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SUMMARY Characterization of peer-to-peer (P2P) traffic is an essen-
tial step to develop workload models towards capacity planning and cyber-
threat countermeasure over P2P networks. In this paper, we present a clas-
sification scheme for characterizing P2P file-sharing hosts based on trans-
port layer statistical features. The proposed scheme is accessed on a virtu-
alized environment that simulates a P2P-friendly cloud system. The system
shows high accuracy in differentiating P2P file-sharing hosts from ordinary
hosts. Its tunability regarding monitoring cost, system response time, and
prediction accuracy is demonstrated by a series of experiments. Further
study on feature selection is pursued to identify the most essential discrim-
inators that contribute most to the classification. Experimental results show
that an equally accurate system could be obtained using only 3 out of the
18 defined discriminators, which further reduces the monitoring cost and
enhances the adaptability of the system.
key words: P2P, network monitoring, traffic classification, QoS

1. Introduction

Provisioning and improving the Quality of Service (QoS) –
the ability to provide different priority to different applica-
tions, users, or data flows in the transmission process – has
been one of the key concerns in realizing dependable and
high-quality network services. Appropriate QoS policies
could only be enforced when network traffic is categorized
with high accuracy. However, accurate classification of net-
work traffic according to their application types is made dif-
ficult by the popularity of obfuscation techniques such as
packet encryption, random/changing ports, and proprietary
protocols in data transmission.

In this paper, we present a study on network traffic
analysis to support QoS operation within a cloud-like envi-
ronment. Recent advances in cloud computing indicate that
the most critical bottleneck in advancement of cloud ser-
vices is the bandwidth limitation between users and cloud
providers. This indicates that the analysis on the most
bandwidth intensive application will contribute most to QoS
management in a cloud environment, similar as in a conven-
tional network environment.

Among the wide range of network applications that
contribute most to the Internet traffic, peer-to-peer (P2P)
file-sharing is regarded as the application type that most sig-
nificantly affects QoS management in real network environ-
ments because of the following facts reported in a recent
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Internet study [1]:

• P2P generates the most traffic in the Internet – ranging
from 43% to 70% across the surveyed continents;
• most P2P protocols are bandwidth-intensive, which re-

sults in significant deterioration of QoS;
• P2P file-sharing causes much controversy because of

copyright infringement; and
• many P2P clients are vulnerable to cyber attacks and

when compromised will lead to information leakage
and other catastrophic problems.

Due to its popularity and efficiency, P2P is likely to con-
tinue being the dominating content-distribution protocol in
the foreseeable future. Identifying and regulating this most
bandwidth intensive part of the Internet traffic contributed
by P2P file-sharing could not only support QoS operations
such as resource reallocation and route planning, but help
to protect the cloud infrastructure from risks such as mal-
ware contagion and privacy leakage as well. Moreover, P2P
file-sharing protocols tend to intentionally employ obfusca-
tion techniques to prevent detection or filtering and thus are
regarded the most challenging protocol type. Therefore, in
this paper, we focus our study on how to differentiate P2P
file-sharing hosts from other hosts. With accurate identifi-
cation and categorization of P2P traffic, a network operator
may throttle P2P applications to ensure good performance
of business critical applications. Network engineering prob-
lems such as workload characterization and modelling, ca-
pacity planning, and route provisioning could also benefit
from accuracy identification of P2P traffic.

1.1 Related Research

Early research on P2P traffic analysis focuses on well-
known port numbers assigned by the Internet Assigned
Numbers Authority (IANA). However, this method is no
longer viable due to the popularity of port fluctuations
among contemporary P2P protocols [3]. It is estimated that
90% of P2P traffic are transfered on random ports [4]. Fur-
ther advances lead to the introduction of signature based
protocol classification known as deep packet inspection
(DPI) [5], [6]. DPI searches for string patterns of the ap-
plications and perform classification on this basis. It is by
far the most reliable way to classify teletraffic and is widely
used in commercial products. However, inspection of ap-
plication layer data usually runs into legal and privacy con-
cerns. Moreover, DPI is also known as resource-expensive
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and incapable to work on encrypted transmission.
The limitations of port-based and payload-based analy-

sis motivate the use of transport layer statistics, which is in-
dependent from payload, for traffic classification. Bernaille
et al. [7], [8] introduce a method which classifies a bidirec-
tional flow using the packet-length sequence of its first four
or five packets. This scheme could treat with encrypted
packets and thus provides further improvement on the clas-
sification accuracy of a DPI method. However, the downfall
is that it could be invalidated by simple techniques such as
packet length padding or randomization.

