LETTER

Finding the Minimum Number of Face Guards is NP-Hard*

Chuzo IWAMOTO ${ }^{\dagger a}$, Member, Yusuke KITAGAKI ${ }^{\dagger}$, Nonmember, and Kenichi MORITA ${ }^{\dagger}$, Member

Abstract

SUMMARY We study the complexity of finding the minimum number of face guards which can observe the whole surface of a polyhedral terrain. Here, a face guard is allowed to be placed on the faces of a terrain, and the guard can walk around on the allocated face. It is shown that finding the minimum number of face guards is NP-hard. key words: face guards, polyhedral terrains, NP-hard

1. Introduction

The art gallery problem is to determine the minimum number of guards who can observe the interior of a gallery. Chvátal [4] proved that $\lfloor n / 3\rfloor$ guards are the lower and upper bounds for this problem; namely, $\lfloor n / 3\rfloor$ guards are always sufficient and sometimes necessary for observing the interior of an n-vertex simple polygon.

The decision version of the problem is to decide whether, given a polygon and an integer k, the polygon can be guarded with k or fewer guards. This problem is known to be NP-hard [12], [13].

In three dimensions, a similar visibility problem has been considered for n-vertex triangulated polyhedral terrains. It is known that $\lfloor n / 2\rfloor$ is both the lower bound [3] and the upper bound [2] of vertex guards of a polyhedral terrain. Here, a vertex guard is a guard that is only allowed to be placed at the vertices of a terrain. Also, it is known that the minimum vertex-guard problem is NP-hard [5].

An edge guard is a guard that is only allowed to be placed on the edges of a terrain, and the edge guard can move between the endpoints of the edge. For the edge guarding problem, it is known that (i) the lower bound is $\lfloor(4 n-4) / 13\rfloor[3]$, (ii) the upper bound is $\lfloor n / 3\rfloor[2]$, and (iii) the minimum edge-guard problem is NP-hard [1].

The authors studied the face guarding problem, where a face guard is allowed to be placed on the faces of a terrain, and the face guard can walk around only on the allocated face. A face guard can observe the allocated face and its adjacent faces. Here, two faces are said to be adjacent if they share a vertex.

The face guarding problem is motivated by applications in guarding bordering territories. In the real world,

[^0]a territorial owner keeps watch over neighboring lands not only from an edge (borderline) or a vertex (corner), but also from all his territory.

It was shown that $\lfloor n / 3\rfloor$ is the lower bound and $\lfloor(2 n-5) / 7\rfloor$ is the upper bound for the number of face guards of an n-vertex triangulated polyhedral terrain [9]. Recently, the same authors improved both lower and upper bounds to $\lfloor(n-1) / 3\rfloor[10]$.

In this paper, we study the decision version of the face guarding problem. First, we will show that it is NP-hard to decide whether there exists a triangular-face set of size k that covers all triangular faces of a planar graph. Then, we show that finding the minimum number of face guards in a triangulated polyhedral terrain is NP-hard.

2. Definitions and Results

Let G be a planar graph. A face of G is called triangular if it is bounded by three edges. Let F be the set of all faces of G, and let $H \subseteq F$ be the set of all triangular faces. A set $H^{\prime} \subseteq H$ is said to cover G if every face in \boldsymbol{H} shares a vertex with a triangular face in H^{\prime}.

The instance of the triangular-face covering problem is a planar graph G and a positive integer k. The problem asks whether there exists a triangular-face set of size k that covers G.

The definitions of polyhedral terrains and visibility are mostly from [3]. A polyhedral terrain is a polyhedral surface in three dimensions such that its intersection with any vertical line is either a point or empty. A polyhedral terrain is triangulated if each of its faces is a triangle.

Two points x and y of a terrain are said to be visible if the line segment $x y$ does not contain any points below the terrain. A point x of a terrain is said to be visible from a face f if there exists a point y on the face f such that x and y are visible. A set of faces is said to cover a terrain if every point of the terrain is visible from one of these faces.

The instance of the geometric face guarding problem is a triangulated polyhedral terrain T and a positive integer k. The problem asks whether there exists a face set of size k that covers T. Now we are ready to present the main results.
Theorem 1: The triangular-face covering problem for planar graphs is NP-hard.

Theorem 2: The geometric face guarding problem for triangulated polyhedral terrains is NP-hard.

The proof of Theorem 1 is given in Sect. 3. Theorem 2 can
be obtained from Theorem 1 by a transformation from a planar graph to a terrain given in Sect.4. By Theorem 2, one can see that finding the minimum number of face guards in a triangulated polyhedral terrain is NP-hard.

