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Detecting Non-subgraphs Efficiently by Comparing Eigenvalues of
Decomposed Graphs

Kaoru KATAYAMA†a), Member, Yosuke AMAGASA††, and Hideki NAGAYA††, Nonmembers

SUMMARY The problem of deciding whether a graph contains another
graph appears in various applications. For solving this problem efficiently,
we developed a numerical method to detect non-subgraphs, graphs which
are not subgraphs of other graphs, by comparing eigenvalues of graphs.
In this paper, we propose a method to make the detection more efficient
by comparing of eigenvalues of graphs decomposed according to labels of
the vertices and the edges. The new approach not only reduces the cost of
computing eigenvalues but also increases the possibility of detecting non-
subgraphs. The experimental evaluation shows the effectiveness of the pro-
posed method.
key words: subgraph, interlace, eigenvalue

1. Introduction

Graphs are used as a data model in various applications such
as chemical compounds, logic circuits and social networks.
The problem of deciding whether a graph contains another
graph appears commonly in such applications. This is called
the subgraph isomorphism problem and known to be NP-
complete. If graphs are large, it is hard to solve this prob-
lem with combinatorial methods. We proposed a numerical
method for checking whether a graph gs is not a subgraph of
another graph g in Nagaya et al. [1]. We call such a graph gs

a non-subgraph. Although it is not possible to confirm that
gs is a subgraph of g by the method, we can potentially re-
duce the work of solving the problem with time-consuming
combinatorial methods by using it as preprocessing. The
method is based on the interlace theorem [2] on eigenvalues
of a symmetric matrix and its submatrix.

In this paper, we propose a method to make detect
non-subgraphs more efficient by comparing eigenvalues of
graphs which are decomposed according to labels of the ver-
tices and the edges, instead of comparing the eigenvalues of
the original graphs. This approach not only reduces the cost
of computing eigenvalues but also increases the chance of
finding non-subgraphs. It is also suitable for parallel pro-
cessing. We compare the processing time and the perfor-
mance of detecting non-subgraphs of the proposed method
with our previous method and VF2 [3] by experiment. VF2
is one of the state-of-the-art algorithms for finding sub-
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graphs. The result shows the effectiveness of our method
clearly.

2. Related Work

Many algorithms have been proposed to solve the subgraph
isomorphism problem. Ullmann [4] presented an algorithm
based on backtracking technique which reduces the search
space efficiently. VF2 [3] proposed by Codella et al. is also a
backtracking algorithm. McKay [5] proposed an algorithm
for solving the graph isomorphism problem. Eigenvalues of
graphs are used for indexing graphs. Shokoufandeh et al. [6]
proposed an indexing method for object recognition. It maps
the tree representing features of an object into a vector space
by eigenvalues of the adjacency matrix of the tree. Zhang
et al. [7] and Zou et al. [8] proposed indexing methods using
eigenvalues of graphs for XML documents and for graphs,
respectively. Zhang et al. represented an XML document
and an XPath query as graphs and used the maximum eigen-
values and the minimum ones of the graphs as their features.
They use interlacing property between the maximum eigen-
value and the minimum one to process a query. Zou et al.
also used some eigenvalues of a graph as its feature. Their
query processing is based on the relation between the max-
imum and the second largest eigenvalues of a graph in a
database and a query graph. For classifying large graphs
according to large common induced subgraphs as a similar-
ity measure, Vinh et al. [9] propose a graph kernel based on
eigenvalues of graphs and the interlace theorem. They also
propose an algorithm for optimizing the eigenvalues to ob-
tain better classification accuracy.

3. Preliminaries

3.1 Graphs and Matrices

A directed labeled graph g is a tuple (V, E, L, μ) where V is
a set of vertices, E is a set of edges, L is a set of labels of
vertices and edges, and μ is a labeling function V ∪ E → L.
An edge e ∈ E is an ordered pair (v1, v2) of vertices in V .
We also denote a set of vertices V of g as V(g) and a set of
edges E of g as E(g). If, for any (v1, v2) ∈ E, there is the edge
(v2, v1) ∈ E, g is called an undirected labeled graph. For a
vertex v of g, if there is not an edge (v, v′) or (v′, v) ∈ E(g), we
call v an isolated vertex. We assume that labels of vertices
and edges are real numbers. If they are not real numbers in a
practical application, we change each label to a real number
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in some suitable way.

Definition 1: (Subgraph) A graph gs = (Vg
s
, Eg

s
, Lg

s
, μg

s
)

is a subgraph of another graph g = (Vg, Eg, Lg, μg), if there
is an injection i : Vg

s → Vg which satisfies the following
conditions for any (v1, v2) ∈ Eg

s
.