More recent studies on P2P protocol classification
based on sophisticated flow-level properties such as dura-
tion, packet size, and inter-arrival times are reported in [9],
[10]. The method introduced by Erman et al. [9] classifies a
flow based on the parameters extracted from its first 8 pack-
ets and refines the prediction when more packets become
available. Huang et al. [10] applies a similar idea to ana-
lyze the so-called talk blocks, where each talk block con-
tains the group of sequential packets sent in one direction.
While deployment of early statistical parameters is proved
to be successful in numerical studies, a classifier based on
this scheme can be confused by manipulation and padding
of early packet length.

In addition to flow-level features, host-level statistics
are proved to be very helpful in identifying P2P protocols.
Mostly exploited host levels include the social level, the
functional level, and the application level [11], [12]. The so-
cial level measures the host behavior in terms of the number
of interconnecting hosts; the functional level states the role
of a host on the network (client, server, or both); and the ap-
plication level identifies transport layer features such as the
ratio of the number of interconnecting hosts to the number
of active communication ports. Further study on transport
layer analysis are reported in [13], [14], where additional
heuristics, e.g., filtering flows by port numbers, are incor-
porated to improve the accuracy of transport layer analysis.

Some other approaches to host analysis are also re-
ported. In [15], Hu et al. suggest that voting – summariza-
tion of the prediction results on multiple flows of a host
– could help to improve the accuracy of protocol identi-
fication. In [16], Collins and Reiter report that host-level
features such as the bandwidths, failed connections, packet
length profiles, and packet volumes of individual flows
could help to determine different applications acting at a
host. And in [17], Hurley et al. investigate the application of
a host-based classifier in real-time where host-level features
are extracted from a limited number of early packets.

1.2 Proposed Method

In this paper, we present a new host-analysis scheme, which
was first introduced in [18] and later improved in [19], [20],
and report the recent progress of the study. The main idea
of this study follows that of the payload-independent ap-
proach [12], i.e., two conditions are kept true during the
analysis: (A) no access to user payload to respect user pri-

vacy, and (B) no assumption on reliable relationship be-
tween well-known port numbers and application protocols
to treat with increasing complexity in today’s P2P proto-
cols. The contributions of this study are summarized in the
following points.

First of all, a cost-effective host-level P2P traffic classi-
fication problem is formulated and solved by supervised ma-
chine learning methods. In addition to traditional host-level
features such as statistics on payload volume and packet
length that describe the bandwidth-intensive nature of P2P
hosts, entropy based host-level features are introduced to
grasp the one-to-many social-level characteristics of P2P
transmission. Utilizing the 18 features extracted from IP
packet headers, one can get a classification system with up
to a 100% accuracy in classifying known P2P hosts from or-
dinary hosts, and a 98% accuracy in identifying previously
unknown P2P protocols.

Second, tunability of the system, i.e., easy controlla-
bility of the trade-off between sampling rate and system re-
sponse time is proven to be very efficient. Compared with
traditional flow-level analysis presented in [11], [12], the as-
sumption of 100% packet sampling rate to handle the initial-
ization of TCP sessions is exempted, resulting in great ease
in applying the system at different network access points
to the monitored network. Compare with traditional host-
analysis that usually takes days to gather sufficient behav-
ioral information of the hosts [14], our method only requires
a reasonable monitoring time, say, one or two minute, to
perform reliable classification. Such prompt classification
is designed to meet the requirement of an Internet Service
Provider (ISP) or Cloud Service Provider for QoS policy
implementation. To further alleviate the monitoring, analy-
sis, and storage cost, feature selection is engaged to identify
the most essential features that help differentiate P2P hosts
from ordinary hosts, with very promising result reported,
i.e., equally accurate classification could be achieved with
only 3 out of 18 features.

Finally, a system framework using virtualization tech-
nology to generate labelled training set for evaluating P2P-
host classification systems is introduced. The system could
be regarded as a simulated cloud environment, which could
lead to further insights of QoS management schemes in the
cloud era ahead.

The rest of this paper is organized as follows. Sec-
tion 2 presents the proposed scheme on P2P traffic moni-
toring. Section 3 describes the methodology for host-level
analysis. Section 4 reports experimental results based on the
proposed scheme. Section 5 draws the conclusion.

