
2682
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.11 NOVEMBER 2012

PAPER

An Improved Look-Up Table-Based FPGA Implementation of
Image Warping for CMOS Image Sensors

Se-yong RO†,††, Lin-bo LUO†,††a), Nonmembers, and Jong-wha CHONG††b), Member

SUMMARY Image warping is usually used to perform real-time geo-
metric transformation of the images captured by the CMOS image sensor
of video camera. Several existing look-up table (LUT)-based algorithms
achieve real-time performance; however, the size of the LUT is still large,
and it has to be stored in off-chip memory. To reduce latency and band-
width due to the use of off-chip memory, this paper proposes an improved
LUT (ILUT) scheme that compresses the LUT to the point that it can be
stored in on-chip memory. First, a one-step transformation is adopted in-
stead of using several on-line calculation stages. The memory size of the
LUT is then reduced by utilizing the similarity of neighbor coordinates, as
well as the symmetric characteristic of video camera images. Moreover,
an elaborate pipeline hardware structure, cooperating with a novel 25-point
interpolation algorithm, is proposed to accelerate the system and reduce
further memory usage. The proposed system is implemented by a field-
programmable gate array (FPGA)-based platform. Two different examples
show that the proposed ILUT achieves real-time performance with small
memory usage and low system requirements.
key words: Image warping, look-up table, perspective transformation,
panorama unrolling, FPGA

1. Introduction

Image warping is the spatial transformation of an image
based on a given geometric relationship [1]. Warping is
usually used to perform image geometric transformations
in surveillance video cameras images [2], robot vision [3],
and vision-based intelligent transportation systems [4], such
as lens distortion correction [5], and panorama unrolling for
omnidirectional images taken by a catadioptric camera [6]
or a fish-eye camera [7]. For these mobile applications,
real-time performance of approximately 30 frames per sec-
ond is mandatory. However, distortion correction and most
other image warping include complex calculations and con-
sequently incur a large computational cost. Therefore, the
implementation of real-time image warping is a very critical
design issue.

Many studies have been conducted on this issue. Sev-
eral algorithms have reduced the number of division op-
erations that exist in the software warping process, using
special optimization methods to reduce or remove the divi-
sion involved in perspective transformation [8]–[10]. How-
ever, all of the software algorithms have to be supported by

Manuscript received March 14, 2012.
Manuscript revised July 19, 2012.
†The authors are with the Faculty of Mech. & Elec. Inf., China

University of Geosciences, Wuhan, 430074 China.
††The authors are with Department of Elec. & Comp. Engineer-

ing, Hanyang University, Seoul, 180–8585 Korea.
a) E-mail: luolinbo@cug.edu.cn
b) E-mail: jchong@hanyang.ac.kr

DOI: 10.1587/transinf.E95.D.2682

a processor and an operating system. Therefore, they are not
suitable for low-cost and small-size mobile systems, and it
remains necessary to design a hardware-based method. The
hardware implementations can be categorized as on-line cal-
culation and look-up table (LUT)-based methods. The on-
line calculation does not require additional memory to store
the LUTs; whereas it requires a system with high-quality
specification for support, such as a general processor, graph
processor unit, or digital signal processor. For example,
Huggett realized a perspective correction for SOC using
ninth-order on-line polynomials [11], however the system
required a 32-bit processor for support. For mobile appli-
cations, this method is not usually a suitable choice. The
LUT-based algorithm can easily realize real-time perfor-
mance, especially for video cameras, which are needed to
iterate some geometric transformations using fixed param-
eters. However, this approach requires additional mem-
ory storage for the LUT. For example, Mattson and Oh
proposed two field-programmable gate array (FPGA)-based
fast image warping [12], [13], and Mohan and Chen pro-
posed a LUT-based framework for fish eye correction [7]
and panorama unrolling [3] respectively. The LUTs in these
four studies are not compressed and, as a result, use off-chip
memory or will use off-chip memory when image size in-
creases. The use of off-chip memory will increase the con-
trol complexity, latency, and bandwidth consumption.

The purpose of this paper is to use image warping to
perform geometric transformation for video camera images,
such as distortion correction, viewpoint changes, and image
unrolling for omnidirectional images. Considering that pro-
cessing speed and power consumption are more important
for mobile applications, especially for high resolution im-
ages, in this paper, we adopt a LUT-based approach to per-
form image warping.

Our contribution is that, in order to overcome the short-
age of the LUT-based approach, we propose an improved
look-up table (ILUT) which utilizes the characteristics of
practical video sequences to compress the general LUT,
making it possible to use on-chip memory. We propose
four optimization algorithms to compress the LUT: one-
step transformation; Δ-algorithm; symmetric principle; and
25-point interpolation. The algorithms will be described in
detail later.

The remainder of this paper is organized as follows.
Section 2 gives a brief background of LUT-based image
warping. Section 3 introduces our optimization strategy for
the existing LUT-based algorithm. Section 4 presents the

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



RO et al.: AN IMPROVED LOOK-UP TABLE-BASED FPGA IMPLEMENTATION OF IMAGE WARPING
2683

details of our proposed system and the implementation of
each module of the system. Section 5 shows the efficiency
of the ILUT-based scheme through two different examples:
a top view system and panorama unrolling of an image cap-
tured by a central catadioptric camera. Section 6 concludes
the study.

