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PAPER

Fast and Accurate PSD Matrix Estimation by Row Reduction

Hiroshi KUWAJIMA†a), Nonmember, Takashi WASHIO††b), Member, and Ee-Peng LIM†††c), Nonmember

SUMMARY Fast and accurate estimation of missing relations, e.g.,
similarity, distance and kernel, among objects is now one of the most im-
portant techniques required by major data mining tasks, because the miss-
ing information of the relations is needed in many applications such as
economics, psychology, and social network communities. Though some
approaches have been proposed in the last several years, the practical bal-
ance between their required computation amount and obtained accuracy are
insufficient for some class of the relation estimation. The objective of this
paper is to formalize a problem to quickly and efficiently estimate missing
relations among objects from the other known relations among the objects
and to propose techniques called “PSD Estimation” and “Row Reduction”
for the estimation problem. This technique uses a characteristic of the rela-
tions named “Positive Semi-Definiteness (PSD)” and a special assumption
for known relations in a matrix. The superior performance of our approach
in both efficiency and accuracy is demonstrated through an evaluation based
on artificial and real-world data sets.
key words: similarity, Positive Semi-Definite (PSD) matrix, Positive Semi-
Definite (PSD) Estimation, row reduction, incomplete Cholesky decompo-
sition

1. Introduction

With the recent growth of network society and ubiquitous
sensing environments, a lot of real data sets representing the
relations among massive objects are now available, where
each relation between the two objects is represented by a
value such as similarity, distance and kernel. However, for
various reasons, it is not always true that the relation infor-
mation is fully given in the data sets. On the other hand, the
missing information of the relations is needed in many appli-
cations. For example, the estimation of the economic trad-
ing amounts among some underdeveloped or small coun-
tries that have no record in the world trading statistics is
important to manage global economy in economics [1], [2].
Estimation of the missing elements in pairwise comparison
matrices acquired in psychological experiments is an im-
portant technique to complete the data without applying ex-
haustive questionnaires, which is not feasible due to the bur-
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den of human workload [3]. Automated friend introduction
in a network community, which requires the estimation of
potential friendships, is an essential service in a social net-
work to enhance the communication activity in the commu-
nity. Accordingly, the development of a scalable technique
to quickly and accurately estimate the missing information
of the relations among the objects in an objective data set is
now an important issue.

Although some general-purpose approaches can be uti-
lized for the estimation as described in the Sect. 3, they
are not preferable for large-scale and real-world problems
because of their high computational complexity and insuf-
ficient accuracy. Thus, we set the objective of this pa-
per to carefully formalize the problem setting of the afore-
mentioned estimation problem and to propose techniques
which are tailored to the estimation problem and achieves
short computation time and high accuracy at the same
time. Based on the observation that most of the rela-
tions among the objects are transformed into Positive Semi-
Definite (PSD) relations as described later, we propose the
following novel techniques to extend one of conventional
approaches, namely, “PSD Approximation,” based on “In-
complete Cholesky Decomposition” [12], [13] †.

(1) “PSD Estimation” which provides the estimation of
each missing element with its admissible value inter-
val, and

(2) “Row Reduction” which is an efficient Pivoting crite-
rion to estimate the missing elements within a given
error tolerance under lower computational complexity.

The secondary objective of this paper is to characterize the
performance of our proposed techniques in both computa-
tional efficiency and estimation accuracy. A program named
“PERCH (Psd Estimation by row Reduction based on in-
complete CHolesky decomposition)” has been developed,
and its performance has been compared with a SVM based
regression, a PSD Completion approach named dualcomp,
and a NNLS approach named APGL through numerical ex-
periments using artificial and real world data. Moreover, the
practicality of our PERCH has been assessed in an appli-
cation to estimate potential friendships in a social network

†“Incomplete Cholesky Decomposition” became to be used in
rather new literatures of machine learning and data mining, and it
originally has an alternative name “Truncated Cholesky Factoriza-
tion” in computational mathematics [11]. We use the terminology
“Incomplete Cholesky Decomposition” according to the original
paper of PSD Approximation [12], [13].
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community.

2. Problem Setting

The problem to estimate missing relations among the objects
in a set is mathematically formalized as follows. Given a set
of objects OB (|OB| = n), let OAh (⊂ OB) (h = |OAh| < n)
be a set where all pairwise relations among the objects in
OAh and all bipartite relations of the objects between OAh

and OBn−h = OB − OAh are known, and all pairwise rela-
tions among the objects in OBn−h are not known. Upon this
definition, our problem is to estimate the unknown relations
among the objects in OBn−h by the known relations among
the objects in OB. In the aforementioned examples, an ob-
ject in OB is a country, a pairwise experiment, or a user in
the social network where the relations among the objects in
OBn−h are the missing information. An advantageous rep-
resentation to enable rigorous and flexible manipulation of
this problem is to use a relation matrix for the objects in
OB. Let A be an n × n matrix where each element repre-
sents a pairwise relation between two objects in OB. A is
represented by the following expression.

A =

(
Ah Bn−hT

Bn−h Xn−h

)
. (1)

where Ah is a h × h principal submatrix of A, representing
the known relations of the objects in OAh, and (n − h) × h
submatrix Bn−h represents the known bipartite relations of
the objects between OAh and OBn−h. Moreover, Xn−h is
a (n − h) × (n − h) principal submatrix of A, representing
the missing relations among objects in OBn−h. Our prob-
lem is now to estimate Xn−h from the rest of A. To the best
of our knowledge so far, no solution has been proposed to
take the practical balance between their required computa-
tion amount and obtained accuracy for this problem while
guaranteeing the absolute error less than a tolerance. Hence,
this study proposes a novel technique to achieve a practical
balance between the two.

To address this problem, we focus on mathematical
characteristics of the relation matrix A. Due to the sym-
metric property of the majority of relations, most of the re-
lation matrices A are square and symmetric. Moreover, in
many cases, A is Positive Semi-Definite (PSD) or can be
converted into a PSD matrix by a transformation to another
matrix such as a signless Laplacian. In this paper, we ex-
plore a principle and an algorithm to estimate the missing
part of the relation matrix from its known part by exploit-
ing the PSD property in order to advance the accuracy of
the estimation and the scalability in terms of computational
complexity.

3. Related Work

Although there are not special techniques for the problem
setting as described in the Sect. 2, in this section, we intro-
duce how conventional approaches designed for a general

purpose can solve the PSD Estimation problem.
A conventional way to address this problem is to de-

velop a classification or regression model by assuming that
the relation between two objects p and q, i.e., an element ap,q

in A, can be estimated from the known relations of p with
the other objects and those of q. In the model, the objective
variable is ap,q, and its explanation vector is one of ordered

concatenations, [ah
p

T ah
q

T
] and [ah

q
T ah

p
T

] where ah
p

T
and ah

q
T

are the p-th row and the q-th row of the first h columns of
A respectively which represent the known relations of the
two objects with the other objects. The model is trained
by the known part of the matrix A, i.e., a data set consist-
ing of the 2hn − h2 relations ([ah

p
T ah

q
T

], ap,q) (p = 1, . . . , n,

q = 1, . . . , h, and p ≥ q) and ([ah
q

T ah
p

T
], ap,q) (q = 1, . . . , n,

p = 1, . . . , h, and q > p). Every unknown element ap,q in
Xn−h is estimated by this trained model. Since this frame-
work does not use the PSD property of the relations, the
accuracy of the estimation is supposed to be limited. This
is shown in our experimental demonstration later. In ad-
dition, its computational complexity is quite high. For ex-
ample, the computational complexity of regression and its
estimation is O(M3N + MN′) where M, N and N′ are re-
spectively the number of explanation elements, the number
of training examples and the number of objective elements
to be estimated. Under N = 2hn − h2 = O(hn)(n > h),
M = 2h = O(h), N′ = (n − h) × (n − h) = O(n2) and the
assumption that the number of the known relations is almost
proportional to the total number of relations, i.e., h2 ∝ n2,
the computational complexity of the conventional frame-
work is eventually O(n5) which is not very tractable in large-
scale real world applications. Accordingly, more accurate
and efficient approaches than this conventional framework
should be explored by taking into account the mathemat-
ical characteristic of the problem such as Positive Semi-
Definiteness (PSD).