2. Tracing in Virtualized Environment

Virtualization has played and will continue to play a key role
in cloud computing. Virtualization’s ability to separate the
Operating System (OS) and application from the hardware
gives it ideal properties to best deliver on-demand services
that are essential to cloud service provision. A typical sce-
nario to consolidate enterprise servers using virtualization
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Fig. 1 Overall framework of the traffic monitoring and analysis system.

is to run multiple guest OSes on each server instead of just
one to increase the utilization rate of every server. Gen-
erally, uncontrolled P2P file-sharing applications are con-
sidered harmful to the cloud infrastructure and thus are put
into a list of prohibited applications. Without the luxury of
a P2P-friendly cloud system, in [18], we built a cloud-like
environment to collect background and P2P network traf-
fic and evaluated the proposed scheme on collected traces.
As shown in Fig. 1, the proposed system for P2P network
trace collection is made up of three layers: a network layer,
a server layer, and a virtual-machine layer. Here, an NIC is
a network interface controller; a PROBE is a network mon-
itoring tool to collect the traffic traces; a VM is a virtual
machine; an IMG FILE is a file in the hypervisor system
that simulates the file system for the guest OS; and a BRG is
a bridge interface that combines an Ethernet interface with
one virtual TAP (virtualize netork tap) interfaces.

2.1 Network Layer

The network layer has two functions: accessibility to the
outside network and high-performance storage service for
the upper layers. The Wide Area Network (WAN) inter-
face connects to a broadband Internet connection with di-
rect access to the Internet. With carefully tuned firewall
rules, the specific P2P network is accessible from clients
installed in the guest OSes. At the other side, the Local
Area Network (LAN) interface connects to a reliable high-
performance Ethernet, so that the local machines can for-
ward the trace files to the storage server.

2.2 Server Layer

The server layer offers a virtualization environment to the
guest OS’s, captures the individual traces for each of them,
and send the traces to the storage server on the network
layer. A P2P network built with the Virtual Machine (VM)
technology, has the following advantages. (1) It makes more
efficient usage of system resource, which is one of the main
topics of Green Computing. (2) Because the P2P network
under study might bare some vulnerabilities that could be

exploited by certain cyber attacks, VM can help to sandbox
the P2P client so that enforces the hypervisor system free
from risk. (3) The last but not least important, thanks to the
fast system recovery and reboot capability of the VM tech-
nology, it is much easier to redo the experiment or adapt the
system to analyze other P2P protocols than maintaining the
same number of physical machines.

2.3 Virtual Machine Layer

The virtual machine layer is characterized by guest OSes
where specific P2P clients are installed with Internet con-
nection enabled. At each time we install only a single P2P
client upon each guest OS and let it connect to the outside
P2P network. To make a more versatile network that is able
to simulate different network conditions, traffic control soft-
ware can be installed in each guest OS. The good news
is that most P2P applications offer an option to control the
bandwidth assigned for file sharing.

The proposed scheme tries to strike a balance between
traditional monitoring schemes such as transport layer anal-
ysis, flow-level analysis, and application level tracing. The
proposed single-protocol exclusive network has the follow-
ing merits. First, characteristics of a specific (P2P) applica-
tion can be easily abstracted from the collected traces. Sec-
ond, the traces are automatically labelled with good accu-
racy but little labor cost, suitable for supervised analysis.
Finally, since the traces are collected at the network-level,
the system built for one P2P network is reusable for any
other (P2P) protocols.

3. Data Analysis

In the virtualization-based tracing system described above,
by recording the name of the P2P client installed and run in
the guest OSes, the traces are automatically labelled with the
P2P protocol name. Because of its single-protocol-exclusive
property, a collected trace carries essential information on
the behavior of the protocol. Using these labelled P2P traces
together with some background traces captured in the same
network environment with P2P protocols restrained, we can
define a classification task that differentiates P2P file sharing
hosts (positive class) from ordinary hosts (negative class).

3.1 Host-Level Analysis

Our analysis makes use of statistical features, referred as
discriminators hereinafter, extracted from the collected net-
work traces and detects packet flows associated with P2P
hosts. By using packet header information alone, we miti-
gate the collection-computation cost of an alternative signa-
ture based approach and prevent privacy concerns that could
arise otherwise.