2. Background of LUT-Based Image Warping

The warped image is the result of resampling the input
image based on a given geometric relationship between the
coordinate system of the input image (u, v) and the output
(x, y) [1]. Distinguished by the manner in which the data
flows during transformation, image warping is classified as
either forward or inverse mapping (FM or IM), which yields
two different forms of expression as follows:

FM: (u, v) = (Fu(x, y), Fv(x, y)) (1)

IM: (x, y) = (Fx(u, v), Fy(u, v)) (2)

where corresponding locations on the input and output im-
ages have coordinates (x, y) and (u, v), respectively, defined
by the forward mapping functions Fu and Fv or the inverse-
mapping functions Fx and Fy.

2.1 Forward Mapping and Inverse Mapping

The forward mapping algorithm has a shortcoming in that
the mapping output results in holes. Given the example of
perspective transformation, as shown in Fig. 1, holes exist in
the output image, round which no corresponding mappings
are present. Therefore, it is difficult to interpolate the pixel
values.

Inverse mapping operates in screen order, projecting
each output coordinate to the input image via Fx and Fy.
The value of the data sample at that point is interpolated
and copied onto the output pixel. The advantage of inverse
mapping is that it guarantees that all output pixels are com-
puted. Unlike forward mapping, there are no existing holes
in the input image. As shown in Fig. 2, every mapping co-
ordinate of the inverse transformation in the input images is
located among the input image pixels. Since there are real
input pixels around the inverse mapping coordinates, inter-
polation can be used to generate a value for the output.

In this paper, inverse mapping is adopted for the con-
venience of interpolation.

2.2 General LUT-Based Image Warping

Most warping algorithms use a pair of polynomials to de-
scribe the coordinate mapping. For example, the inverse
mapping of distortion correction and perspective transfor-
mation can be expressed using (3) and (4), respectively [1].

(x, y) =

⎛⎜⎜⎜⎜⎜⎝
N∑

i=0

N−i∑
j=0

ai ju
iv j,

N∑
i=0

N−i∑
j=0

bi ju
iv j

⎞⎟⎟⎟⎟⎟⎠ (3)

Fig. 1 Forward mapping of the perspective transformation.

Fig. 2 Inverse mapping of the perspective transformation.

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x′
y′
w′

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a22a33−a23a32 a13a32−a12a33 a12a23−a13a22

a23a31−a21a33 a11a33−a13a31 a13a21−a11a23

a21a32−a22a31 a12a31−a11a32 a11a22−a12a21

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

u
v
w

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where corresponding locations on the input and output im-
ages have coordinates (x, y) and (u, v), respectively, and
ai j and bi j are parameters determined by the mapping itself.
In (4), x = x′/w′ and y = y′/w′, where w′ is a scale factor.

Mapping functions are almost as diverse as applica-
tions. However, many warping procedures that can be ex-
pressed by equations require excessive computational cost.
For a video camera in practical applications, the transforma-
tion is usually not changed except when the related extrinsic
parameters of the camera have been changed. Therefore,
once the mapping is known, we use inverse mapping to cal-
culate the target coordinates and store them into memory in
LUT format, regardless of the mapping function.

To implement such warping, an LUT linking each out-
put pixel to a location in the input image has been intro-
duced [14]. The basic LUT contains one entry for each pixel
location in the output image where each entry is composed
of the real coordinates (x, y) of the corresponding location
in the input image. With a field of view (FOV) equal to



2684
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.11 NOVEMBER 2012

Table 1 Basic form of LUT for inverse mapping.

m ∗ n, the basic LUT of the coordinates for inverse mapping
is shown in Table 1.

The LUT can be loaded into memory at the initializa-
tion stage. Each output pixel value is calculated in screen
order. To calculate an output pixel value, the input coor-
dinates (x, y) are retrieved from the LUT based on the cur-
rent output pixel (u, v). If inverse mapping coordinates (x, y)
are outside the input image, the output pixel is set to 0. If
(x, y) are both integers, the corresponding input pixel value
is directly copied to the output pixel. Otherwise, a filter is
needed to interpolate the output pixel value.

2.3 Interpolation

For discrete images, pixels are assumed to be finite elements
defined to lie on a discrete integer lattice. In general, the tar-
get coordinates of inverse mapping in an input image are not
defined and must be interpolated. The obvious way to im-
plement warping is through 2-D resampling. In this process,
each pixel’s horizontal and vertical coordinates are mapped,
and the value of that pixel is then interpolated. One exam-
ple is bilinear interpolation, which can anti-alias well with
a reasonable cost, although the process could be accelerated
by a more efficient algorithm.

For bilinear interpolation, the coordinates (ui, vi) are di-
vided into two parts: integer and offset. The integer part is
used to determine the location of a 2 ∗ 2 window for inter-
polation, whereas the offset is used as the weight of the in-
terpolation. The interpolation can be operated according to
(5) [15].

I = (1 − offsetx) ∗ (1 − offsety) ∗ Ii, j

+ offsetx ∗ (1 − offsety) ∗ Ii+1, j

+ (1 − offsetx) ∗ offsety ∗ Ii, j+1

+ offsetx ∗ offsety ∗ Ii+1, j+1 (5)

where offsetx and offsety are the fraction of x and y respec-
tively, and Ii, j, Ii+1, j, Ii, j+1 and Ii+1, j+1 denote the pixel
value at the coordinates of (�x�, �y�), (�x�, �y�), (�x�, �y�) and
(�x�, �y�).