• (i(v1), i(v2)) ∈ Eg

• μgs
(v1) = μg(i(v1)) and μg

s
(v2) = μg(i(v2))

• μgs
(v1, v2) = μg(i(v1), i(v2))

The injection i is called subgraph isomorphism.

Definition 2: (Induced Subgraph) Let a graph gs =

(Vg
s
, Eg

s
, Lg

s
, μg

s
) be a subgraph of a graph g =

(Vg, Eg, Lg, μg) where the subgraph isomorphism is i :
Vg

s → Vg. gs is an induced subgraph, if it satisfies the
following condition for any pair v1 and v2 of vertices in Vg

s
.

• if there is an edge (i(v1), i(v2)) in Eg, there is the edge
(v1, v2) in Eg

s
.

Definition 3: An adjacency matrix Ag = (agi j) of a graph
g = (Vg, Eg, Lg, μg) is the |Vg| × |Vg| matrix as follows.

agi j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μg(vi) if i = j for vi ∈ Vg,

μg(vi, v j) if i � j for (vi, v j) ∈ Eg,

0 otherwise.

μ(vi) and μ(vi, v j) are real numbers in this paper.

3.2 Interlace Theorem and Induced Subgraphs of Undi-
rected Graphs

Haemers [2] states the interlace theorem as follows.

Definition 4: Let {αi}i=1,...,n and {β j} j=1,...,m be two ordered
sequences of real numbers where m < n, α1 ≤ α2 ≤ · · · ≤ αn

and β1 ≤ β2 ≤ . . . ≤ βm, respectively. We say that {β j} j=1,...,m

interlaces {αi}i=1,...,n, if the following condition is satisfied
for k = 1, . . . ,m.

αk ≤ βk ≤ αk+(n−m)

Theorem 1: (Interlace Theorem) Given a real n×m matrix
S such that S T S = I and a symmetric n × n matrix A, the
eigenvalues of a m × m matrix S T AS interlace those of A.

When a graph gs is an induced subgraph of an undi-
rected graph g, both of the adjacency matrices Ag and Ag

s

are symmetric and there exists the matrix S such that Ag
s
=

S T AgS and S T S = I. This means that, if the eigenvalues
of Ag

s
do not interlace the eigenvalues of Ag, the graph gs is

not an induced subgraph of the undirected graph g.

4. Finding Non-subgraphs by Eigenvalues

Given two graphs g and gs, we find whether gs is not a sub-
graph of g according to the following steps in Nagaya et
al. [1]. At first, we reduce the sizes of g and gs by com-
paring labels of vertices and edges and deleting unnecessary
edges and vertices. Then, we check whether eigenvalues of
gs interlace eigenvalues of g. In the following sections, g
and gs are undirected labeled graphs.

4.1 Matrix Representation for Subgraphs

In order to use the interlace theorem for finding graphs
which are not subgraphs of a graph, we need to represent
two graphs which we compare as symmetric matrices. Ad-
jacency matrices of directed graphs are not generally sym-
metric. In addition, although adjacency matrices of undi-
rected graphs are symmetric, for the adjacency matrices Ag

and Ag
s

of an undirected graph g and its subgraph gs, there
does not exist a matrix S which satisfies the assumption of
the interlace theorem, that is, Ags = S T AgS and S T S = I, in
general. So we use the following matrix representation of a
graph. It is a modification of the matrix representation given
by Haemers [2].

Definition 5: An extended incidence matrix Mg of a graph
g = (Vg, Eg, Lg, μg) is a matrix
[

P N
NT Q

]

where N = (ni j), P = (pi j) and Q = (qi j) are |Vg| × |Eg|,
|Vg| × |Vg| and |Eg| × |Eg| matrices as follows, respectively.

ni j :=

⎧⎪⎪⎨⎪⎪⎩
1 if (vi, vk) = e j ∈ Eg for some k,

0 otherwise.

pi j :=

⎧⎪⎪⎨⎪⎪⎩
μg(vi) if i = j for vi ∈ Vg,

0 otherwise.

qi j :=

⎧⎪⎪⎨⎪⎪⎩
μg(ei) if i = j for ei ∈ Eg,

0 otherwise.

N is an incidence matrix of g. NT is the transpose of N.

4.2 Reducing Size of Graphs

When we check whether a graph g contains another graph
gs, it is clear that g’s vertices and edges with the labels which
are not contained in gs are not necessary. By deleting such
vertices and edges from g, we can reduce the size of g and
the cost of computing the eigenvalues of g. Moreover we
find that gs is not a subgraph of g, if the number of gs’s
edges or vertices with a label is more than the number of g’s
edges or vertices with the same label.