Traffic metrics such as the traffic volume, packet size,
number of preserved connections are often good indicators
of P2P protocols. Previously, these discriminators are often
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Fig. 2 Scatter plots in the multi-dimensional space defined by discriminators.

derived on network flows – traffic channels between commu-
nicating peers defined by the 5-tuple, i.e., {source address,
destination address, source port, destination port, protocol}.
The definition of network flow well suits traditional network
activities such as email exchange, web access, and database
access, under the Client-Sever (CS) model, and is effective
in analyzing protocols such as HTTP, SMTP, Telnet, and
DNS. However, recent P2P applications tend to use obfus-
cation to bypass conventional detectors. For example, most
P2P clients use dynamic port numbers or reuse well-known
port numbers of other protocols to prevent detection by port-
number based detectors and use packet-length padding to
circumvent packet-length based detectors. Therefore, at the
network-flow level, there could be little difference between
a P2P flow, a web browsing flow, or an FTP flow – all these
protocols tend to maximize the bandwidth usage for better
user experience. Consequently, flow-level statistics cannot
offer sufficient information for differentiating P2P flows.

In this study we are interested in the status of a host,
i.e., whether it is doing P2P file sharing, rather than the char-
acteristics of its specific communication session/channel.
For better capturing the decentralized nature of a P2P net-
work, we proposed to go beyond the flow level to the host
level for an overall view of the communication. To do so, we
treat all the communications bounded to a target host (as-
sociated with a specific IP address) as a single stream and
define discriminators upon these host-level streams. Dis-
criminators are extracted from host-level streams within a
fixed time window, and analysis is performed on basis of

the discriminators.

3.2 Transport Layer Discriminators

For better classification accuracy on P2P hosts, it is expected
that a discriminator vector extracted from a P2P host will
show statistical difference from vectors associated with ordi-
nary hosts. One of the most intuitive characteristics that sep-
arate P2P protocols from ordinary protocols is bandwidth-
intensity. In Fig. 2, the host statistics are plotted in the 2-
dimensional subspaces defined by randomly paired discrim-
inators. It is easy to observe the difference of the two classes
(P2P hosts shown as crosses and non-P2P shown as circles)
in these bandwidth related discriminators. For example, in
Fig. 2 (a), most P2P hosts are distributed at the upper part
which indicates that payload volumes of P2P hosts are much
higher than those of ordinary hosts.

In addition to the discriminators that well represent the
bandwidth-intensive nature of P2P streams, it is worthwhile
to note the connection pattern of P2P file-sharing protocols
could also manifest their presence. To treat with instability
and variable connectivity, most P2P file sharing applications
tend to keep a large amount of connections between peer-
ing hosts. Thus the one-to-many connection pattern from
a host upon the peering hosts will also be a key character-
istic characterizing P2P streams. Accordingly, the distribu-
tion of the observed packets among peering hosts for a P2P
host will be different from that of a web browsing client:
the packet distribution over peering IP for a P2P client that
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downloads content simultaneously from multiple host shall
be more dispersed, while the packet distribution for the web
browsing client shall be more concentrated on a few web
servers. Figure 3 illustrates an example of the packet num-
ber distribution of a host that is downloading stream media
using PPStream (Fig. 3 (a)) and another host that is doing
web browsing using Firefox (Fig. 3 (b)). Each plot shows a
distribution of packet numbers observed in a 1-minute pe-
riod, where no normalization is made on the packet number
for better perception. It is worthwhile to note two facts about
the two distributions. First, the distribution in Fig. 3 (a) is
much flatter than that in Fig. 3 (b), indicating the difference
in the nature of the communication. Second, the number
of peering hosts are comparable in the two graphs, which
is different from our intuition. These observations suggest
that the key factor to differentiate these flows shall not be
the number of peering IPs but the shape of the distribution.

An ideal metric that captures the degree of dispersal or
concentration of a distribution is the entropy [21]. In infor-
mation theory, the entropy is a measure of the uncertainty
associated with a random variable. In our case, it is used to
measure the randomness of related attributes of the pack-
ets. These attributes could be the source IP address, the
source port, protocol type or any other properties of inter-
est that could contribute to separating the two classes. Take
the source IP addresses appeared in a fixed time window as
an example. The entropy, HSIP, along the source-IP-address

Fig. 3 Packet distribution over source IP. (a) PPStream. (b) Web brows-
ing.

is calculated as

HSIP = − 1
log2 n

∑n

i=1
pi log2 pi, (1)

where n is the number of unique IPs and pi is the probabil-
ity that the ith IP shows up as source IP in the time win-
dow. In the above example, the entropy of the distribution
in Fig. 3 (a) is H1 = 0.87, that of the distribution in Fig. 3 (b)
is H2 = 0.32. Basically, a dispersed distribution tends to
give an entropy value close to one, and a concentrated dis-
tribution tends to give a value close to zero. Therefore, the
degree of dispersal or concentration for the distribution is
captured by a scalar parameter.