“Positive Semi-Definite (PSD) Completion” is known
to be a subclass of Semidefinite programming, and derives a
matrix Ã in which missing elements of an original PSD ma-
trix A are completed by maximizing the determinant det(Ã)
under PSD constraints [5], [6]. Its program named dualcomp
is opened to the public [7]. PSD Completion is applicable
to any PSD matrix representing a chordal graph where the
matrix is interpreted to be a symmetric adjacency matrix
having none zeros at known elements and zeros at miss-
ing elements. This has been applied to the completion of
missing elements in a kernel matrix under a recent study [8].
However because they maximize the determinant and do not
adapt to an original PSD matrix A in the form of Eq. (1),
i.e., the missing elements make up a principal submatrix
of A, the computational complexity of these approaches is
O(n6) [6], and the number of known elements required in
the matrix is almost O(n2) since they can complete the el-
ements with sufficient accuracy only when most of the el-
ements are known in advance. Thus, PSD Completion is
not very suitable to the case under limited known relations.
Another relevant approach is to use a parametric function to
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complete the elements in a PSD kernel matrix [9]. It com-
pletes missing elements in an auxiliary kernel matrix by fit-
ting a parametric function based on a complete primary ker-
nel matrix. However, this is not applicable when the appro-
priate primary kernel matrix well followed by the missing
elements is not available. A more recent approach applies a
Gaussian parametric function to complete missing features
of objects to construct a kernel matrix [10]. However, this
is also limited to the case that both the distribution of the
missing value and the kernel matrix are Gaussian. In ad-
dition to high computational complexities described above,
PSD Completion approaches cannot guarantee the absolute
error less than a tolerance because these techniques intended
to recover an original matrix as far as possible using avail-
able information.

Another recent approach named “Nuclear norm reg-
ularized linear least squares problem (NNLS)” is a con-
vex relaxation of “affine rank minimization problem,” which
finds the matrix of minimum rank subject to linear equal-
ity constraints [25]. NNLS derives a matrix Y in which
missing elements of an original PSD matrix are completed
by minimizing the sum of the square error for known el-
ements in the estimated matrix and the nuclear norm, i.e.,
|A(Y)− b|2/2+ μ||Y ||∗ whereA(Y) = b represents the linear
equality constraints for known elements, ||Y ||∗ is the nuclear
norm of Y and μ > 0 is a given regularization parameter.
An algorithm named APGL was developed to solve NNLS
in [25] and its program is opened to the public [26]. Un-
like PSD Completion, NNLS under PSD constraints is ap-
plicable to any PSD matrices, i.e., NNLS under PSD con-
straints has no requirement for positions of known elements
and missing elements in an original PSD matrix. The itera-
tion complexity is O(1/

√
ε) with an ε-optimal solution and

the computational complexity for each iteration including
eigenvalue decomposition is O(n3). Assuming ε is a con-
stant independent from n, the total computational complex-
ity of APGL is considered as O(n3). APGL can solve our
matrix estimation problem as a special case of NNLS under
PSD constraints which we compare to PERCH later. Al-
though it has low computational complexity, APGL cannot
guarantee the maximum absolute error less than a tolerance.

“PSD Approximation” based on “Incomplete Cholesky
Decomposition” is another relevant approach [12], [13].
This technique has been developed to produce a good ap-
proximation of a known PSD matrix by using an appro-
priately chosen subset of rows and columns of the matrix.
Given a PSD matrix A where all of its elements are known,
the k rows and their symmetric k columns of A are sam-
pled according to some criteria to obtain a good approxi-
mation Ã of A within the small number k. This sampling
of the rows and the columns in A is called “Pivoting,” and
the objects corresponding to these rows and columns are
called “Pivots.” PSD Approximation samples the Pivots un-
der a criterion to ensure the small value of tr(A − Ã). This
Pivoting criterion enables efficient factorization of the re-
lation matrix A into a lower n × k trapezoid matrix L and
its transposed LT with O(k2n) computational complexity,

and derives the approximation Ã = LLT with O(kn2). An-
other similar work introduced the other two Pivoting crite-
ria [14]. The first criterion is to sample the Pivots which
ensure the small Frobenius norm of the residual matrix of
Incomplete Cholesky Decomposition, but requires O(kn3)
computational complexity. The second is a relaxation of
this criterion to ensure the small upper bound of the norm,
and requires O(kn2). An underlying assumption of these ap-
proaches is that “the majority of relation matrices have a
rapidly decaying spectrum, i.e., a low rank” [15]. This as-
sumption ensures their good approximation under a small
k.

However, the application of the present PSD Approx-
imation to the estimation problem of the missing elements
in A has three difficulties. First, all of the aforementioned
criteria of the Pivoting need to know the actual values of
the missing elements of A in advance. This is essentially
impractical for the aforementioned problems. Second, the
computational complexity of the matrix factorization under
these Pivoting criteria is O(k2n) ∼ O(kn3). An efficient Piv-
oting is desired for the fast and accurate estimation of the
missing elements. The third is that they do not provide the
admissible error bound of each element estimation, and do
not guarantee the absolute error less than a tolerance. This
guarantee is practically required in many applications.

4. Background Principles

In this section, a past study named “PSD Approxima-
tion” which provides technical bases to our proposal is ex-
plained [12], [13]. First, we describe the normalization of
the relation matrix to simplify the computation scheme of
PSD Approximation without losing its generality. Given a
set of objects OB (|OB| = n), let A be an n × n PSD rela-
tion matrix, denoted by A 
 0, representing the relations
among all of the objects in OB. By definition, A is a sym-
metric matrix where all of its diagonal elements are nonzero
and known by default. Thus, through W = diag(A), any
A 
 0 has the following invertible transformation into the
corresponding A∗ 
 0 where all of its diagonal elements are
normalized to unity.

A∗ = W−1/2T
AW−1/2 = W−1/2AW−1/2.

Accordingly, our discussion in the rest of this paper focuses
on A∗ without loss of generality, and we use the symbol A
instead of A∗ to represent a normalized PSD relation matrix.

PSD Approximation efficiently approximates the val-
ues of some elements in a PSD relation matrix A by using
a limited number of the other element values [12], [13]. In
contrast to PSD Completion, it does not maximize det(A),
but approximates A to minimize a trace associated with A,
e.g., tr(A − Ã), while maintaining det(A) = 0 by its progres-
sive and low rank factorization based on Incomplete Incom-
plete Cholesky Decomposition. Hence, PSD Approxima-
tion is not a subclass of PSD Completion.

Assuming an element ap,q in A is the relation between
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two objects p and q in OB, let Ak be a k × k principal sub-
matrix of A (1 ≤ k ≤ n) representing relations among k
objects in a subset OAk ⊆ OB (k = |OAk |). Moreover, let
Bn−k be a (n − k) × k submatrix of A. Bn−k consists of the
relations between every object in OAk and every object in
OBn−k = OB − OAk. The objects in OAk are called “Piv-
ots.” Upon these definitions, we consider the following A(k)
where the elements which are not included in Ak and Bn−k in
A(k), i.e., Zn−k, are to be approximated.