3. Proof of Theorem 1

3.1 PLANAR 3SAT

The definition of PLANAR 3SAT is mostly from [LO1] on page 259 of [8]. Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of Boolean variables. Boolean variables take on values 0 (false) and 1 (true). If x is a variable in U, then x and \bar{x} are literals over U. The value of \bar{x} is 1 (true) if and only if x is 0 (false). A clause over U is a set of literals over U, such as $\left\{\overline{x_{1}}, x_{3}, x_{4}\right\}$. It represents the disjunction of those literals and is satisfied by a truth assignment if and only if at least one of its members is true under that assignment.

An instance of PLANAR 3SAT is a collection $C=$ $\left\{c_{1}, c_{2}, \ldots, c_{j}, \ldots, c_{m}\right\}$ of clauses over U such that (i) $\left|c_{j}\right|=3$ for each $c_{j} \in C$ and (ii) the bipartite graph $B=(V, E)$, where $V=U \cup C$ and E contains exactly those pairs $\{x, c\}$ such that either literal x or \bar{x} belongs to the clause c, is planar.

The PLANAR 3SAT problem asks whether there exists some truth assignment for U that simultaneously satisfies all the clauses in C. This problem is known to be NPhard. For example, $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, C=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$, and $c_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, c_{2}=\left\{\overline{x_{1}}, \overline{x_{2}}, \overline{x_{4}}\right\}, c_{3}=\left\{\overline{x_{1}}, \overline{x_{3}}, x_{4}\right\}$, $c_{4}=\left\{\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}\right\}$ provide an instance of PLANAR 3SAT. For this instance, the answer is "yes", since there is a truth assignment $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ satisfying all clauses. It is known that PLANAR 3SAT is NP-complete even if each variable occurs exactly once in positive and exactly twice in negation [6], [11].

3.2 Transformation from a 3SAT-Instance to a Graph

We construct a polynomial-time transformation from an arbitrary instance C of PLANAR 3SAT to a planar graph G and an integer k such that C is satisfiable if and only if G has a triangular-face set of size k that covers G.

Each variable $x_{i} \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is transformed to graph $G_{x_{i}}$ of Fig. 1 (a). This graph is composed of seven triangular faces, denoted by $p_{i}, q_{i}, r_{i}, s_{i}, t_{i}, a_{i}, b_{i}$. Each clause $c_{j} \in\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ is transformed to triangle c_{j} of three vertices and three edges (see $c_{1}, c_{2}, c_{3}, c_{4}$ in Fig. 2). Vertices u_{i}, v_{i} and w_{i}, y_{i} in Fig. 1 will be used for the connections between $G_{x_{i}}$ and c_{j}.

The graph $G_{x_{i}}$ can be covered by a triangular-face set of size two. Let $O_{i} \subset\left\{p_{i}, q_{i}, r_{i}, s_{i}, t_{i}, a_{i}, b_{i}\right\}$ be such a set. This O_{i} has the following property. If $t_{i} \in O_{i}$ (see Fig. 1 (a)), then another face in O_{i} must be q_{i} in order to cover faces $p_{i}, q_{i}, r_{i}, a_{i}$. Thus, if $t_{i} \in O_{i}$, then any triangular face connected to $G_{x_{i}}$ via a single vertex u_{i} or v_{i} is not covered by O_{i} (see triangular face c_{1} in Fig. 2, which is not covered by $\left.O_{1}=\left\{q_{1}, t_{1}\right\}\right)$. Later, one can see that $t_{i} \in O_{i}$ implies $x_{i}=0$ and $\overline{x_{i}}=1$, and $p_{i} \in O_{i}$ implies $x_{i}=1$ and $\overline{x_{i}}=0$.

Fig. 1 Graph $G_{x_{i}}$. (a) If $t_{i} \in O_{i}$ then $q_{i} \in O_{i}$. (b) If $p_{i} \in O_{i}$ then $s_{i} \in O_{i}$.

If clause c_{j} contains literal x_{i} (resp. $\overline{x_{i}}$), then triangle c_{j} is connected to vertex u_{i} or v_{i} (resp. w_{i} or y_{i}). For example, in Fig. 2, since literal $\overline{x_{1}}$ is contained in c_{2} and c_{3}, triangles c_{2}, c_{3} are connected to vertices y_{1}, w_{1}. Finally, let $k=2 n$.

3.3 Necessary and Sufficient Conditions

In this section, we show that all clauses $c_{1}, c_{2}, \ldots, c_{m}$ are satisfiable if and only if there is a triangular-face set of size k that covers G.