4.3 Comparing Eigenvalues of Graphs

We illustrate the algorithm based on the bisection method
for comparing eigenvalues with an example. We de-
note the ordered sequence of eigenvalues of a graph g as
{eig(g)i}i=1,...,n where eig(g)1 ≤ eig(g)2 ≤ . . . ≤ eig(g)n.
For the ith eigenvalue eig(g)i, eig(g)low

i and eig(g)up
i are the

lower and upper bounds, respectively. For all eigenvalues of
g, we denote the lower and upper bounds as low(eig(g)) and
up(eig(g)), respectively.
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Fig. 1 Updating ranges of eigenvalues {eig(g)i}i=1,2,3 and {eig(gs)i}i=1,2

of two graph g and gs.

Example 1: Figure 1 shows how our algorithm updates the
ranges of eigenvalues {eig(g)i}i=1,2,3 and {eig(gs)i}i=1,2 of two
graphs g and gs. The first figure shows that the ranges
of {eig(g)i}i=1,2,3 and {eig(gs)i}i=1,2 overlap, and the lower
and upper bounds, low(eig(g)), up(eig(g)), low(eig(gs)) and
up(eig(gs)) are a, b, c and d, respectively. We try to com-
pare the eigenvalues eig(g)1 and eig(gs)1 at first. Since
eig(g)up

1 − eig(g)low
1 = b − a > eig(gs)up

1 − eig(gs)low
1 = d − c

here, we narrow the range of eig(g)1. The second figure
shows that eig(g)up

1 = (a + b)/2 < eig(gs)low
1 = c. Therefore

eig(g)1 is less than eig(gs)1 and the condition of the interlace
theorem is satisfied for eig(g)1 and eig(gs)1. Next we try to
compare eig(g)2 and eig(gs)1. Since the ranges of eig(g)2

and eig(gs)1 overlap and eig(gs)up
1 − eig(gs)low

1 = d − c >
eig(g)up

2 − eig(g)low
2 = b − (a + b)/2, we narrow the range of

eig(gs)1. The third figure shows that eig(g)up
2 < eig(gs)low

1 .
Therefore eig(g)2 is less than eig(gs)1 and the condition of
the interlace theorem is not satisfied for eig(g)2 and eig(gs)1.
This means that gs is not a subgraph of g.

5. Comparing Eigenvalues of Decomposed Graphs

Let a graph gs be a subgraph of another graph g. Then, the
graphs into which gs is decomposed according to a label are
also subgraphs of the graphs into which g is decomposed
according to the same label. We propose a method to de-
tect non-subgraphs more efficiently by comparing eigenval-
ues of graphs decomposed according to labels of the ver-
tices and the edges, instead of comparing the eigenvalues of
the original graphs, g and gs. After the decomposition, we
check whether eigenvalues of the decomposed graphs of gs

interlace eigenvalues of the decomposed graphs of g with
the same labels. If eigenvalues of one of such decomposed
graphs of gs do not interlace the eigenvalues of the corre-
sponding decomposed graph of g, we do not need to com-
pute and compare eigenvalues of other pairs of decomposed
graphs. This lowers the cost of computing the eigenvalues of
the graphs and improves the likelihood of detecting whether
gs is not a subgraph of g. This approach is also suitable
for parallel processing. Although there are various ways to
decompose graphs according to labels, we consider the fol-
lowing ones. For a graph, the set of the decomposed graphs
varies depending on the order of decomposition using labels

of vertices and edges.

D1 decomposing graphs according to only labels of vertices
D2 decomposing graphs according to only labels of edges
D3 decomposing graphs according to labels of vertices and

then decomposing them according to labels of edges
D4 decomposing graphs according to labels of edges and

then decomposing them according to labels of vertices

For decomposed graphs according to labels of both ver-
tices and edges, we also consider the following ways to use
their eigenvalues.

E1 using eigenvalues of only graphs decomposed com-
pletely according to labels of both vertices and edges

E2 using not only the above eigenvalues but also eigenval-
ues of intermediate graphs decomposed according to
only labels of vertices or edges

6. Experimental Evaluation

We evaluate the four combinations of decomposing graphs
and using the eigenvalues, that is, D3 and E1, D3 and E2, D4
and E1, and D4 and E2 in the above section. We denote the
algorithms based on these combinations as VES, VEA, EVS
and EVA, respectively. We compare them with the algo-
rithm without graph decomposition denoted as NoDecomp,
which was proposed by Nagaya et al. [1] and VF2. VF2 is
one of the state-of-the-art algorithms for deciding whether a
graph contains another graph, which uses only combinato-
rial methods. We use undirected labeled graphs which are
randomly generated with the graph generator which we pre-
pare. All algorithms are implemented with Microsoft Vi-
sual C++ 2010. For tridiagonalization of symmetric mar-
tices, we call Matlab R2009a from the programs. Since
VF2 is originally implemented for checking subgraph iso-
morphism of directed labeled graphs, we customize it for
undirected labeled graphs and compile it with Microsoft Vi-
sual C++ 2010. All experiments done on a PC running
Microsoft Windows Vista Business 64 bit SP2 with an In-
tel Xeon E5420 processor and 16 GB RAM. We use 500
pairs of graphs and the larger graph of the pair has 100 ver-
tices and 2000 edges in every experiment and repeat each
experiment 10 times.