A(k) =

(
Ak Bn−kT

Bn−k Zn−k

)
. (2)

PSD Approximation approximates all elements in a (n−k)×
(n − k) matrix Zn−k by appropriately selecting Ak and Bn−k

from A to make the trace tr(A − A(k)) within a tolerance.
This approximation is performed by applying the k step

Incomplete Cholesky Decomposition to A(k) as follows†.

A(k) = L(k)L(k)T (3)

where

L(k)=

(
Lk

Ln−k

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1,1 0...
. . .

�k,1 . . . �k,k
�k+1,1 . . . �k+1,k
...

...
�n,1 . . . �n,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

�i, j =
ai, j −∑ j−1

h=1 �i,h� j,h

� j, j
, (5)

( j = 1, 2, · · · ,min(i − 1, k))

�i,i = ±
√√√

ai,i −
i−1∑
h=1

�2i,h = ±
√√√

1 −
i−1∑
h=1

�2i,h. (6)

and ai, j is an i, j-element of A(k). In addition, the following
“residual” of each row for k + 1 ≤ p ≤ n in L(k) is defined
for the later use.

e(k)
p ≡ 1 −

k∑
h=1

�2p,h (7)

The trace tr(A − A(k)) under this approximation of A(k) is
known to be

∑n
p=k+1 e(k)

p which is also equal to the sum of
the eigenvalues of A − A(k).

We construct L(k) in bottom up manner starting from
k = 1. Toward the less tr(A − A(k)), an object p is selected
from OBn−k and moved to OAk in the next k+1-th step. This
selection is important, and pmax ∈ OBn−k yielding the max-
imum residual e(k)

pmax
= maxp∈OBn−k e(k)

p is selected. Because
e(k)

p is considered to be the component which is independent
of Lk in the p-th row of L(k), the move of pmax from OBn−k

to OAk is expected to effectively reduce the residuals of the
other rows in Ln−k in the next step. This selection which
is called “Pivoting” yields the renewed OAk+1 and OBn−k−1.

Subsequently, L(k) is extended to an n × (k + 1) matrix by
applying the k + 1-th step of Incomplete Cholesky Decom-
position as follows.

L(k + 1) =

(
Lk+1

Ln−k−1

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ Lk 0

�kT
pmax

√
e(k)

pmax

⎞⎟⎟⎟⎟⎟⎠
Ln−k−1

p̄max

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where �kT

pmax
is the row of pmax moved from Ln−k, and Ln−k−1

p̄max

is a (n − k − 1) × (k + 1) submatrix in which each row
consists of the row of an object q in Ln−k and �q,k+1 for
all objects q ∈ OBn−k−1 except pmax. e(k)

pmax
is provided by

Eq. (7). This is essentially equal to �k+1,k+1 to be derived
by Eq. (6) when the row of pmax is attached to the k + 1-th

row. Though either ±
√

e(k)
pmax

can be selected for this place,

we assign
√

e(k)
pmax

only since Incomplete Cholesky decom-

position A(k + 1) = L(k + 1)L(k + 1)T is not affected by this
selection due to its quadratic symmetry. Ln−k−1

p̄max
is obtained

by computing the last element �q,k+1 through Eq. (5). Note
that all data needed to compute �q,k+1 for all q ∈ OBn−k−1

is the elements aq,pmax in A corresponding to the relations
between the moved object pmax ∈ OAk+1 with all objects
q ∈ OBn−k−1, and thus L(k + 1) is progressively computed
only from Ak+1 and Bn−k−1 by Eq. (5) and (7). After this one
step progress to derive A(k + 1) = L(k + 1)L(k + 1)T , we
obtain less tr(A − A(k + 1)). Accordingly, a more accurate
approximation of Zn−k−1 in A is derived from the additional
relations between the moved object pmax with the others in
OBn−k−1 through this Pivoting operation. Under the low rank
assumption, this progressive approximation will stop within
a small number of steps k � n under a tolerance on the
trace.

The adjacency matrix corresponding to Ak and Bn−k in
Eq. (2) represents a complete split graph which is a sub-
class of the chordal graph. Accordingly, the arrangement
of the matrix elements used in PSD Approximation is re-
quired to be more restricted than PSD Completion. How-
ever, the number of the elements used in PSD Approxima-
tion is O(kn) since the known part of the matrix is limited
to Ak and Bn−k. Moreover, the computational complexity
to compose Ak and Bn−k is O(kn), that of the Incomplete
Cholesky Decomposition using the aforementioned Pivot-
ing is O(k2n), and the computation of A(k) by Eq. (3) is
O(kn2). These are far lower than those of PSD Completion.
In this regard, PSD Approximation is more practical. Its
major drawback is that any method to ensure the estimation
error bound of the individual element within a certain limit
has not been established. In addition, it can not be directly
applied to the data where some elements are missing, since
every new Pivot must be selected from the set of all objects
which are not Pivots in OB.

†The ordinary expression of Incomplete Cholesky Decompo-
sition is A(k) = L(k)L(k)T or A(k) = L(k)D(k)L(k)T . We use
A(k) = L(k)L(k)T for the ease of our explanation.
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5. Proposed Techniques

To overcome the drawbacks of PSD Approximation, the ob-
jective (1) mentioned at the last part of the first section is
achieved by our proposing novel principle named “PSD Es-
timation” under the aforementioned assumption that “the
majority of relation matrices have a rapidly decaying spec-
trum, i.e., a low rank.” Moreover, to reduce the error bound
within a tolerance while optimizing the computation scheme
for less computational complexity, we achieve the afore-
mentioned objective (2) by introducing a novel Pivoting
principle and algorithm named “Row Reduction.”

5.1 PSD Estimation

The principle of our PSD Estimation comes from the fol-
lowing basic theorem [16].

Theorem 1 (Sylvester’s criterion): A square matrix A is
PSD, i.e., A 
 0, iff the determinants of all principal sub-
matrices of A are more than or equal to 0. A square matrix
A is PD, i.e., A � 0, iff the determinants of all leading prin-
cipal submatrices of A are more than 0. �

Based on this theorem, our PSD Estimation requires the
PSD admissibility condition, i.e., the nonnegative determi-
nant of the principal submatrices of A, in the estimation of
every element of A. For preliminary analysis, let’s consider
the following (k + 1) × (k + 1) principal submatrix Ak+1

p of
A(k) in Eq. (2) which contains the k × k principal submatrix
Ak representing the relations among Pivots in OA and the
k dimensional vector ak

p in Bn−k representing the relations
between every Pivots and the objects p ∈ OBn−k.

Ak+1
p =

(
Ak ak

p

ak
p

T
1

)

By Theorem 1 and A 
 0, Ak+1
p 
 0 holds, and thus it can

be decomposed by ordinary Cholesky Decomposition. The
submatrix Ak is decomposed by Eq. (5), and the last row ak

p
T

and ak+1,k+1 ≡ ap,p = 1 are processed as follows by Eq. (5)
and (7).

�p,i =
ap,i −∑i−1

h=1 �i,h�p,h

�i,i
, (i � p)

e(k)
p ≡ �k+1,k+1

2 ≡ �p,p
2 = 1 −

k∑
h=1

�2p,h.

This results the following decomposition.

Ak+1
p = Lk+1

p Lk+1
p

T
,

where

Lk+1
p =

⎛⎜⎜⎜⎜⎜⎜⎝ Lk 0

�kp
T

√
e(k)

p

⎞⎟⎟⎟⎟⎟⎟⎠ ,
�kp = (�p,1 �p,2 . . . �p,k)T .

�kp plays an important role in our PSD Estimation as shown
shortly. Here, we assume a stronger constraint Ak � 0 and
hence det(Ak) > 0 which is achieved without loss of gener-
ality as shown later. Then, we obtain the following lemma
on the residual e(k)

p .