3. Optimization Strategy for Memory Reduction and
System Acceleration

Based on existing works, three possible aspects can be op-
timized according to the practical characteristics of video
camera applications. (a) For general geometric transfor-
mation of a video camera image, main warping is usually
followed by some post-processing in order to improve the
image quality or making it more suitable for the human

visual system, such as image shearing or enlarging. That
is, there are generally no fewer than two steps of trans-
formation that need to be performed in sequence in real-
time. Since the computational costs of one step of real-
time transformation are considerable, the first problem is
that two or more steps result in a large increase in compu-
tation cost. (b) The second and more important problem is
that the use of the basic LUT as shown in Table 1 would re-
sult in extensive memory usage. Suppose the FOV is m ∗ n,
the ranges of the coordinates are: 0 ≤ x < m and 0 ≤ y < n.
The number of bits used to code the integer parts of x
and y would be no less than �log2 m� and �log2 n�, respec-
tively. For example, if the image resolution is 640 ∗ 480,
�log2 m� is 10 and �log2 n� is 9, and the total memory usage
is 480 ∗ 640 ∗ (9 + 10) ≈ 5.57 Mbits even if no bits are used
to code the fraction parts of the coordinates. This degree of
memory demand would require the use of off-chip memory.
However, as we know, off-chip memory will increase the
control complexity and bandwidth requirements. (c) The
efficient performance of interpolation is the third problem.
In bilinear interpolation, there are four subtractions, eight
divisions, and three additions. Furthermore, we need to si-
multaneously fetch four pixel values around the pixel which
need to be interpolated currently from buffer. Therefore, to
achieve a pipelining performance, we need to accelerate the
interpolation procedure.

Considering these three problems, we propose the fol-
lowing optimization algorithms.

3.1 One-Step Transformation

Since we adopt an LUT-based warping scheme, several
steps can be combined into one-step transformation because
a LUT can describe the geometric relationship between the
input image and the final output image, which is irrelevant to
the middle steps. Without the loss of generality, we can use
S1,S2, . . . ,Sn to describe n steps of transformation. Thus,
S can be considered as the cascade of a series of steps, that
is S = S1S2 · Sn. The details will be presented in next section
together with an example.

3.2 LUT Compression Algorithm

Because an additional LUT is used instead of an on-line cal-
culation, additional memory is required to store the LUT. If
the basic LUT is not compressed, it becomes so large that it
is unable to be stored in on-chip memory, and off-chip mem-
ory, such as SDRAM or flash memory, must be used. This
will result in complex memory access and large bandwidth
requirements.

Although Oh proposed a data-parallelization scheme
that can more efficiently access off-chip memory compared
to that of general LUT access [13], another alternative exists.
Most video camera images are regular, and there are some
characteristics that can be utilized to compress the LUT it-
self. The LUT can be compressed sufficient small to be store
in the on-chip memory. We can then avoid the problems of



RO et al.: AN IMPROVED LOOK-UP TABLE-BASED FPGA IMPLEMENTATION OF IMAGE WARPING
2685

Fig. 3 Illustration of the similarity of neighbor pixels for general inverse
mapping.

off-chip memory access and required bandwidth.

3.2.1 Δ-Algorithm

Figure 3 is an illustration of a general inverse mapping in
which the current coordinate are (x(i, j), y(i, j)). We can see
that: (a) Δy, the difference in y between horizontal neighbor
pixels, is usually very small, and (b) Δx, the difference in x
between horizontal neighbor pixels, is also small. Based on
these considerations, while constructing the LUT, we can
only store the coordinate of the first pixel of each row and
the difference between the current and previous coordinate
from the second pixel of each row. When retrieving the
LUT, the registers of x and y coordinates are first initial-
ized by the coordinate values of the first pixel of each row,
then we sum the difference up to the initialized values and
we can obtain the current coordinate. Because the differ-
ences are small, a large amount of memory can be saved
compared to the process in which the entire coordinates are
stored.

Moreover, as in (6), if the differences between the max-
imum and the minimum vertical coordinates of every row
are all smaller than a given threshold, the differences in the
vertical direction can be regarded as insignificant. There-
fore, it can be treated as one fixed value in a row.

max
0≤ j≤n−1

(
max

0≤i≤m−1
(Fyi j (u, v)) − min

0≤i≤m−1
(Fyi j (u, v))

)
≤ T (6)

where m and n are the width and height of output image,
respectively; T is a threshold which decided by precision.
Though this approximate operation results in some error, the
error can be controlled at a proper level because the value of
threshold T is adjustable.

3.2.2 Utilization of Symmetric Characteristics

In practical applications, many geometric transformations
are symmetric, such as barrel distortion correction, lens dis-
tortion correction of fish-eye cameras, the panorama un-
rolling of central catadioptric cameras, and some perspec-
tive transformations.

Fig. 4 Illustration of the symmetry principle.

If the coordinates of inverse mapping are symmetric,
as in Fig. 4, we can calculate other mapping coordinates
according to one part of the known mapping instead of stor-
ing all of the coordinates.

When the origin of the coordinates is (0, 0) and the
symmetric center is (ox, oy), if (7) or (8) hold, we can say
that it is symmetric about the horizontal axis or vertical axis,
respectively. If both (7) and (8) hold, the mapping is sym-
metric around the center.

y + oy = f (x + ox) = f (−x + ox) (7)

x + ox = f −1(y + oy) = f −1(−y + oy) (8)

where, ox = M/2 and oy = N/2; M and N are the width and
height of input image, respectively.