6.1 Processing Time

We show the processing time of the proposed methods, the
previous method NoDecomp and VF2 in Tables 1 and 3.
For the proposed methods, it is the average time required to
check whether a graph is not a subgraph of another graph
and, if it might be, for VF2 to confirm whether the graph is
surely a subgraph. For VF2, it is the average time required
to check whether the graph is a subgraph. In Table 1, the
smaller graph of the pair has 3 labels each for vertices and
edges and the density is 0.45. The number of vertices vary
from 40 to 90. All proposed methods are considerably faster
than NoDecomp. VES and EVS of the proposed methods
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Table 1 Processing time in varying number of vertices of
smaller graph [sec].

Vertices 40 50 60 70 80 90
VEA 137.8 128.0 80.4 32.8 5.9 0.5
VES 119.0 106.9 62.8 19.4 1.9 0.4
EVA 385.2 447.3 425.3 278.9 74.4 0.6
EVS 118.5 108.1 62.8 19.2 2.0 0.4

NoDecomp 2103.1 2207.0 2071.0 1508.3 604.5 2.9
VF2 113.9 123.7 109.0 58.9 37.8 6.4

Table 2 Number of detected non-subgraphs in varying
number of vertices of smaller graph.

Vertices 40 50 60 70 80 90
VEA 39.5 113.3 280.7 446.5 498.5 500.0
VES 39.5 113.2 280.3 446.5 498.5 500.0
EVA 39.5 113.2 280.3 446.9 498.8 500.0
EVS 39.5 113.2 280.3 446.5 498.5 500.0

NoDecomp 4.6 21.2 84.5 230.5 420.7 499.9

Table 3 Processing time in varying number of labels of
pair of graphs [sec].

Labels 5 6 7 8 9 10
VEA 500.3 26.4 3.5 1.0 0.6 0.5
VES 497.0 28.7 3.3 0.8 0.5 0.4
EVA 886.8 253.2 115.1 47.9 14.9 5.4
EVS 496.2 28.7 3.1 0.8 0.5 0.4

NoDecomp 2492.3 1019.3 522.1 211.8 70.3 23.9
VF2 1429.8 208.7 53.8 13.8 5.5 2.5

have almost the same performance and are faster than VEA
and EVA. EVA is the slowest in the proposed methods. VES
and EVS are faster than VF2 except the case of 40 vertices.
The proposed methods become faster than VF2, as the num-
ber of vertices of the smaller graph increases. In Table 3, the
smaller graph of the pair has 70 vertices, 700 edges and 2 la-
bels of edges. The number of labels of vertices of the pair of
graphs vary from 5 to 10. All proposed methods are consid-
erably faster than NoDecomp again. VEA, VES and EVS
of the proposed method have almost the same performance
and are faster than EVA. VEA, VES and EVS are always
faster than VF2 in this experiment. The proposed methods
become faster than VF2, as the number of labels of vertices
of the pair increases.

6.2 Effectiveness in Detecting Non-subgraphs

We evaluate the performance of the proposed methods in de-
tecting whether a graph is not a subgraph of another graph.
In Tables 2 and 4, we use the same set of graphs as in the
experiments of Tables 1 and 3, respectively. For all of the
500 pairs of graphs, the smaller graph is not a subgraph of
the larger graph. The tables show the number of pairs de-
tected that the smaller graph is not a subgraph of the larger
graph by the proposed methods and NoDecomp. Table 2
and 4 shows that the performance of the proposed methods
degrades less than NoDecomp, as the number of labels of
vertices of the pair decreases. Although VES and EVS use

Table 4 Number of detected non-subgraphs in varying
number of labels of pair of graphs.

Labels 5 6 7 8 9 10
VEA 359.7 449.3 479.4 491.4 497.8 499.5
VES 359.1 448.0 478.6 491.1 492.3 487.7
EVA 359.1 448.1 479.0 492.0 494.7 492.1
EVS 359.1 448.0 478.6 491.1 492.3 487.4

NoDecomp 204.0 319.3 399.0 457.6 485.9 495.0

fewer eigenvalues than VEA and EVA, VES and EVS have
almost the same performance as VEA and EVA.

7. Conclusion

We propose a method to detect non-subgraphs more ef-
ficiently by comparing the eigenvalues of graphs decom-
posed according to labels of the vertices and the edges. Our
method is based on the interlacing property of eigenvalues
between a graph and its subgraph. The experimental eval-
uation shows that the proposed method reduces the cost of
computing eigenvalues and increases the chance of detect-
ing non-subgraphs in comparison with our previous method.
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