(i, k)]|H0) =
1

πσd(i, k)
exp
[
− |Ψ[Y(i, k)]|2
σd(i, k)

]
(10)

p(Ψ[Y(i, k)]|H1) =
1

π(σs(i, k) + σd(i, k))
(11)

exp
[
− |Ψ[Y(i, k)]|2
σs(i, k) + σd(i, k)

]
where σs(i, k) and σd(i, k) are the variance of the speech and
estimated noise based on the TE, respectively. Accordingly,
the TE-GSAP p(H0|Ψ[Y(i)]) is derived from Bayes’ rule,
such that [3]

p(H0|Ψ[Y(i)])

=
p(Ψ[Y(i)]|H0)p(H0)

p(Ψ[Y(i)]|H0)p(H0) + p(Ψ[Y(i)]|H1)p(H1)
(12)

where p(H0)(= 1− p(H1)) represents the a priori probability
of speech absence. Since the spectral component in each fre-
quency bin is assumed to be statistically independent, (12)
can be rewritten as

p(H0|Ψ[Y(i)])

=

p(H0)
M∏

k=1

p(Ψ[Y(i, k)]|H0)

p(H0)
M∏

k=1

p(Ψ[Y(i, k)]|H0) + p(H1)
M∏

k=1

p(Ψ[Y(i, k)]|H1)

=
1

1 + q
M∏

k=1

Λk(Ψ[Y(i, k)])

(13)

in which q = p(H1)/p(H0) is set to 0.0625 [3], and
Λk(Ψ[Y(i, k)]) is the likelihood ratio computed in the kth fre-
quency bin, as given by [4]:

Λk(Ψ[Y(i, k)]) =
p(Ψ[Y(i, k)]|H1)
p(Ψ[Y(i, k)]|H0)

=
1

1 + ζ(i, k)
exp
[η(i, k)ζ(i, k)

1 + ζ(i, k)

]
(14)
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Table 1 Comparison of total error rate (TER), false rejection rate (FRR), and false acceptance rate
(FAR) among the methods of the conventional and the proposed technique.

Environments I.Y. Soon J. Sohn GSAP Proposed
Noise SNR (dB) TER FRR FAR TER FRR FAR TER FRR FAR TER FRR FAR

Wihte

0 39.36 38.21 40.95 41.15 35.63 48.85 42.71 36.85 50.86 41.34 36.26 48.42
5 32.47 26.35 40.97 33.29 26.36 42.93 32.21 25.58 41.43 31.96 25.64 40.76
10 27.87 18.83 40.46 28.93 19.19 42.48 24.40 17.93 33.41 22.08 17.82 28.01
15 19.96 14.97 26.91 23.67 14.4 36.58 18.93 12.78 27.49 16.83 9.8 26.62

Babble

0 37.14 27.41 50.68 37.86 27.89 51.73 38.87 31.28 49.43 34.88 24.54 49.28
5 30.82 19.85 46.09 32.08 19.49 49.6 32.2 21.54 47.05 25.41 18.93 34.42
10 25.48 12.98 42.89 27.14 12.83 47.08 23.85 13.24 38.62 19.57 11.01 31.5
15 21.57 8.44 39.84 22.43 8.6 41.68 17.74 7.27 32.32 16.43 5.99 30.97

Vehicle

0 9.29 8.25 10.74 9.37 8.35 10.79 8.34 5.02 12.96 9.39 8.38 10.8
5 6.97 5.52 8.99 6.93 5.62 8.75 6.61 3.1 11.51 6.75 5.38 8.67
10 4.68 3.73 6.01 4.95 3.71 6.68 3.17 2.58 3.99 4.95 3.71 6.67
15 3.47 3.15 3.92 3.48 2.85 4.36 3.06 2.5 3.83 4.19 2.84 6.06

where the TE-based a posteriori signal-to-noise ratio (SNR)
η(i, k) and the TE-based a priori SNR ζ(i, k) are defined by

η(i, k) ≡ |Ψ[Y(i, k)]|2
σd(i, k)

, ζ(i, k) ≡ σs(i, k)
σd(i, k)

(15)

in which ζ(i, k) is estimated by the well-known decision-
directed approach [1], [7].

Finally, in the proposed VAD algorithm, speech seg-
ments are decided by the decision rule as follows:

fVAD =

{
speech, if p(H0|Ψ[Y(i)]) < T
nonspeech, otherwise

(16)

where the threshold value T is experimentally determined to
0.3 based on a large number of noisy speech data samples
which contain a variety of noises and SNR conditions. Fig-
ure 2 (d) shows the estimates of GSAP obtained by the con-
ventional method and by the proposed TE-GSAP method.
The conventional method based-GSAP represented by the
dashed line is derived from a noisy speech signal as shown
in Fig. 2 (a), and the proposed TE-GSAP represented by the
solid line in Fig. 2 (d) is derived by employing the enhanced
noisy speech based on the TE as shown in Fig. 2 (c). Fig-
ure 2 (d) clearly shows the difference between the conven-
tional GSAP and the proposed GSAP derived from the sig-
nal enhanced by the TE operator. From Fig. 2 (d), we can
see that the GSAP estimation of the conventional scheme
insufficiently discriminates between speech and noise since
the conventional GSAP estimate is sensitive to noise. On
the contrary, it can be seen that in given noisy conditions,
TE-GSAP estimated in the proposed method performs well
by taking advantage of the better characteristic of speech
against noise through the TE operator.