Lemma 1: Given Ak � 0. If Ak+1
p 
 0, then 0 ≤ e(k)

p ≤ 1. If

e(k)
p > 0, then Ak+1

p � 0. �

Proof 1: From Eq. (7), e(k)
p ≤ 1 is trivial. Based on the

property of determinants for triangular matrices and Ak+1
p 


0,

(∗) det(Ak+1
p ) = det(Lk+1

p ) det(Lk+1
p

T
)

= e(k)
p

k∏
i=1

�2i,i ≥ 0.

Because of Ak � 0,

det(Ak) = det(Lk) det(LkT
) =

k∏
i=1

�2i,i > 0.

According to these inequalities, e(k)
p ≥ 0. Moreover, by The-

orem 1, the determinant of any leading principal submatrix
of Ak is positive, i.e.,

det(Ah) =
h∏

i=1

�2i,i > 0 (h = 1, . . . , k).

In addition, from Eq. (*), if e(k)
p > 0, then det(Ak+1

p ) > 0.
Thus, the determinants of all leading principal submatrices
of Ak+1

p are positive, and this proves Ak+1
p � 0.

Now, we derive our main result to estimate a missing
element of Xn−h in Eq. (1) by considering the following (k +
2)× (k+2) principal submatrix Ak+2

p,q of A(k) in Eq. (2) where
k ≤ h and the condition that Xn−h is a principal submatrix of
Zn−k are assumed.

Ak+2
p,q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ak ak

p ak
q

ak
p

T
1 xp,q

ak
q

T
xq,p 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (8)

where xp,q(= xq,p) in Xn−h is a missing element representing
the relation between p and q. Similarly to Ak+1

p , A
k+2
p,q 
 0

holds by Theorem 1 and A 
 0. Hence, Ak+2
p,q can be factor-

ized by Incomplete Cholesky Decomposition up to the k-th
step as follows.

Ak+2
p,q = L′k+2

p,q L′k+2
p,q

T
, (9)

where

L′k+2
p,q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Lk 0 0
�kp

T

�kq
T Rp,q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and Rp,q is a 2×2 submatrix. From Eq. (9), Rp,q must satisfy
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the following relation.

Rp,qRp,q
T =

(
1 xp,q

xp,q 1

)
−

⎛⎜⎜⎜⎜⎜⎜⎝�
k
p

T
�kp �

k
p

T
�kq

�kq
T
�kp �kq

T
�kq

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝ 1 − �kpT
�kp xp,q − �kpT

�kq

xp,q − �kqT
�kp 1 − �kqT

�kq

⎞⎟⎟⎟⎟⎟⎟⎠ . (10)

Then, the solution of xp,q is given by the following theorem.

Theorem 2: The admissible value interval of a missing el-
ement xp,q in Ak+2

p,q is as follows.

x̂(k)
p,q − Δx(k)

p,q ≤ xp,q ≤ x̂(k)
p,q + Δx(k)

p,q,

where

x̂(k)
p,q = �

k
p

T
�kq,

Δx(k)
p,q =

√(
1 − �kpT

�kp
) √(

1 − �kqT
�kq

)
.

�

Proof 2: We consider the determinant of Ak+2
p,q . Due

to the triangularity of L′k+2
p,q in Eq. (9), det(L′k+2

p,q ) =

det(Lk) det(Rp,q) holds. Based on this fact and Eq. (9),

det(Ak+2
p,q ) = det(L′k+2

p,q ) det(L′k+2
p,q

T
)

= det(Lk) det(Rp,q) det(LkT
) det(RT

p,q)

= det(LkLkT
) det(Rp,qRT

p,q).

From Ak+2
p,q 
 0, Ak = LkLkT

and the assumption Ak � 0,

det(Ak+2
p,q ) ≥ 0 and det(Ak) = det(LkLkT

) > 0. Thus, the last
part in the r.h.s. of the former equation, i.e., det(Rp,qRp,q

T ),
must be nonnegative. According to this result and Eq. (10),
we obtain the following quadratic inequality.

det(Rp,qRp,q
T )

=

(
1 − �kpT

�kp

) (
1 − �kqT

�kq

)
−

(
xp,q − �kpT

�kq

)2
≥ 0,

and thus,

x2
p,q − 2�kp

T
�kqxp,q +

(
�kp

T
�kq

)2

− �kpT
�kp�

k
q

T
�kq + �

k
p

T
�kp + �

k
q

T
�kq − 1 ≤ 0.

This inequality derives the following interval of xp,q.

x̂(k)
p,q = �

k
p

T
�kq,

Δx(k)
p,q =

√(
�kp

T
�kq

)2
−

((
�kp

T
�kq

)2
− �kp

T
�kp�

k
q

T
�kq + �

k
p

T
�kp + �

k
q

T
�kq − 1

)

=

√(
1 − �kpT

�kp
)√(

1 − �kqT
�kq

)
.

Then, the solution of xp,q is given by the following corollary.

Corollary 1: The admissible value interval of the missing
element xp,q in Ak+2

p,q is as follows.

x̂(k)
p,q − Δx(k)

p,q ≤ xp,q ≤ x̂(k)
p,q + Δx(k)

p,q

where x̂(k)
p,q = �

k
p

T
�kq, Δx(k)

p,q =

√
e(k)

p

√
e(k)

q . �

Proof 3: x̂(k)
p,q = �

k
p

T
�kq is trivial from Theorem 2. Simi-

larly, from Theorem 2 and e(k)
p , e(k)

q given by Eq. (7), Δx(k)
p,q =√

e(k)
p

√
e(k)

q .

These theorem and corollary ensure that the estimation of
the relation and its admissible error bound are always fac-

torized into an individual object p, i.e., �kp and
√

e(k)
p respec-

tively as far as k ≤ h, i.e., Xn−h is a principal submatrix of

Zn−k, is maintained. Once �kp and
√

e(k)
p for all p ∈ OBn−k

are computed from Bn−k, we can easily estimate the relation
x̂(k)

p,q and its error bound Δx(k)
p,q between any p and q in OB.

Because Theorem 2 and Corollary 1 is a necessary condition
to make a local matrix Ak+2

p,q 
 0, A � 0 and the maximum
det(A) are not ensured. Thus, our PSD Estimation is differ-
ent from PSD Completion.

The factorized forms of the solution and its admissible
error bound are derived from �kp of each object p. As �kp
for every p ∈ OBn−k is efficiently deduced by Incomplete
Cholesky Decomposition of A(k) represented by Eq. (3)-(7),
PSD Estimation is performed under the same computational
scheme with PSD Approximation. On the progression of
Incomplete Cholesky Decomposition under the condition of
k ≤ h, the object pmax ∈ OBn−k providing the maximum
residual e(k)

pmax
= maxp∈OBn−k e(k)

p is selected for the next Pivot
similarly to Pivoting of PSD Approximation. If e(k)

pmax
= 0,

e(k)
p = 0 for all p ∈ OBn−k since e(k)

p ≥ 0 from Lemma 1.
Then, Corollary 1 implies that the similarities of all miss-
ing elements have been estimated without any error, and
thus any further estimation is not needed. This fact ensures
e(k)

pmax
> 0 whenever any further estimation is needed, and

hence Ak+1
p � 0 and det(Ak+1

p ) > 0 hold by Lemma 1. Its
principal submatrix Ak also shares the same property, i.e.,
Ak � 0 and det(Ak) > 0. This supports the assumption
Ak � 0 of Lemma 1.

5.2 Row Reduction

Given a residual threshold value rth (0 ≤ rth ≤ 1) speci-
fied by users, if the residual e(k)

p of an object p ∈ OBn−k

has the following relation with rth and the aforementioned
maximum residual e(k)

pmax
at the k-th step under the condition

k ≤ h,√
e(k)

p

√
e(k)

pmax
≤ rth, (11)

the error boundary, Δx(k)
p,q, of the relation between the object

p and any other q ∈ OBn−k is always less than or equal to
rth by Corollary 1. The object p satisfying this condition
is considered to have sufficiently accurate estimations with
any other objects.