Considering that the values of the width and height of
a practical image are always an even number, the coordi-
nates of the input image can be divided symmetrically as
long as the image is symmetric. That is, if Eq. (7) holds, ac-
cording to the symmetric principle, we can calculate (x1, y1)
if we know (x0, y0). For the same reason, if Eq. (8) holds,
we can calculate (x3, y3). If (7) and (8) both hold, through
(x0, y0), we can calculate (x1, y1), (x2, y2), and (x3, y3). The
detailed method will be illustrated in the next section. Thus,
if the inverse transformation is symmetric, we can construct
an appropriate coordinate system, and then we can use this
characteristic to compress the LUT to 1/2, 1/4, or even 1/8
of its original size.

To avoid generating an error due to the use of the sym-
metric principle, a precondition should be satisfied. The
precondition is that we can identify a symmetric axis or
a symmetric center and make the mapping is strict symmet-
ric about this axis or this point, respectively. If this condition
does not hold, the symmetric principle cannot be utilized.

3.3 25-Point Interpolation Algorithm

Implementing floating point-based inverse mapping on
a FPGA-based system poses the question of the required
fixed point format which directly influences the FPGA’s
resource utilization, external memory usage, and memory
transfer bandwidth. The integer component is defined by the
maximum allowable deviation within an image. The frac-
tional part is determined by the required subpixel accuracy
of subsequent processing blocks, as well as the sensor chip
itself [16].

We improve the scheme proposed by Mohan [7] and



2686
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.11 NOVEMBER 2012

Fig. 5 Illustration of the n-point interpolation algorithm when n = 25.

propose a novel n-point interpolation algorithm. The num-
ber n is used to control the accuracy of the interpolation and
can be adjusted according to the precision. The value of n
should be (2i + 1)2, i = 1, 2, 3 . . .. Considering that the re-
quirements for the image quality of video camera images is
not very high, a subpixel or 1/4 pixel precision is sufficient
for interpolation. In this paper, i = 2 and so a 25-point in-
terpolation algorithm is used, as shown in Fig. 5.

Among the 2 ∗ 2 interpolation window, there are
21 phantom pixels, in addition to the actual pixels. The
space between the two actual pixels is 1, and the space be-
tween the two artificial pixels is 1/4. The intensity value of
the phantom pixel is calculated using bilinear interpolation.
Since the space between the two pixels is 1/4, the divisions
(i.e., multiplications with fractions) of bilinear interpolation
can be replaced by right-shifting. The value of the pixel
needing to be interpolated (the red rectangle in Fig. 5) is then
equal to the nearest phantom pixel or actual pixel. That is,
the red triangle in Fig. 5 is assigned the value of the phantom
pixel (i + 1/4, j + 1/2).

Because the only division operation involved can be re-
alized by right-shifting, this algorithm is easy for hardware
implementation.

4. Proposed ILUT-Based Image Warping

According to the properties of image warping mentioned in
Sect. 2, we use inverse mapping in this paper. Our focus is
to compress the LUT and construct a system which centers
on the compressed ILUT. In this section, we present the
system structure of the ILUT-based image warping. Next,
using perspective transformation as an illustration, we show
how to generate the ILUT utilizing the characteristics of
the images and resample the input image with the 25-point
algorithm.

4.1 System Structure of ILUT-Based Image Warping

The proposed LUT-based system structure is shown in
Fig. 6. The system mainly consists of five parts: Part I is to
estimate the transformation function according to the warp-
ing properties; Part II is an initialization process which pre-
calculates the corresponding pixel coordinates of inverse

Fig. 6 The proposed ILUT-based image warping system.

mapping and stores them in the form of a LUT; Part III
is the timing module which generates the system timing
according to the output timing; Part IV is the memory con-
troller module which controls the reading of the LUT ROM
and the writing and reading of the input buffer and the cir-
cular buffer; and Part V is the 25-point interpolation module
which interpolates hole pixels.

Part I and Part II are implemented by software and are
performed only once during system initialization. This de-
sign is based on the observation that the relationship be-
tween the coordinates of the output image and its corre-
sponding coordinates in the input image are absolutely de-
termined by the camera parameters. Therefore, once the
LUT is generated and stored into the ROM at the initializa-
tion stage, the system can use it afterward and does not need
to change unless the camera parameters change. Of course,
the LUT can also be updated if needed. Other modules are
implemented by FPGA. The entire image transformation
uses a pipelining hardware structure with no more than one
frame latency. The detailed design is described in the fol-
lowing section.

4.2 ILUT Generation

This subsection addresses problems of the ILUT generation,
including the realization of the one-step transformation, the
compression of the basic LUT based on the Δ-algorithm and
the symmetric characteristic, and the detailed procedure of
encoding and decoding.

4.2.1 Implementation of One-Step Transformation

As mentioned in Sect. 3, if we use S1,S2, . . . ,Sn to describe
n steps of the transformation, the one-step transformation
can be considered to be the cascade of several steps: S =
S1S2 · Sn.

Figure 7 shows an example of n-step transformations.
After perspective transformation, to make the image more
suitable for the human visual custom, clipping is necessary.
Therefore, as in Fig. 7 (a), 3 steps are required: perspective
mapping, shearing and enlarging. Generally, 3 LUTs are
required to perform a 3-step transformation; however, all



RO et al.: AN IMPROVED LOOK-UP TABLE-BASED FPGA IMPLEMENTATION OF IMAGE WARPING
2687

Fig. 7 Illustration of one-stop transformation: (a) Original perspective
with shearing and enlarging; (b) Composited one-stop perspective transfor-
mation.

Fig. 8 Illustration of the symmetry characteristics of two geometry trans-
formations: (a) Perspective transformation; (b) Panorama unrolling of om-
nidirectional images [2].

three transformations are connatural spatial transformations.
Thus, we can combine these transformations into a perspec-
tive transformation and store it in the form of a combined
LUT.