Assume that there is a truth assignment for $x_{1}, x_{2}, \ldots, x_{n}$ satisfying all the clauses. A triangular set O of size k covering G can be constructed as follows. For each $i \in$ $\{1,2, \ldots, n\}$, if $x_{i}=0\left(\right.$ resp. $\left.x_{i}=1\right)$ in that assignment, then we select q_{i}, t_{i} (resp. p_{i}, s_{i}) as triangular faces in O. After this procedure, the size of O becomes k.

Since each of $\left\{q_{i}, t_{i}\right\}$ and $\left\{p_{i}, s_{i}\right\}$ cover all of the seven faces in $G_{x_{i}}$ (see Fig. 1), O covers all faces of $G_{x_{i}}$ for all $i \in\{1,2, \ldots, n\}$. If literal x_{i} (resp. \bar{x}_{i}) satisfies clause c_{j}, then triangle $p_{i} \in O$ (resp. $t_{i} \in O$) covers triangle c_{j}. Therefore, if there is a truth assignment for $x_{1}, x_{2}, \ldots, x_{n}$ satisfying all the clauses, then there is a triangular set O of size k that covers G.

Assume that there is a triangular set O of size k that covers G. Each graph $G_{x_{i}}$ is covered by two faces, and not by one face (even if all triangles connected to $G_{x_{i}}$ are selected as O 's faces, see Fig. 3). This implies that triangular set O of size k does not contain any triangle $c_{j} \in\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$, since $k=2 n$ (see k red triangles in Fig. 2).

If $t_{i} \in O$, then (i) triangles connected to w_{i} and y_{i} are covered (see triangles c_{2} and c_{3} covered by t_{1} in Fig. 2) and (ii) triangles connected to u_{i} or v_{i} are not covered (see c_{1}). On the other hand, if $p_{i} \in O$, then (i) triangles connected to u_{i} and v_{i} are covered (see c_{1} covered by p_{2}) and (ii) triangles connected to w_{i} or y_{i} are not covered (see c_{2}, c_{4}). Therefore, if there is a triangular set O of size k that covers G, then all the clauses are satisfiable. This completes the proof of Theorem 1.

4. Proof of Theorem 2

In this section, we transform the planar graph G constructed

Fig. 2 Graph transformed from $C=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$, where $c_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, c_{2}=\left\{\overline{x_{1}}, \overline{x_{2}}, \overline{x_{4}}\right\}, c_{3}=$ $\left\{\overline{x_{1}}, \overline{x_{3}}, x_{4}\right\}$, and $c_{4}=\left\{\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}\right\} . C$ is satisfiable, since there is a truth assignment $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $(0,1,0,0)$ satisfying all clauses $c_{1}, c_{2}, c_{3}, c_{4}$.

Fig. 3 Graph $G_{x_{i}}$ is covered by two of $G_{x_{i}}$'s faces, and not by one face, even if all triangles $c_{j_{1}}, c_{j_{2}}, c_{j_{3}}, c_{j_{4}}$ are selected as O 's faces.
in Sect. 3 into a triangulated polyhedral terrain T such that G can be covered by a triangular-face set O of size k if and only if all faces of T are visible from a face set of size $k+2 l$, where l is the number of non-triangular faces of G.

From Fáry's theorem [7], we can assume that the planar graph constructed in Sect. 3 is embedded on the plane without crossings so that its edges are straight line segments. The following description is based on the idea of [1]. We triangulate every non-triangular face of G as follows. Let $z=\left(z_{0}, z_{1}, \ldots, z_{s-1}\right)$ be a face in G of size $s \geq 4$ (see Fig. 4). We split the face z into two faces by adding edges $\left(z_{0}, a\right),(a, b), \ldots,(f, g),\left(g, z_{\lceil s / 2\rceil}\right)$. Inside the upper and lower faces, we add triangles $\Delta(s t u)$ and $\Delta(v w x)$, respectively. Then, we add the following edges:

$$
\begin{aligned}
& (s, a),(s, b),(u, b),(u, c),(u, d),(u, e),(u, f),(t, f),(t, g) \\
& \left(s, z_{0}\right),\left(s, z_{1}\right), \ldots,\left(s, z_{\lceil s / 4\rceil}\right) ;\left(t, z_{\lceil s / 4\rceil}\right), \ldots,\left(t, z_{\lceil s / 2\rceil}\right) \\
& (v, a),(v, b),(w, b),(w, c),(w, d),(w, e),(w, f),(x, f),(x, g) \\
& \left(x, z_{\lceil s / 2\rceil}\right), \ldots,\left(x, z_{\lceil 3 s / 4\rceil}\right) ;\left(v, z_{\lceil 3 s / 4\rceil}\right), \ldots,\left(v, z_{s-1}\right),\left(v, z_{0}\right)
\end{aligned}
$$

Fig. 4 Face of size $s=7$ is triangulated.