At the end of the k-th step of Incomplete Cholesky De-
composition, �kp

T
and e(k)

p of all objects p ∈ OBn−k are com-
puted by Eq. (5) and Eq. (7). Then, the following completed
set OCk of the objects is derived.
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OCk = {p|∀p ∈ OBn−k,Eq. (11) is satisfied.}.
These objects are removed from OBn−k as follows without
moving to OAk.

OBn−k ← OBn−k − OCk.

By this operation, the set of the rows of L(k) in Eq. (3) and
Eq. (4) corresponding to OCk is removed before the k + 1-th
step of Incomplete Cholesky Decomposition is conducted,
and the size of L(k) reduces. This stepwise reduction of the
rows speeds up Incomplete Cholesky Decomposition as k
increases, and guarantees that every residuals of objects in
OBn−k are greater than 0 before k + 1-th step of Incomplete
Cholesky Decomposision. We call this computation scheme
“Row Reduction”. When OBn−k = φ or k = h is achieved, In-
complete Cholesky Decomposition is terminated. Accord-
ingly, every object p ∈ OB except the pivot is stored in some
OCk with its factorized estimation and error bound at the end
of this algorithm.

5.3 Complexity Analysis

The efficiency of Row Reduction strongly affects the com-
putational complexity of the entire PSD Estimation, since
they reduce the number of rows to be manipulated in every
process of the estimation. If any reduction is not applied,
the number of the rows remains as O(n) at every step of In-
complete Cholesky Decomposition. Since the complexity
of Incomplete Cholesky Decomposition for each element at
i-th step is O(i − 1) (i = 1, . . . , k) due to Eq. (5) and Eq. (6)
containing some summations over i − 1 terms at maximum,
the total complexity of Incomplete Cholesky Decomposi-
tion up to the k-th step is O(n × ∑k

i=1(i − 1)) = O(k2n)
in this worst case. If the reduction significantly eliminates
the rows within a small number of the steps, the number
of the rows at the initial step is O(n), and that can become
O(k− i+1) at i-th step (i = 2, . . . , k) at the smallest. Because
the complexity of Incomplete Cholesky Decomposition for
each element at i-th step is O(i− 1) as mentioned above, the
total complexity of Incomplete Cholesky Decomposition is
O(n×0+

∑k
i=2{(k− i+1)× (i−1)}) = O(k3) in total under the

best condition. In summary, the computational complexity
of Incomplete Cholesky Decomposition applying Row Re-
duction is O(k3) ∼ O(k2n) in total when the scheme is termi-
nated at the k-th step. Though the worst case is comparable
to the conventional PSD Approximation, the ordinary case
in which the rows are efficiently reduced shows less compu-
tational complexity.

Besides, the derivation of elements for all pairs of ob-
jects in OBn−k is O(k × (n − k)2) = O(kn2) under the consid-
eration that the computation cost of each element is propor-
tional to the size of �kp

T
due to Corollary 1. As the matrix A

does not involve any independent objects more than its rank,
all residuals become 0 if the rank of A is less or equal to h,
and k achieves the rank. Accordingly, the efficiency of PSD
Estimation strongly depends on the rank of the objective re-
lation matrix.

The memory complexity of PSD Estimation with Row
Reduction is O(k2) ∼ O(kn), since L(k) is the unique ar-
ray used in the estimation. When all estimated elements are
recorded on memory, obviously O(n2) space is required.

6. Performance Evaluation

A program named “PERCH (Psd Estimation by row Reduc-
tion based on incomplete CHolesky decomposition)” has
been developed based on the proposed principles. Its in-
put parameter is rth for Row Reduction. To assess the prac-
ticality of PERCH, we evaluate PERCH by using correla-
tion matrices among m dimensional vectors representing the
objects in OB, since correlation matrices are very popular
among various PSD matrices. The fundamental parameters
of the input correlation matrices for both artificial data and
real world data are n the size of OB, m the intrinsic dimen-
sion and h the size of OAh. Artificial data have some extra
parameters according to the contents embedded in the data.
To further assess the practicality of our proposed PSD Es-
timation for matrices representing more complex relations,
we additionally conducted the performance evaluation for
some real world data of correlation matrices and graph diffu-
sion kernel matrices. The performance indices for compari-
son are the required computation time and the standard error
of |x(k)

p,q − x̂(k)
p,q|. The experimental environment was PERCH

coded in C language and an IBM AT machine having Intel
Core2 CPU with 1.2 GHz clock and 2039MB RAM.

6.1 Comparison with PSD Completion, Regression
Model, and NNLS

PERCH is compared with a PSD Completion program
named dualcomp [7], the regression model described in the
first section, and NNLS program named APGL. We gener-
ated five artificial correlation matrices which represent the
correlation coefficients among object vectors forming 3 or
10 clusters with or without 10% background noise and uni-
formly distributed without any clusters respectively under
n = 70 and m = 1000. Since n < m, the matrices are prin-
cipally full-rank. However, the matrices obtained from the
object vectors forming 3 or 10 clusters without background
noise have lower ranks, because objects in each cluster are
in a very close formation so that their correlations are mu-
tually more than 0.9. On the other hand, the rank of the
correlation matrix with the noise is presumed to be the num-
ber of the clusters plus the number of the noise objects up
to n. The rank of the correlation matrix generated from uni-
formly distributed objects is supposed to be n as all the noisy
objects are independently distributed. Each single noise ob-
ject forms a linearly independent component having a minor
eigenvalue, and objects in each cluster form a linearly inde-
pendent component having a large eigenvalue in our high
contrast data sets.

Table 1, 2, and 3 show the computation time and the
standard error of PERCH, dualcomp, regression model and
APGL. In the experiments described in the tables, the pa-
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Table 1 Estimation results for artificial data.
(h = 10% of the number of elements in OB)

# Cluster Noise Type Method Comp. Time (sec.) Error

PERCH 3.90E-04 1.74E-04
without noise dualcomp 5.57E+03 9.42E-06

regression 8.04E+00 4.73E-01
APGL 4.44E+00 4.95E-02

3
PERCH 7.33E-04 2.69E-03

with noise dualcomp 5.59E+03 2.70E-03
regression 8.83E+00 6.88E-01

APGL 3.75E+00 7.02E-02
PERCH 8.27E-04 2.03E-01

without noise dualcomp 5.03E+03 2.06E-01
regression 6.06E+00 3.15E-01

APGL 1.96E+00 2.23E-01
10

PERCH 9.67E-04 2.12E-01
with noise dualcomp 4.72E+03 2.12E-01

regression 5.71E+00 2.90E-01
APGL 2.16E+00 2.21E-01

PERCH 1.17E-03 3.21E-02
- uniformly dualcomp 2.89E+03 3.21E-02

regression 2.89E+00 1.29E-01
APGL 9.87E-01 3.62E-01

Table 2 Estimation results for artificial data.
(h = 20% of the number of elements in OB)

# Cluster Noise Type Method Comp. Time (sec.) Error

PERCH 3.90E-04 1.89E-04
without noise dualcomp 3.43E+04 7.59E-06

regression 6.99E+01 5.55E-01
APGL 3.04E+00 5.47E-03

3
PERCH 8.43E-04 2.18E-03

with noise dualcomp 3.59E+04 2.40E-03
regression 1.03E+02 5.20E-01

APGL 1.38E+00 5.88E-02
PERCH 1.06E-03 1.51E-01

without noise dualcomp 3.12E+04 1.63E-01
regression 7.22E+01 3.19E-01

APGL 1.66E+00 7.41E-02
10

PERCH 1.25E-03 1.58E-01
with noise dualcomp 2.97E+04 1.68E-01

regression 6.28E+01 3.00E-01
APGL 2.16E+00 1.21E-01

PERCH 2.32E-03 3.20E-02
- uniformly dualcomp 1.77E+04 3.20E-02

regression 3.52E+01 1.36E-01
APGL 1.43E+00 3.29E-01

rameter h of known elements provided as Ah and Bn−h was
set to be 10%, 20%, or 30% of the total number of objects in
OB, i.e., h = 0.1n, 0.2n or 0.3n, and the input parameter rth

of PERCH was set at 0.05 which practically provides suffi-
cient accuracy for the evaluation of correlation coefficients.
Under every conditions, PERCH almost outperformed the
conventional approaches in both computation time and esti-
mation accuracy. This is because PERCH and these artificial
experiments are adapted to our problem setting described in
the second section, while the conventional approaches are
for more generic conditions on the matrix completion.