Suppose that the inverse perspective transformation
matrix, shearing matrix and enlarging matrix are H1, H2,
and H3, respectively, as shown in (9):

H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , H2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 s1 0
s2 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

H3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
e1 0 0
0 e2 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9)

The composite matrix Hcomp of the one-step transfor-
mation can then be expressed as

Hcomp = H1H2H3

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
e1(a11+S 2a12) e2(S 1a11+a12) a13

e1(a21+S 2a22) e2(S 1a21+a22) a23

e1(a31+S 2a32) e2(S 1a31+a32) a33

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (10)

As in Fig. 8 (b), the three steps of the transformation
of Fig. 8 (a) are combined into a one-step transformation.

Table 2 The ILUT of the inverse mapping of perspective transformation.

The combination can be performed by software and only
needs to be calculated once. This simple algorithm reduces
the memory usage to 1/3 without increasing the number of
computations.

4.2.2 Implementation of the Δ-Algorithm

For the integer part of the coordinates, as seen in Table 2,
an ILUT of perspective transformation is constructed. In
fact, there are 3 sub-LUTs in Table 2. For convenience, the
3 LUTs used in the proposed system are combined into one
table. The first LUT is the Y j-table, which includes the ver-
tical coordinate of the first pixel in each row. The second
LUT is the X0-table, which includes the horizontal coordi-
nate of the first pixel of each row. The third LUT is the
(Δx,Δy)-table, which includes the differences between the
horizontal coordinates of the current pixel and that of previ-
ous pixel, except for the first pixel of each row.

As mentioned in Sect. 3, because the coordinates be-
tween neighboring pixels are very similar, a lot of memory
can be saved by storing the difference value (Δx,Δy) instead
of the coordinates themselves.

In order to simplify the operation, we use 2-bit fixed-
points instead of floating-points to represent the fractional
parts of the coordinates. Used in conjunction with the
25-point algorithm, this system achieves fast performance
without obvious image quality degradation. The encoding
and decoding methods are presented in the next section.

4.2.3 Implementation of the Symmetric Principle

According to the symmetric principle mentioned in Sect. 3,
for the symmetric transformations, we need to store only 1/2
and 1/4 of the LUT, respectively.

As in Fig. 8 (a), for the perspective transformation, if
(x0, y0) is known, then:

x1 = 2R − x0, y1 = y0 (11)

For panorama unrolling, as in Fig. 8 (b), if (x0, y0) is
known, then:

x1 = x0 − R, y1 = y0

x2 = x0 − R, y2 = 2R − y0 (12)

x3 = x0, y3 = 2R − y0

4.2.4 Encoding and Decoding of the ILUT Entry

The integer parts of the Y j-table, Y0-table and (Δx,Δy)-table
are coded using natural binary code. The fraction parts of



2688
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.11 NOVEMBER 2012

the Yi-table, X0-table and (Δx,Δy)-table are used as 2-bit
fixed-points and are encoded as pseudo code, as in Fig. 9,
in conjunction the 25-point interpolation algorithm. There-
fore, the bit numbers of both x and y are max(�log2 m� + 2,
�log2 n� + 2) bits, in which max(�log2 m�, �log2 n�) bits en-
code the integer part, and two bits encode the fraction part.

For example, if we suppose that the image size is
640 ∗ 480, the output of the point is (0, 0), and its inverse
mapping coordinates is (100.29, 50.585). Then, according
to the rules in Fig. 9, the LUT values of Y0 and X(0,0) can be
encoded as in Fig. 10. In this study, the coordinate’s con-
vention in this paper is same with Matlab. That is, the ori-
gin of the coordinate system is located at the top-left corner
of an image, and the horizontal coordinate x and vertical

Fig. 9 Encoding rules of the fractional part of inverse mapping coordi-
nates.

Fig. 10 An example of LUT encoding.

Fig. 11 Encoding rules of the fractional part of the inverse mapping
coordinates.

Fig. 12 Proposed hardware structure of LUT access and interpolation.

coordinate y start with zero.
As such, other x and y values of the LUT can be en-

coded by the same rule with x(0,0) and y0. The difference is
that the coordinates first need to encode the original value;
however, the other pixels only need to encode the Δx and Δy.

The reading of the LUT occurs along with the output
timing, that is, the raster-scanning sequence, one pixel one
clock, and pixel by pixel. After calculating the values of the
LUTs, the decoding procedure occurs as shown in Fig. 11,
the inverse procedure of encoding.

4.3 Timing and Memory Control

The proposed system is a pipelining structure in which the
output is determined after no more than one frame delay. In
detail, the writing of the input buffer is synchronized with
the input data timing, while the reading of the LUT ROM
and the input buffer is synchronized with the output data
timing. For interpolation, one line of latency occurs because
a circular buffer is used. The memory usage and memory
types are described as following.

There are 3 LUTs used in the proposed system, all of
which use single port ROM. The total sizes of the ROM
used by the Y j-table, X0-table and (Δx,Δy)-table are de-
scribed in (13). If (6) holds, the fourth item of (13) can
be eliminated.

n ∗ (�log2 n� + 2) + n ∗ (�log2 m� + 2) + n ∗ m ∗
(�log2 max(Δx)� + 2) + n ∗ m ∗ (�log2 max(Δy)� + 2)

(13)

Because the input data format is YCbCr 4:2:2, 3 dual
port RAM (DPRAM) chips are used as an input buffer in
the proposed system, one of which is for Y, while the other
two are for Cb and Cr.