Figure 2 shows the scatter plots in the multi-
dimensional space defined by all discriminators we have de-
fined. It is easy to percept the separability of the two classes
in the 2-dimensional subspaces defined by paired discrimi-
nators: data in the same class are located close to each other
but far from those in the opposite class.

3.3 Learning Methodology

Despite that many analytical models, e.g., clustering, func-
tion regression, association rule mining, etc., could help to
characterize the host behavior based on the collected net-
work traces, we find the classification model best fits the
objective of this study – to identify whether a host is per-
forming P2P file sharing operations at the moment. First,
evaluation of unsupervised learning methods is known to be
difficult and ad hoc without (or even with) a labelled data
set. Second, when a benchmark data set is available, unsu-
pervised methods could hardly beat a supervised methods
on prediction accuracy because of the lack of class infor-
mation in the training process. In the literature, there are
some scenarios that unsupervised learning could generalize
better on previously unknown classes. In our case, as a one-
against-the-rest classification (i.e., P2P v.s. non-P2P) prob-
lem is formulated, there will be conceptually no unknown
class, and thus it leaves little space for such a fightback for
clustering. Moreover, classification is a better studied field
than unsupervised learning with respect to the generaliza-
tion ability of the models and there are a large pool of avail-
able tools to deal with extremely large data sets. Finally, as
the above system provides us an cost-effective way to cre-
ate high quality labelled data sets for training and evaluation
of the learning methods, there is no special need to cling to
unsupervised learning.

As our objective is to separate P2P hosts from ordinary
nodes, the task is formulated as a binary classification prob-
lem. That is, we are given an empirical data set of � samples,

(x1, y1), . . . , (x�, y�) ∈ X × {±1}, (2)

whereX is the nonempty set of all possible observations, xi,
and yi ∈ {±1} are class labels. A positive sample (yi = +1)
belongs to the P2P class and a negative sample (y j = −1)
belongs to the non-P2P class.
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We adopt the Support Vector Machine (SVM) [22] be-
cause of its generality and high prediction performance.
SVM realizes the following idea. Given two classes of sam-
ples as in (2), the input vectors xi are first mapped into a high
(possibly infinite) dimensional feature space, F , through a
nonlinear mapping function Φ; then the optimal hyperplane
that realizes the maximal margin in F is constructed. With
the so called kernel trick, Φ is implicitly implemented by a
kernel function K(·, ·), which equals to an inner product in
the feature space. The decision function yielded by an SVM
classifier turns to be a linear combination of the feature vec-
tors Φ(x) as

f (x) = 〈w,Φ(x)〉 + b (3)

=
∑�

i=1
αi〈Φ(xi),Φ(x)〉 + b, (4)

where w is the normal vector of the decision hyperplane in
F and b the bias. w can be written as a linear combination
of the feature vectors in F , weighted by αi. A feature vec-
tor with non-zero αi is known as a support vector. A novel
sample x with f (x) > 0 is assigned to the positive class,
otherwise it is assigned to the negative class.

3.4 Feature Selection

In Fig. 2, there are some redundant features can be observed
in the scatter plots. For example, the time range (the y-axis
in Fig. 2 (b)) offers little discriminative information in the
classification – there is severe overlapping between differ-
ent classes when all the data are projected onto it. Consid-
ering that redundant discriminators could not only introduce
much complexity in the learning but also impose unneces-
sary costs on data collection, storage, and processing, it is
considered helpful to evaluated the significance of all these
discriminators and eliminate the irrelevant ones. Below we
introduce the SVM Recursive Feature Elimination (SVM-
RFE) [23] method that is used to identify the essential dis-
criminators for P2P host classification. One of the reason
for adopting this method is its capability to discover linear
as well as nonlinear correlation among discriminators.

SVM-RFE implements the main idea of the backward
selection method. Starting with a pool of all the discrimi-
nators, one builds a classifier and removes one or a subset
of the discriminators from the pool that are least important
in the classification. The elimination process is repeated un-
til a predefined number of discriminators are left or all the
discriminators are ranked.