Table 3 Estimation results for artificial data.
(h = 30% of the number of elements in OB)

# Cluster Noise Type Method Comp. Time (sec.) Error

PERCH 3.75E-04 1.57E-04
without noise dualcomp aborted* -

regression 2.07E+02 4.91E-01
APGL 1.41E+00 4.78E-04

3
PERCH 6.55E-04 2.15E-03

with noise dualcomp aborted* -
regression 4.84E+02 5.14E-01

APGL 1.34E+00 4.41E-02
PERCH 1.14E-03 1.08E-01

without noise dualcomp aborted* -
regression 3.84E+02 3.22E-01

APGL 1.64E+00 1.10E-02
10

PERCH 1.48E-03 9.48E-02
with noise dualcomp aborted* -

regression 3.21E+02 3.04E-01
APGL 2.43E+00 7.22E-02

PERCH 3.46E-03 3.13E-02
- uniformly dualcomp aborted* -

regression 1.54E+02 1.45E-01
APGL 1.65E+00 2.96E-01

For the computation time, dualcomp requires the im-
practically much computation time to finish the matrix com-
pletion due to its high complexity O(n6). Though APGL re-
sulted in the shortest computation time in the conventional
approaches, PERCH is still more than 1000 times faster than
it.

For the estimation accuracy, while dualcomp has bet-
ter accuracy than that of PERCH if the number of clusters
is less, and the noise is absent, it is almost equal to that of
PERCH under the other conditions which are practically of-
ten. Similarly, PERCH provides more accurate estimation
than APGL except the cases of 10 clusters. The number of
effective linear equality constraints for APGL is large when
the matrix has observed elements forming many large eigen-
valued components. These components correspond to the
clusters consisting of many objects, and consequently the
estimation accuracy of APGL is improved in the cases of 10
clusters and n = 70. As this advantage in accuracy of NNLS
does not take place for large n as described in the next sec-
tion, the estimation accuracy of NNLS is sometimes better
than that of PERCH only in the cases of large number of
clusters and small-scale data sets, for which fast and accu-
rate estimation of missing relations is less important because
exhaustive computation is tractable.

6.2 Application to Artificial Correlation Data Having
Large Sizes

To evaluate the scalability of PERCH, various artificial cor-
relation matrices having large sizes of n = 300 ∼ 100000
have been generated. Some of them are obtained from
the object vectors forming 10 clusters with or without 10%
noise, and the others are from uniformly distributed object
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vectors. These features are identical with those of the small
data sets in the previous subsection. We show the result of
PERCH under m = 1000, h = 0.2n and rth = 0.05. Similar
tendencies of the results have been observed under the other
parameter settings. We also applied these data sets to con-
ventional approaches dualcomp, the regression model, and
APGL for reference. However, dualcomp did not work due
to the memory overflow, because it consumes much memory
to manage very high dimensional vectors proportional to the
objective matrix size. The regression model took intractable
computation time due to its very high computational com-
plexity O(n5) as discussed in the first section.

The computation time of PERCH shown in log-log
scale plots of Fig. 1 are between O(n2) and O(n3), which
is consistent with the analytical result in the subsection 5.3,
i.e., O(kn2) and k ∈ [1, n]. Although the computational com-
plexity of APGL is almost comparable to that of PERCH in
Fig. 1, the absolute computation time of PERCH is 10 ∼
1000 times faster than that of APGL.

Table 4 shows the comparison of the estimation error
by PERCH and APGL. In any cases, the maximum errors
and the standard errors of PERCH are less than those of
APGL respectively. The standard error of PERCH is less
than the given threshold rth = 0.05 (=5.0E-02), while the
maximum error, which is given by Eq. (11), is sometimes
greater than rth in the case of the data set with noise and
the uniformly distributed data set, because the matrices have
high ranks due to the independent distribution of the objects,
and PERCH could not have enough Pivots under the avail-
able data provided by h = 0.2n. Given much less resid-
ual threshold value rth, the maximum errors are guaranteed
if matrices have low ranks, and consequently the observed
maximum errors are within the given error tolerances. Both
standard and maximum errors are very small in the case of
the uniformly distributed data set and n = 10000, because
the number of available Pivots is h = 0.2n = 2000 which
is larger than the dimension of the object vector m = 1000
and sufficiently covers the subspace where the data is dis-
tributed.

Fig. 1 Computation time of PERCH and APGL for large artificial data.

6.3 Application to Real World Correlation Data

To demonstrate the practicality of PERCH, we applied
PERCH to four data sets in UCI Machine Learning Reposi-
tory [17]. These are musk, isolet, spambase and ionosphere
in which each object is represented by a numerical vector.
Their numbers of objects and vector dimensions are indi-
cated at the bottom of Fig. 2. Unlike the artificial data, the
correlations of each data are distributed in a broad range
while one or two peaks are observed in the distribution. The

Table 4 Estimation error of PERCH for large artificial data.
(h = 0.2n and # cluster is 10.)

n Noise Type Method Standard Error Max Error

without noise PERCH 1.72E-04 7.19E-04
APGL 1.04E-03 5.36E-03

300 with noise PERCH 2.53E-03 9.18E-02
APGL 2.93E-02 1.01E+00

uniformly PERCH 3.05E-02 1.36E-01
APGL 2.46E-01 9.99E-01

without noise PERCH 1.83E-04 7.88E-04
APGL 6.60E-04 3.14E-03

1000 with noise PERCH 2.57E-03 1.29E-01
APGL 1.06E-02 9.97E-01

uniformly PERCH 2.83E-02 1.36E-01
APGL 2.35E-01 1.00E+00

without noise PERCH 1.74E-04 8.78E-04
APGL 5.91E-04 2.68E-03

3000 with noise PERCH 2.46E-03 1.38E-01
APGL 6.57E-03 9.97E-01

uniformly PERCH 1.99E-02 1.04E-01
APGL 8.18E-02 7.92E-01

without noise PERCH 1.83E-04 1.02E-03
APGL 5.56E-04 2.67E-03

10000 with noise PERCH 2.28E-03 1.34E-01
APGL 4.46E-03 9.99E-01

uniformly PERCH 5.13E-03 3.26E-02
APGL 5.85E-02 9.50E-01

Fig. 2 Computation time of PERCH for UCI data.
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Fig. 3 Computation error of PERCH for UCI data.

correlation histogram of musk has two sharp peaks around
0.3 and 0.7, that of isolet has one sharp peak around 0.8,
spambase has a precipitous peak near 1.0, and ionosphere
has two moderate peaks around 0.0 and 0.9.