To provide 4 pixel values at same clock for interpola-
tion, 3 line buffers and 12 registers (8 bits) are used for Y,
Cb and Cr to construct 3 circular buffers.

4.4 Interpolation

For discrete images, pixels are taken as finite elements de-
fined to lie on a discrete integer lattice. In general, the tar-
get coordinates of inverse mapping in an image are not de-
fined, rather, they need to be interpolated. Classical bilinear



RO et al.: AN IMPROVED LOOK-UP TABLE-BASED FPGA IMPLEMENTATION OF IMAGE WARPING
2689

interpolation can anti-alias well, but it also needs to be ac-
celerated for real-time implementation. Therefore, we adopt
the 25-point interpolation presented in Sect. 3.

As shown in Fig. 12, the coordinates (xi, yi) of the in-
verse mapping are divided into two parts: integer and offset.
The integer part is used to calculate the address of the input
buffer and determine the location of a 2 ∗ 2 window for inter-
polation, whereas the offset is used to determine the weight
of the interpolation.

Consider the previous example of Fig. 5 in Sect. 3. Be-
cause the point is closest to (i + 1/4, j + 1/2), according to
encoding and decoding rules, the offset of X and Y are as-
signed to 1/4 and 1/2 respectively. This is near to their origi-
nal values of 0.29 and 0.585. Although the nearest algorithm
reduces the precision by a small amount, since the 25-point
algorithm is only divided by 2 and 4, it is very easy for hard-
ware implementation using a right-shifting operation.

5. Experiments

Two different examples, a top view system and panorama
unrolling of an image captured by a central catadioptric
camera, are implemented by Verilog HDL and verified by
a FPGA-based platform, as shown in Fig. 13.

The hardware platform consists of a CMOS sensor, an
FPGA board, and an image capture board. We control the
CMOS sensor through the image capture board with an I2C
bus, by adjusting the sensor frequency, input image format,
and size.

The experiment devices and its main parameters are il-
lustrated in Table 3. All of the optimization methods intro-
duced in Sect. 3, the one-step algorithm, Δ-algorithm, sym-
metric principle, and 25-point interpolation, are used in the
following two examples.

5.1 Example 1: Top View System

A top view system is usually used for rear cameras mounted
on a vehicle. This system virtually adjusts the vertical per-
spective as if the camera was placed immediately behind
the vehicle pointed directly down [17], [18], as illustrated
in Fig. 14 (a). These systems are usually used in parking
assistance systems to eliminate blind-zones and to assist
drivers in driving and parking. It is also used by robots or
surveillance to remove perspective distortion for subsequent
vision-based applications.

The top view can be realized by an inverse perspective
mapping, the function of which is described by (4). Fig-
ure 14 shows the experiment performed in a parking lot.
Figure 14 (b) is the input image with a serious perspective
distortion effect. In Fig. 14 (b), the two lines of the yel-
low graphic overlay in the vertical direction are not parallel.
Fig. 14 (c) is the top view image after clipping and interpo-
lation using the 25-point interpolation. In Fig. 14 (c), the
top view system restores the parallel nature of the yellow
lines in the graphic overlay. This corrected image can pro-
vide a feeling of safety to drivers and help them determine

Fig. 13 System block diagram of the test platform.

Table 3 Experimental devices and their parameter settings.

Fig. 14 Experimental results in a parking lot: (a) Top view system;
(b) Input perspective image; (c) Top view image.

whether or their automobiles are properly positioned.
The system requirement and FPGA device utilization

are shown in Table 4, comparing the scheme in Ref. [6] and
the basic LUT scheme used in Ref. [12] and Ref. [13].

5.2 Example 2: Panorama Unrolling of an Image Captured
by a Central Catadioptric Camera

The central catadioptric camera (as shown in Fig. 15 (a))



2690
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.11 NOVEMBER 2012

Table 4 Performance and cost comparison of conventional works and
the basic LUT-based scheme.

Fig. 15 A central catadioptric imaging system and its panorama un-
rolling: (a) Central catadioptric camera; (b) An omnidirectional image;
(c) A rectangular unrolled panorama image.

utilizes a special mirror to reflect radial lines from a 360
degree field of view onto an imaging sensor, and records an
original panorama image as shown in Fig. 15 (b). However,
these original images have the problem of concentric circles
resulting in deformations. In order to use these images in
some vision-based systems, such as robot vision, they need
to be unrolled [3].

The example in Fig. 16, used a concentric circle ap-
proximate unrolling, which is presented in detail in previous
work [19].

The inverse mapping function of panorama unrolling is
described in (14).

xi = (R ∗ vi/H + R) ∗ cos(2π ∗ ui/W) + Ox

yi = (R ∗ vi/H + R) ∗ sin(2π ∗ ui/W) + Oy (14)

where corresponding locations on the input and output im-
ages have the coordinates (xi, y j) and (ui, v j), respectively;
W and H are the width and height of the output image; and
R is the parameter of the input image. As Fig. 15 shows, an
omnidirectional image, with a size of 1280 ∗ 1024, is trans-
formed in real-time into a rectangular panorama image, with
a size of 3200 ∗ 768.

Fig. 16 Illustration of the panorama unrolling of the central catadioptric
camera: (a) The coordinate system of the input image; (b) The coordinate
system of the unrolled panorama image.

Table 5 Memory usage of ILUT-based panorama unrolling.