In SVM-RFE, the eliminated discriminators are deter-
mined based on the ranking criterion defined in the follow-
ing. In (3), suppose α∗ and w∗ associate with the decision
function that realizes the maximal margin, it is easy to check
that,

‖w∗‖2 =
∑�

i, j=1
yiy jα

∗
i α
∗
jK(xi, x j). (5)

For a linear SVM, i.e., K(·, ·) is the inner product function,
(5) can be simplified to

w∗ =
∑�

i=1
yiα
∗
i xi. (6)

It is obvious that if some elements of w∗ are zero, the
elimination of the associated input discriminators will not
lead to any variation in the decision function. Furthermore,
a feature associated with an w∗i close to zero may be consid-
ered insignificant and deleted without degeneration in gen-
eralization ability of the decision function. Thus, the sig-
nificance of the kth feature could be measured by a ranking
criterion

Rk =
√
‖w∗‖2 − ‖w∗(k)‖2 =

∣∣∣∣∣
∑�

i=1
yiα
∗
i xik

∣∣∣∣∣ , (7)

where xik is the kth element of xi, and w∗(k) is obtained from
w by setting all components xik to 0 for i = 1, . . . , �.

The discussion can be extended to the nonlinear case
where elimination of an input feature corresponds to dele-
tion of multiple discriminators in the feature space. The
contribution of the kth feature to ‖w∗‖ can be evaluated as

Rk =
∑�

i, j=1
yiy jα

∗
i α
∗
j(K(xi, x j) − K(x(k)

i , x
(k)
j ))1/2, (8)

where x(k) is the vector with the kth feature of x set to 0.
Note that for the sake of simplicity and speedup of compu-
tation, α∗(k), the solution of the optimization problem with
the kth feature deleted, is supposed to be equal to α∗.

4. Experiments

In this section, we apply analysis on the traces collected
from the cloud-like environment introduced in Sect. 2. The
traces are collected using the following settings. For each
of the eight-core servers, six Windows 2000 are installed as
guest OSes. Related software clients are installed and run
upon the guest OSes. A P2P trace is collected and labelled
based on the client running on the guest OS. The back-
ground traffic is captured in a similar network environment
where common network activities such as web browsing,
FTP/HTTP downloading, and online gaming are permitted.
In SVM training, we use the Gaussian kernel which is a uni-
versally adaptable kernel function with reliable performance
in a wide range of applications.

Parameters of the classifier, i.e., width parameter of the
kernel, γ, and error penalty parameter, C, are determined by
10-fold cross validation. All the reported results are aver-
aged on 100 runs on the randomly shuffled versions of the
same data set. Note that the network infrastructure such
as the bandwidth and routing management policies may
vary from one network to another. The optimal parameters
for performing the classification will generally differ sub-
tly from one case to another. Therefore, we provide here
the parameter selection strategy adopted in the experiments,
i.e., 10-fold cross validation, rather than listing up all the
used parameters. Our experience shows that C = 100 and
γ = 1 are good initial values for parameter tuning.
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4.1 Experiment Settings

To evaluate the classification performance of the proposed
scheme, we apply it to the data sets created using the fol-
lowing two settings.

In the first setting, we access the classification perfor-
mance of the proposed scheme on known P2P protocols. To
do so, we perform classification between the background
traffic and two most popular P2P protocols, i.e., BitTorrent
– the most popular P2P file-sharing protocol world wide and
PPLive – a typical protocol of the new generation P2P appli-
cations known as P2PTV. Training and test are performed
on trace data containing the same protocols. Hereinafter we
refer the first test set as test set 1 (TS-1 in figures).

In the second setting, the system’s generalization abil-
ity to previously unknown protocols is taken into consider-
ation. Here, training is performed using the same trace data
as that is used in the first setting, however, in the test data,
we add traces generated from previously unknown P2P pro-
tocols. Namely, we add traces of eMule and PPStream to
the test data, where eMule is a popular P2P file-sharing pro-
tocol and PPStream is a mainstream P2PTV protocol. We
refer the second test set as test set 2 (TS-2 in figures).

4.2 Analysis on Time Window Size

In the first experiment, we explore the influence of the time-
window size, w, on prediction accuracy. To justify whether
a host is using P2P protocols, bounded traffic needs to be
monitored for at least w seconds so that discriminators could
be extracted from the captured trace during this period. In
this sense, the window size is closely related to the re-
sponse performance of the system. To access its influence,
w is selected from {1, 2, 4, 8, 16, 32, 64} (seconds), and as w
changes its value, the variation of prediction accuracy on the
two test sets are recorded and shown in Fig. 4 (a) and 4 (b),
respectively.