Based on this, the noise power estimate λ̂n(i, k) can
be updated during nonspeech with the following averaging
rule:

λ̂n(i, k) = αnλ̂n(i − 1, k) + (1 − αn)|Y(i, k)|2 (17)

in which the smoothing parameter αn is set at 0.9 andσd(i, k)
in (15) is also derived based on Ψ[Y(i, k)] by utilizing the
proposed update routine.

Fig. 2 Comparison of GSAP (white noise, SNR=0 dB) (a) Noisy speech
waveform (b) Clean speech waveform (c) TE waveform (d) GSAP: the con-
ventional method (dashed line), the proposed TE-based method (solid line).

4. Experimental Results

The proposed VAD method was adopted for the noise sup-
pression algorithm using the suppression gain based on
MMSE (minimum mean square error) estimation [7] and
was evaluated with objective comparison experiments under
various noise conditions.

For the test material in terms of detection accuracy
(%) [8], we formed 456 s speech data sampled at 8 kHz. To
evaluate the performance, we first made reference decisions
on the clean speech material by labeling it manually at ev-
ery 10 ms frame. Also, to consider various noise environ-
ments, three types of noise sources white, babble, and vehi-
cle noise from the NOISEX-92 database were added to the
clean speech waveform at SNRs of 0, 5, 10 and 15 dB. Ta-
ble 1 including TER (total error rate), FRR (false rejection
rate), and FAR (false acceptance rate) shows comparative
results for the soft decision-based approach that represents
the probability of speech absence in speech enhancement
method by I.Y. Soon et al. [2], the LR-based method by J.
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Fig. 3 (a) ROC curve for the white noise at 10 dB SNR (b) ROC curve
for the babble noise at 5 dB SNR.

Table 2 PESQ scores obtained from the proposed VAD algorithm based
on proposed TE-GSAP with those yielded by the conventional methods
under various noise environments.

Environments PESQ
Noise SNR (dB) I.Y. Soon J. Sohn GSAP Proposed

White

0 1.611 1.635 1.621 1.649
5 2.110 2.109 2.103 2.112

10 2.450 2.448 2.447 2.452
15 2.752 2.753 2.753 2.755

Babble

0 1.944 1.950 1.949 1.972
5 2.334 2.337 2.337 2.353

10 2.670 2.661 2.663 2.667
15 2.962 2.954 2.956 2.956

Vehicle

0 3.136 3.135 3.134 3.136
5 3.433 3.432 3.432 3.434

10 3.687 3.687 3.687 3.691
15 3.944 3.944 3.944 3.945

Sohn et al. [1], GASP [3] and the proposed approach. From
the results, it is evident that the proposed VAD algorithm
outperformed or at least was comparable to the conventional
methods in terms of overall detection accuracy under the
given noise conditions. This fact could be confirmed by
Fig. 3 showing the receiver operating characteristics (ROC)
which are insensitive to parameter tuning since it is a trade-
off between detection rate (100-FRR) and FAR [8]. Based
on this, we can see the overall performance differences of
the aforementioned methods. From the figure, it can be seen
that the proposed TE-based VAD yielded overall higher per-
formance than the conventional method.

Also, for the comparison of an objective speech qual-
ity, we evaluated the objective quality of the output signal
as obtained by the NS algorithm in which the VAD algo-
rithms based on the conventional and proposed scheme are
adopted. For the test material, ninety test phrases with a
sampling rate of 8 kHz were used as the experimental data.
Each phrase consisted of two different meaningful sentences
and lasted 8 sec. In order to evaluate the speech quality, we
adopted the perceptual evaluation of speech quality (PESQ,

ITU-T P.862) which is a worldwide applied industry stan-
dard for objective speech quality testing [9]. The results of
the PESQ scores for the evaluated methods are presented in
Table 2. Table 2 illustrates that the proposed approach out-
performed comparable to the conventional methods under
the given noise conditions and achieves a meaningful per-
formance improvement over the conventional methods es-
pecially at low SNRs.

5. Conclusion

In this paper, we have proposed a novel VAD algorithm us-
ing TE-based GSAP. The GSAP estimate derived from the
enhanced input noisy signal by the TE operator is applied to
the VAD algorithm as a robust feature parameter. The per-
formance of the proposed algorithm has been found to be
superior to that of the conventional technique through ob-
jective evaluation tests.
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