All of the memory used in the simulation is on-chip
block memory of the FPGA. The memory usages are shown
in Table 5, comparing the scheme in Ref. [3] and the basic
LUT scheme.

5.3 Experimental Results

In the first example, as shown in Table 3 and Table 4, com-
pared to the online calculation scheme of Ref. [6], our pro-
posed method does not need processor support and is more
suitable for mobile applications. Through the use of off-line
calculations, the real-time performance of 60 frames/sec can
be achieved at the system frequency of 24 MHz. Thanks to
the principle of symmetry, the basic LUT is first reduced to
1/2 because the inverse mapping of this example is symmet-
ric about the vertical axis. The LUT is then further com-
pressed through the use of the other three algorithms, result-
ing in a total ILUT size of only 604 Kbits when the input
image size is 640 ∗ 480. Compared to the basic LUT, the
memory usage of the ILUT is reduced to 8.7%. In addi-
tion, we can see in Table 4 that the cost of the ILUT control
module is not high.

For the second example, the inverse mapping is sym-
metric about the origin of the coordinates. Therefore, the
basic LUT is first reduced to 1/4 according to the principle
of symmetry. The number of bits needed to store each entry
is then reduced through the use of the Δ-algorithm. We used
ten bits and four bits to encode the first values and the differ-
ences respectively. Thanks to the 25-point fixed-point inter-
polation, the size of the LUT is reduced further. As shown
in Table 5, the ROM used by the ILUT is reduced to about
4.2%. Compared to the basic LUT-based scheme, the size
of the ILUT is very small.



RO et al.: AN IMPROVED LOOK-UP TABLE-BASED FPGA IMPLEMENTATION OF IMAGE WARPING
2691

5.4 Error Analysis

There are only two steps that are possible to generate errors:
Δ-algorithm and 25-point interpolation; other steps are loss-
less compression for LUT.

5.4.1 The Error of Δ-Algorithm

Why Δ-algorithm generates error is because that we used ap-
proximate operation to vertical coordinates. When (6) holds
the vertical coordinates of a row are treated as a fixed value.

However, the error of the first example generated by the
approximation of Δy is negligible. Because the threshold T
of (6) in our experiment is 1, resulting error of coordinate
value are smaller than 1/640 and the final error of output
pixel value are smaller than 255/640, which is smaller than
the smallest unit of pixel value 1.

In the second example, there are no errors because the
vertical coordinates of each row are really same.

To other applications, error can be controlled by ad-
justing the T . In general, T should be smaller than 255/m,
where m denotes the width of a row. If the application re-
quires high precision rather than low cost, T can be assigned
to 1 or even smaller.

5.4.2 The Error of 25-Point Interpolation

The n-point interpolation actually is a special case of bi-
linear interpolation. This case uses i bits, but not floating
point value, to denote bilinear interpolation coefficient. We
converted the decimal fraction of coefficient into i bits in bi-
nary, where i = 1, 2, 3 . . ., n = (2i + 1)2. When n approaches
to ∞, n-point interpolation is very similar with the bilinear
interpolation.

The number of bits and error analysis of the n-point
interpolation are list in Table 6. The possible maximum co-
ordinate error because of replacing i bits with floating point
is 1/(2i+1), and the maximum pixel error in horizontal di-
rection using these i bits coordinate as linear interpolation
coefficient is ΔI/(2i+1), where ΔI = Ii+1 − Ii, Ii and Ii+1 are
current and next pixel value, respectively. In vertical direc-
tion, it is the same.

In this paper, i = 2 and thus a 25-point interpolation
algorithm is used. The possible maximum errors of output
pixel value are ΔIx/8 and ΔIy/8 in horizontal and vertical
direction, respectively.

In general, the adjacent pixels usually have similar
pixel values, except for edge area. Therefore, ΔIx and ΔIy

usually are small in flat area, and thus the possible maxi-
mum error of 25-point algorithm are also small. In edge

Table 6 Number of bits and error analysis of interpolation algorithms.

area, large error will occur, however, the errors cannot be
easily perceived because the effect of the error is same as
shifting the edges one pixel in a direction.

In conclusion, comparing to the known nearest and the
bilinear interpolation algorithm, the 25-point interpolation
is a tradeoff between speed and precision.

6. Conclusions

In this paper, extending our previous work [20], we pro-
posed an ILUT-based image warping scheme for video cam-
era applications. Utilizing the characteristics of image warp-
ing for video applications, the proposed ILUT drastically
compresses the basic LUT and allows it to be stored in on-
chip memory. Two different examples show that the pro-
posed algorithms efficiently compress the LUT and save
memory size, hence resolving the problems of complexity
and bandwidth requirements.

The proposed system can be used in video cameras for
automobiles, robot vision, surveillance, and general digital
cameras. It can also be used as an independent system and
as a preprocessing module of an image SOC sensor in coop-
eration with other modules.

Acknowledgments

This research was supported by the MKE (The Ministry of
Knowledge Economy), Korea, under the ITRC (Informa-
tion Technology Research Center) support program super-
vised by the NIPA (National IT Industry Promotion Agency)
(NIPA-2012-C1090-1200-0010). The IDEC provide re-
search facilities for this study. This work was also supported
by the Brain Korea 21 Project in 2012 and the IT R&D
program of MKE/KEIT (10035570, Development of self-
powered smart sensor node platform for smart and green
building).

References

[1] G. Wolberg, Digital Image Warping, pp.41–61, IEEE Computer
Society Press, New York, 1990.