Figure 2 shows the computation time of three PERCH
settings of rth = 0, 0.0125 and 0.05 under given h = 0.2n.
This indicates that PERCH can quickly estimate all missing
PSD similarities of practical and large data having broad re-
lation distributions. The computation time for rth = 0 is
longer than those for rth = 0.0125 and 0.05 because no Row
Reduction is applied and all the available h = 0.2n Pivots
are selected when rth = 0. Figure 3 depicts the standard
error of PERCH under the three settings. The standard er-
ror is smaller than rth in every cases for rth = 0.0125 and
0.05. The standard error for rth = 0, i.e. PERCH without
Row Reduction, has excess accuracy by consuming longer
computation time.

6.4 Application to Real World Diffusion Kernel Data

To assess the performance of PERCH for more expensive
relation matrices, we applied PERCH to the estimation of
the missing elements in three graph diffusion kernel ma-
trices [18]. Given an n × n Laplacian matrix L of a graph
G(V, E) as follows.

L =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
deg{vi}, for i = j
−1, for i � j and (vi, v j) ∈ E

0, otherwise
,

where i, j = 1, · · · , n(= |V |), vi, v j ∈ V , and deg{vi} is the de-
gree of vi. The graph diffusion kernel matrix of G is defined
by the following formula.

K(β) = exp(−βL) = lim
n→∞

(
I − βL

n

)n

,

where β > 0 is a parameter to define the mean diffusion
range, and I is an n × n identity matrix. Each element of
this matrix represents the closeness among vertices in the
structure of the graph G. This can be computed more easily
by the following expression,

K(β) = V−1 exp(−βD)V,

in which D is diagonal and V is a matrix to diagonalize L as

Fig. 4 Computation time and standard error of PERCH
for Tic Tac Toe data. (n = 5634)

Fig. 5 Computation time and standard error of PERCH
for metabolic pathways data. (n = 668)

L = V−1DV .
We computed the diffusion kernel matrices of three

graph data by setting β = 10 which characterize the mod-
erately local structure of the graphs. The first graph is the
entire state transition network of a game named Tic Tac
Toe which is available in UCI Machine Learning Reposi-
tory [17]. This represents a large graph containing 5634 ver-
tices where each vertex represents a state of the game, and
each edge represents a possible transition path of the game.
The second graph is a network representing metabolic path-
ways of the yeast S. Cerevisiae in KEGG/PATHWAY
database [19]. Each vertex of this network represents a pro-
tein, and each edge indicates that the protein pair works
as enzymes that catalyze successive reactions in the pair.
This graph contains 668 vertices, and is known to have a
hierarchical hub and spoke structure in which edges are
sparse. The third is a protein-protein interactions network
constructed by von Mering et al. [20]. We used the medium
confidence network data consisting of 2617 vertices which
has been analyzed in many studies of bioinformatics and
link prediction [21], [22]. This graph is larger than that of
the metabolic pathways but similarly sparse.

Figure 4, 5 and 6 indicate the computation time and
standard error of PERCH. PERCH was tested under various
residual threshold rth under given h = 0.2n to assess the rela-
tion between the computation time and the estimation error
bound. The numbers of the known elements used in Pivot-
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Fig. 6 Computation time of PERCH and EC
for protein-protein interactions data. (n = 2617)

ing were 9.7% for Tic Tac Toe, 5.2% ∼ 7.6% for metabolic
pathways and 8.8% ∼ 13.3% for protein-protein interactions
under this range of rth, respectively. By reducing rth, i.e.,
enhancing the accuracy, PERCH becomes to require more
computation time and provide smaller standard error in both
Fig. 5 and Fig. 6. In contrast, the case of Tic Tac Toe de-
picted in Fig. 4 does not show any significant difference of
the computation time and the estimation error under any rth.
This is due to a particular feature of its kernel matrix re-
flecting a uniform structure of the state transition network
governed by some simple rules of the game. The number
of vertices of the state transition network is n = 5634, and
hence h = 0.2n = 1126. On the other hand, the kernel
matrix has an eigenvalue equal to 9 having 547 degener-
acy degree, and the rests are all 0. This indicates that the
kernel matrix has 547 principal components having an iden-
tical magnitude only. Accordingly, the maximum residual
is greater than any rth in this evaluation before Incomplete
Cholesky Decomposition progresses to k = 547 < h to cap-
ture all of the principal components, and suddenly becomes
zero at k = 547. Subsequently the Row Reduction is always
terminated under any rth at k = 547. Thus the computation
time and the estimation error of Tic Tac Toe data are inde-
pendent from rth and constant as shown in Fig. 4.

7. Discussion

The experimental results show that PERCH has signifi-
cant efficiency when the objective PSD matrix has a large
size and/or a low rank. As discussed in the third section,
PERCH includes Incomplete Cholesky Decomposition ap-
plying Row Reduction and the derivation of the unknown
elements having O(k3) ∼ O(k2n) and O(kn2) computational
complexity respectively. This explains the strong depen-
dency of the efficiency on the matrix size n. In addition,
the computation time of PERCH is limited by the size of
the observed part of the matrix, h, because k ≤ h always
hold. Particularly, if the matrix has a less rank, the number
of steps to terminate Incomplete Cholesky Decomposition
applying Row Reduction, k, becomes smaller. This is also
consistent with the experimental result. In contrast, the ex-
periments shows that dualcomp and the regression are not

very tractable. This is due to their very high computational
complexity which are O(n6) for dualcomp and O(n5) for the
regression as mentioned in the first section. APGL showed
computational complexity comparable to that of PERCH as
expected. Increase in computation time for each approach is
consistent with each computational complexity respectively.
However in absolute practical computation time, PERCH is
faster than APGL in orders of magnitude.

The experiments also show that PERCH has significant
accuracy when the objective matrix is observed as Eq. (1)
and the size of the observed part, h, is greater than the rank
of the matrix. This is because majority of principal compo-
nents of the matrix are statistically reflected in the observed
part as the size of the observed part h is large enough and the
rows and the columns of the matrix are randomly included
in its observed part.

The main reason of the advantage of PERCH in our
problem setting is that it ties each missing element with one
of the strongest local PSD constraints, while PSD Comple-
tion and NNLS globally optimizes objective functions over
the entire matrix regardless of the accuracy of the individual
missing element. PERCH also outperforms the regression
model both in terms of computation time and accuracy be-
cause PERCH is highly adapted to our problem setting by
leveraging PSD constraints and an assumption that missing
elements make up a principal submatrix of an original PSD
matrix.

It is reasonable that conventional approaches are out-
performed by PERCH as they are intended to solve general
problems. PSD Completion completes a matrix represent-
ing a chordal graph when it is interpreted to be an adjacency
matrix of the graph having non-zeros at known elements and
zeros at missing elements [5]. A graph is chordal if any min-
imal cycles in the graph have at most three vertices. On
the other hand, NNLS is suitable for solving large-scale ma-
trix completion problems when the solution matrix has low-
rank. PERCH is applicable to a matrix representing a com-
plete split graph which is a subclass of the chordal graph,
thus, the generality is more limited in the order of NNLS,
PSD Completion and PERCH. Although PERCH is spe-
cialized to the particular problem setting described in the
Sect. 2, it is shown that PERCH can quickly and accurately
estimate the missing elements in a PSD matrix compared to
the conventional approaches.

8. Demonstrative Application

This section demonstrates an application example of
PERCH to indicate its potential practicality in the real world
use. We apply PERCH to a problem to enhance the activity
of user communities by promoting user interaction in Social
networking service (SNS). PERCH finds user pairs likely to
become friends, and these users are mutually introduced by
a SNS automated service. Such a SNS service is expected
to increase the entire SNS activity.