Let G^{\prime} be the planar graph obtained by applying the above triangulation procedure for every non-triangular face of G.

As an upper bound, every face inside cycle $z_{0}, z_{1}, \ldots, z_{s-1}, z_{0}$ can be covered by two faces (see $\Delta(s t u)$ and $\Delta(v w x)$ in Fig. 4). As a lower bound, at least two faces are required to cover eight faces inside cycle b, u, f, w, b, and two such faces must be inside cycle a, s, t, g, x, v, a. Therefore, all triangular faces of G have already been covered by the triangular-face set O constructed in Sect. 3 (see red faces of Fig. 2), and all triangular faces constructed in this section are covered by $2 l$ faces inside cycles a, s, t, g, x, v, a (see yellow and grey faces of Fig. 4). By this construction, there is a triangular-face set of size $k+2 l$ that covers G^{\prime} if and only if there is a truth assignment for $x_{1}, x_{2}, \ldots, x_{n}$ satisfying all the clauses.

Finally, we construct a triangulated convex terrain T whose underlying graph is G^{\prime}. Here, a terrain is said to be convex if every point of the terrain is also a point on the boundary of the convex hull of the vertices of the terrain. A face guard on a convex terrain can only observe the allocated face and its adjacent faces. Thus, upper and lower bounds of face guards used to guard a triangulated convex terrain coincide with those of triangular faces used to cover the corresponding triangulated plane graph.

It is known that, given a convex terrain T_{1}, a vertex v_{1} can always be added to T_{1} such that the resulting object T_{1}^{\prime} is a convex terrain, which is the same as T_{1} except for vertex v_{1} and the faces adjacent to v_{1} [3]. Therefore, we can construct a triangulated convex terrain T whose underlying graph is G^{\prime} by translating all vertices of G^{\prime} along the z direction one by one. By this construction, there is a triangularface set of size $k+2 l$ that covers G^{\prime} if and only if there is the corresponding face guard set of the same size that covers T. This completes the proof of Theorem 2.

Acknowledgments

The authors thank the anonymous referee for his comments which simplify the proof of Theorem 1 and for pointing out some errors in the initial version of the proof of Theorem 2.

References

[1] V.H.F. Batista, F.L.B. Ribeiro, and F. Protti, "On the complexity
of the edge guarding problem," Proc. 26th European Workshop on Computational Geometry, pp.53-56, Dortmund, Germany, 2010.
[2] P. Bose, D. Kirkpatrick, and Z. Li, "Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces," Comput. Geom. Theory Appl., vol.26, pp.209-219, 2003.
[3] P. Bose, T. Shermer, G. Toussaint, and B. Zhu, "Guarding polyhedral terrains," Comput. Geom. Theory Appl., vol.7, pp.173-185, 1997.
[4] V. Chvátal, "A combinatorial theorem in plane geometry," J. Combin. Theory, ser.B, vol.18, pp.39-41, 1975.
[5] R. Cole and M. Sharir, "Visibility problems for polyhedral terrains," J. Symb. Comput., vol.7, no.1, pp.11-30, 1989.
[6] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis, "The complexity of multiterminal cuts," SIAM J. Comput., vol.23, no.4, pp.864-894, 1994.
[7] I. Fáry, "On straight-line representation of planar graphs," Acta Sci. Math., vol.11, pp.229-233, 1948.
[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, New York, NY, USA, 1979.
[9] C. Iwamoto, J. Kishi, and K. Morita, "Lower bound of face guards of polyhedral terrains," J. Inf. Process., vol.20, no.2, pp.435-437, 2012.
[10] C. Iwamoto and T. Kuranobu, "Improved lower and upper bounds of face guards of polyhedral terrains," IEICE Trans. Inf. \& Syst. (Japanese Edition), vol.J95-D, no.10, pp.1869-1872, Oct. 2012.
[11] J. Kratochvíl, "A special planar satisfiability problem and a consequence of its NP-completeness" Discrete Appl. Math., vol.52, pp.233-252, 1994.
[12] D.T. Lee and A.K. Lin, "Computational complexity of art gallery problems," IEEE Trans. Inf. Theory, vol.32, no.2, pp.276-282, 1986.
[13] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New York, NY, USA, 1987.

[^0]: Manuscript received June 27, 2012.
 Manuscript revised August 3, 2012.
 ${ }^{\dagger}$ The authors are with the Graduate School of Engineering, Hiroshima University, Higashihiroshima-shi, 739-8527 Japan.
 *This research was supported in part by Scientific Research Grant, Ministry of Japan.
 a) E-mail: chuzo@hiroshima-u.ac.jp

 DOI: 10.1587/transinf.E95.D. 2716