In Fig. 4 (a), it is easy to spot that the discriminant in-
formation in the discriminators gradually increases as w in-
creases from 1s to 64s. When the sampling rate is 1, i.e., all
captured data are used for feature extraction, the prediction
rate increases from 95.57% (w = 1s) to 99.67% (w = 64s).
Lowering the sampling rate, which is noted as a parameter r
hereinafter, leads to a degeneration of the accuracy to some
extent. Still, in all cases, the accuracy increases as the win-
dow size grows.

As for the results on test set 2 shown in Fig. 4 (b), we
can say that including previously unknown protocols in the
test set will render the data distribution different from that
of the training data and thus results in a degeneration of
the prediction accuracy. Figure 4 (b) shows that the conclu-
sion that increment of w leads to higher prediction accuracy
also applies to previously unknown P2P protocols, despite
of more obvious fluctuations. When w = 64s, all the set-
tings with different sampling rates achieve an accuracy rate
above 88.75%. For r = 1

64 , the increment of the accuracy

Fig. 4 Prediction accuracy v.s. window size.

appears to be very stable, in spite of a drop at the starting
point.

As a reference, the dotted lines in Fig. 4 show the
prediction accuracy without the entropy discriminators. In
Fig. 4 (a), it is easy to spot that for test set 1, including the
entropy discriminators always increases the separability of
the two classes, resulting in increased prediction accuracies.
In Fig. 4 (b), entropy discriminators work very well in some
of the cases, e.g., when r = 1

8 . In some other cases, they lead
to subtle degeneration of the prediction accuracy because of
the increased complexity they have introduced. Further jus-
tification of the entropy features has motivated the study on
feature selection, see Sect. 4.4. for more discussion.

4.3 Analysis on Sampling Rate

When monitoring high speed switched networks, the sam-
pling rate r on the network interface is an important param-
eter that determines the scalability of system. Generally,
we want to reduce the sampling rate for cost-effective traf-
fic data collection, storage, and analysis. The second group
of experiments are designed to verify the influence of sam-
pling rate on the prediction accuracy. To do so, the traces
are first captured using full sampling, i.e., r = 1, followed
by a sub-sampling procedure using different r parameters
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selected from { 1
64 ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1}. As r changes its value,

the variations of classification accuracy on the two test sets
are recorded and shown in Fig. 5 (a) and 5 (b), respectively.

Figure 5 (a) looks similar to Fig. 3 (a), although at this
time, the increment in sampling rate contributes to the incre-
ment in prediction accuracy. For w = 1s, the accuracy starts
from 85.41% at r = 1

64 , slightly dropping to a minimum of
83.78% at r = 1

8 , and then increases gradually to 95.57% at
r = 1. For w = 8s, the accuracy constantly increases from
88.44% at r = 1

64 to 99.41% at r = 1. For w = 64s, except
the beginning point at r = 1

64 , all other r values all give accu-
racy above 99.14%. We can also easily observe the analogy
between Fig. 5 (b) and Fig. 4 (b). Similarly, discordance be-
tween the training set and test set has led to larger variations
in the prediction accuracy. Still, we can find a trend that in-
crement in the sampling rate generally leads to increment in
prediction accuracy, except for the case of w = 1s.

As can be seen in Fig. 5 (a), including entropy discrim-
inators could stably improve the prediction accuracy on test
set 1. For test set 2, the best accuracy is obtained with en-
tropy discriminators at (w = 64s, r = 1

8 ), nevertheless, en-
tropy discriminators also lead to remarkable fluctuations in
prediction accuracy as other parameters change.

To summarize, the above experiments on windows size

Fig. 5 Prediction accuracy v.s. sampling rate.

and sampling rate show that, more computing resources,
i.e., longer observation time and/or higher sampling rate will
provide us more knowledge about the behavior of the mon-
itored host, and thus results in higher prediction accuracy.
Another important discovery is that, the positive effect of
increasing the window size of observation excesses the neg-
ative effect of decrement in sampling rate. This suggests that
for better recognition accuracy and less system performance
downgrade, we can keep a rather small sampling rate for net-
work performance purpose while increase the window size
until satisfactory generalization performance is achieved.