Epinions.com, a platform on the Web for evaluations
and personalized recommendations on commercial products
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by its users, is used as the target SNS [23]. The users can
recommend some products to their friends in the platform,
and thus the platform has log data on the friendships of these
users. The data represents friendships among 165592 users
in the SNS where the average number of friends per user is
3.8. We define core users as the users who have more than
10 times the average number of friends, i.e., specifically 40
friends. Total number of the core users included in this SNS
log data is 922. These core users are considered to be key
persons in this network of product recommendations, and
the increase of the proper friendships among the core users
is expected to enhance the activity of this SNS. In this appli-
cation, PERCH is used to estimate the core user pairs which
have high potential to become new friends. The friendships
among the core users are represented by an adjacency ma-
trix where an element is 1 if the user pair corresponding to
the row and column of the matrix has a friendship, other-
wise 0. Note that PERCH was used to estimate the current
unknown elements in a partially observed matrix so far in
this paper. In this section, however, all the current friend-
ship information is already known, i.e., all the elements of
the adjacency matrix are given, and PERCH is used to fore-
cast the future friendships, i.e., the future elements in the
matrix. The detailed approach is explained below.

To apply PERCH to this problem, a core user set OB
is randomly halved into two sets OAh and OBn−h where
n = 922 and h = 461. PERCH estimates core user pairs
which are likely to become friends in OBn−h. Here we set
the following assumptions for the future friendship forecast.

(1) The friendships among all core users in OB follows an
identical statistical distribution.

(2) The statistical distribution of the friendships is steady
under a stable condition for some period.

PERCH estimates the friendships in OBn−h from the rest
in OB. Because of the assumption (1), the actual friend-
ships in OBn−h are expected to match to the friendships in
OBn−h estimated from the rest in OB under the assumption
(2). In other words, the user pairs in OBn−h are considered
to have high potential to build friendships in the future if
they are currently not friends but in the estimation result.
As an adjacency matrix is not a PSD matrix, PERCH is
not directly applicable. Alternatively, PERCH applies to the
corresponding normalized signless Laplacian matrix which
is always PSD. The partial adjacency matrix representing
the friendships within OAh and between OAh and OBn−h is
transformed into the corresponding partial signless Lapla-
cian matrix where each diagonal element is a summation of
all elements in the row (the column) of the original adja-
cency matrix, and each off-diagonal is the element of the
original adjacency matrix. This partial signless Laplacian
matrix is further transformed into a partial normalized sign-
less Laplacian matrix by diagonal normalization, and is ap-
plied to PERCH for the estimation of the rest part reflecting
the potential friendships in OBn−h. Because this transforma-
tion is invertible, the objective adjacency matrix including
the elements to represent the potential friendships in OBn−h

is easily computed from the estimated normalized signless
Laplacian matrix. However, the estimated elements repre-
senting the potential friendships in OBn−h are not binary val-
ues in most cases due to the nature of the PSD estimation.
Accordingly, we apply a discretization of each estimated el-
ement by introducing a common threshold value fth where
each element is discretized into 1 if its value is greater than
or equal to fth otherwise it is discretized into 0. A pair of the
core members in OBn−h, which corresponding elements in
the estimated and discretized adjacency matrix and the orig-
inal adjacency matrix are 1 and 0 respectively, is judged to
have a future friendship. Precision is a rate of the currently
existing friendships among the estimated potential friend-
ships in OBn−h, and recall is a rate of the estimated poten-
tial friendships among the currently existing friendships in
OBn−h in our problem setting. The future friendship fore-
cast must achieve a certain recall of its estimation to effi-
ciently capture the future friendships while maintaining its
precision to ensure the estimation reliability. Accordingly,
the threshold fth was set at 0.15 which achieves the best
recall of the estimation under keeping its precision greater
than 0.5 through preliminary numerical experiments. Under
this setting, the precision was 0.55 and the recall was 0.19.
The residual threshold rth required in the row reduction of
PERCH is set for 0 to provide the maximum accuracy of
the PSD estimation. The computation time of the PSD es-
timation by PERCH under this parameter setting is around
3.24 seconds in average that is sufficiently fast for the real
application.

The random halving of OB, the conversion of the
partial adjacency matrix to its partial normalized signless
Laplacian and the PSD estimation by PERCH described in
the former paragraph are repeated, and an ensemble of the
estimated results is taken to finally provide the accurate fore-
cast on the future friendships among all core members in
OB. The number of the repeats is set for 20. By this pro-
cedure, 5 estimations on each pair of the core members is
obtained in the average over the 20 repeats. This is because
the probability that a pair of particular two members is in-
cluded in OBn−his 1/4 under the random halving. For tak-
ing the ensemble, a bagging technique is applied [24]. The
potential friendship of a core member pair is forecasted if
more than or equal to sth = 2 estimations predict the poten-
tial friendship among the multiple estimations in the bag-
ging. The precision and the recall of this bagging decision
are expected to be 0.94 and 0.23 respectively based on the
aforementioned precision 0.55 and recall 0.19 of every sin-
gle estimation and an assumption of mutual independence
of the individual estimations. Although these expected num-
bers are merely upper bounds of the precision and the recall
under the assumption on the ideal mutual independence, we
apply sth = 2 since the high precision with the moderately
large recall are desirable to serve the reliable introduction of
potential friends to many core members.

Table 5 shows the forecast result by PERCH and the
bagging technique. This method found 2295 potential friend
pairs and 60% of them have already been real friend pairs as
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Table 5 SNS friendship forecast result.
( fth = 0.15, rth = 0 and h = 50% of the elements in OB)

# forecasted potential friend pairs 2295
# forecasted potential friend pairs in the non-friend pairs 889
Precision in the estimation of the potential friendships 0.60
Recall in the estimation of the potential friendships 0.20

shown in the table. Because the rest 40%, i.e., 889 pairs, are
the potential friend pairs which have not had any friendship
yet, invitations by the automated friend introduction should
be sent to these potential friend pairs. After the invitations
are sent, 60% of them, i.e., 533 pairs, are expected to be-
come new friends according to the accuracy of the forecast.
Although the forecast does not exhaustively find all the po-
tential friendships because of the low recall, the gain of new
core user friend pairs, i.e., 533, which is 7.6% of the cur-
rent friend pairs between the core users, will increase the
communication activities and the associated product recom-
mendations between the users in proportion to the increase
rate of the friendships. The result indicates that this applica-
tion of PERCH enables high quality automated friend intro-
duction for the SNS service, and the practicality of PERCH
was demonstrated for the service such as the SNS automated
friend introduction.

9. Conclusion

We have formalized a problem to estimate the missing part
of a PSD matrix, proposed novel techniques named PSD
Estimation and Row Reduction for both accurate and effi-
cient estimation of a PSD matrix, and developed PERCH
introducing these techniques. PERCH requires conditions
that the matrix is PSD and the missing elements compose a
principal submatrix of the original PSD matrix. PERCH is
adapted to our problem setting using the above conditions
and showed superior performance in both efficiency and ac-
curacy in practical problems in comparison with the conven-
tional approaches of dualcomp, regression and APGL. The
conditions where PERCH has significant efficiency is that
the objective PSD matrix has a large size and/or a low rank,
while the condition where PERCH has significant accuracy
is that a part of the objective matrix is randomly observed,
and the size of the observed part is greater than the rank of
the matrix. Particularly, PERCH enhances the scalability to
estimate large PSD matrices as its computational complex-
ity is O(k3 + kn2) ∼ O(k2n+ kn2) while those of the conven-
tional approaches are O(n3) ∼ O(n6). In our performance
evaluation for real world data sets, PERCH showed tractable
performance, whereas the other conventional approaches re-
quired computation time intractable or longer than that of
PERCH. Furthermore, we demonstrated the practicality of
PERCH by applying it to a SNS automatic friend introduc-
tion example. Our proposed techniques can be extended and
applied to various PSD matrices and problem settings.
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