[2] J. Varona, J. Gonzàlez, I. Rius, and J.J. Villanueva, “Importance of
detection for video surveillance applications,” Opt. Eng., vol.3, no.8,
pp.087201–1-9, 2008.

[3] L. Chen, M. Zhang, B. Wang, Z. Xiong, and G. Cheng, “Real-time
FPGA-based panoramic unrolling of high-resolution catadioptric
omnidirectional images,” ICMTMA’09., vol.1, pp.502–505, 2009.

[4] R.L. Nagel, K.L. Perry, R.B. Stone, and D.A. McAdams, “Function-
based design process for an intelligent ground vehicle vision sys-
tem,” J. Electron. Imaging, vol.19, no.4, pp.043024-1–13, 2010.

[5] He and Y. Li, “Camera calibration with lens distortion and from van-
ishing points,” Opt. Eng., vol.48, no.1, pp.013603-1–11, 2009.

[6] N. Gonçalves and H. Araújo, “Low-cost method for the estimation
of the shape of quadric mirrors and calibration of catadioptric cam-
eras,” Opt. Eng., 46, vol.16, no.7, pp.073001-1–12, 2007.

[7] Mohan, A.K. Senapathi, R. Shankar, N. Bhat, and V. Kumar, “Hard-
ware acceleration of real time fish eye correction on FPGA,” NCIS-
2009, 2009.

[8] Barenbrug, F.J. Peters, C.W.A.M. van Overveld, “Algorithms for
division free perspective correct rendering,” ACM SIGGRAPH/
EUROGRAPHICS workshop Graph. Hardware, pp.7–13, 2000.



2692
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.11 NOVEMBER 2012

[9] J. Fang, K. Moseler, and S. Levi, “A method to reduce number of di-
vision operations for perspective texture warping,” IEEE Int. Symp.
Circuits and Systems, vol.3, pp.618–621, 2000.

[10] B. Chen, F. Dachille, and A. Kaufman, “Forward image mapping,”
Visualization ’99, pp.89–514, 1999.

[11] Huggett, C. Silsby, S. Cami, and J. Beck, “A dual-conversion-gain
video sensor with dewarping and overlay on a single chip,” IEEE
Int. Solid-State Circuits Conf., pp.52–53, 2009.

[12] P. Mattson, D. Kim, and Y. Kim, “Generalized image warping
using enhanced lookup tables,” Int. J. Imaging Syst. Technol., vol.9,
pp.475–483, 1998.

[13] S. Oh and G. Kim, “FPGA-based fast image warping with data-
parallelization schemes,” IEEE Trans. Consum. Electron., vol.54,
no.4, pp.2053–2059, 2008.

[14] G. Woldberg and T. Boult, “Separable image warping with spatial
lookup tables,” Comput. Graph., vol.23, no.3, pp.369–378, 1989.

[15] K.T. Gribbon and D.G. Bailey, “A novel approach to real-time bilin-
ear interpolation,” Int. Conf. Electronic Design, Test and Applica-
tions, pp.126–131, 2004.

[16] E. Staudinger, M. Humenberger, and W. Kubinger, “FPGA-based
rectification and lens undistortion for a real-time embedded stereo
vision sensor,” Proc. FH Science Day, pp.18–25, 2008.

[17] Y. Ishii, K. Asari, H. Hongo, and H. Kano, “A practical calibra-
tion method for top view image generation,” Int. Conf. on Consumer
Electronics, pp.1–2, Jan. 2008.

[18] L. Luo, I. Koh, K. Min, J. Wang, and J. Chong, “Low-cost im-
plementation of bird’s-eye view system for camera-on-vehicle,” Int.
Conf. Consumer Electronics, pp.311–312, Jan. 2010.

[19] R. Ahn, L. Luo, K. Min, E. In, and J. Chong, “Low-cost panorama
unrolling of catadioptric omnidirectional images,” Sixth IEEE Int.
Sym. on Elec. Design, Test and Appl., pp.185–188, 2011.

[20] L. Luo, C. Wang, J. Chen, S. An, Y. Jeung, and J. Chong, “Im-
proved LUT-based image warping for video cameras,” CSE 2011,
pp.453–460, Aug. 2011.

Se-yong Ro received a B.S degree in
Electronic Engineering from Hanyang Univer-
sity, Seoul, Korea, in 1983, and the M.S de-
gree in Electronics and Communications Engi-
neering from Waseda University, Tokyo, Japan
in 1989. He is currently a senior vice presi-
dent of LG Uplus, Seoul, Korea and a candidate
for the PhD degree in the Department of Elec-
tronic and Computer Science, Hanyang Univer-
sity, Seoul, Korea. His research interests include
image warping, and mobile communication.

Lin-bo Luo received a B.S degree in Elec-
tronics and Information Engineering from China
University of Geosciences, Wuhan, China, in
2002, and the M.S degree in Engineering of
Traffic Information and Control from Wuhan
University of Technology, Wuhan, China in
2005. He is currently a candidate for the PhD
degree in the Department of Electronic and
Computer Science, Hanyang University, Seoul,
Korea.

Jong-wha Chong (M’ 85) was born in
Nonsan, Korea, on March 10, 1950. He received
B.S. and M.S. degrees in Electronics Engineer-
ing from Hanyang University, Seoul, Korea, in
1975, and 1979 respectively. He received his
Ph.D. degree in Electronics & Communication
Engineering from Waseda University, Japan, in
1981. His current research interests are the de-
sign of ASIC emulation system, CAD for VLSI,
H.264 encoder/decoder design, and communi-
cation circuit design, especially UWB modem

design.