Entropy discriminators are remarkable in the following
two aspects. First, for prediction on known protocols (test
set 1), stable gain in prediction accuracy is guaranteed by in-
corporating entropy discriminators. Second, when used for
predicting previously unknown protocols (test set 2), the op-
timal result are always obtained using these discriminators
although they might also introduce some fluctuations when
other parameters change. Above all, when the entropy dis-
criminators are also taken into consideration, w = 16 and
r = 1

8 seems to be a very good parameter combination that
supports good accuracy on prediction of P2P hosts (99.14%
on test set 1 and 98.38% test set 2), without imposing a
heavy impact on the monitored network.

4.4 Feature Selection Results

Feature selection is performed on the traces to answer the
questions that which are the most essential discriminators
for classifying P2P hosts from ordinary hosts and what is
the necessary number of discriminators for the classifica-
tion. To simplify the discussion, we set w = 16 and r = 1

8 in
the following experiment. The obtained order of discrimina-
tors is shown in Fig. 5, with the features ranked in descend-
ing order of their significance. Then we train the classifiers
on the data with the discriminator at the end of the sorted
list removed at each step and record the prediction accuracy.
According to Fig. 6, the most important discriminator is the
entropy over source ports: we can get an accuracy of 92%
using this single feature. This indicates that the scattering

Fig. 6 Prediction accuracy against ranked discriminators.
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of the traffic into different ports is one of the key features
that characterizing P2P hosts. The most essential subset of
discriminators is apparently entropy over source ports, en-
tropy over TCP flags, and entropy over source IPs. Using
only these three discriminators we could obtain a classifier
as good as using all the discriminators. Adding other fea-
tures to this discriminator set gives little improvement on
prediction accuracy.

We have to note that some other entropy based features
such as entropy over time bins, entropy over protocol types,
and entropy over payload volume provide significant dis-
criminant information as they are all ranked high in the list,
despite that the first three discriminators seems to be per-
fectly matching this classification task. On the other hand,
discriminators at the end of this list e.g., number of destina-
tion ports, payload volume, payload speed, and number of
source ports which are presumed to be important are in fact
redundant to the task and could be safely discarded without
significant loss in prediction accuracy.

As a reference, the results of Linear SVM-RFE and two
feature selection based on popular filter metrics, i.e., Fisher
Discriminant (FD) and correlation coefficient (CC) are also
reported in Fig. 4. The ranking orders of these methods are
omitted for clarity. We can see that the FD based and CC
based methods give almost of the same performance on the
prediction accuracy. These linear method ranks traditional
features such as payload speed, payload volume, and num-
ber of source IPs higher than entropy based features. This
could be explained by the facts that entropy based features
tend to nonlinearly correlate with the class label and are un-
der estimated by the linear methods. The linear SVM-RFE
method shows a better performance than the other two linear
methods because of the employment of an advanced classi-
fier for evaluating the significance of the features.

It is important to note that variation of the network in-
frastructure may affect the selected parameters for classifier
training and further lead to subtle variation in the feature
ranking. The good news is that for a network whose in-
frastructure is not changing from time to time, the obtained
classification system is rather stable, as suggested by our
numerical study over multiple runs. When in a dynamic
environment, an effective strategy to keep the system at its
optimal status is introducing adaptive learning strategies to
the learning and keep updating the classification model with
most recent information. Related topics are usually covered
in online learning [24], which is a rapidly growing subfield
of statistics and machine learning.

5. Conclusion

In this paper, we have presented a study on applying ma-
chine learning techniques for characterizing P2P file shar-
ing hosts in the network for network engineering purpose.
For better lightweightness and adaptability, we define infor-
mative discriminators based on the headers of the packets
instead of deep payload inspection. For better accuracy, we
propose to perform the analysis at host level so that entropy

based discriminators that capture the one-to-many topolog-
ical nature of a P2P file-sharing transmission could be de-
fined. Numerical study showed that with appropriate param-
eter tuning the proposed scheme could realize lightweight
(with 1

16 sampling rate) and accurate prediction with high
accuracy (above 98%) even for previously unknown P2P
protocols. We also apply feature selection methods to iden-
tify the most significant features that help to differentiate
P2P hosts from other hosts. The numerical experiments
show that P2P hosts are best characterized by a group of
three features: entropy over source ports, entropy over TCP
flags, and entropy over source IPs. All the studies sums up
to an effective monitoring and analysis system for P2P host
classification with very low collection and storage cost.
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