
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012
2939

PAPER Special Section on Parallel and Distributed Computing and Networking

A Fully Programmable Reed-Solomon Decoder on a Multi-Core
Processor Platform∗

Bei HUANG†, Kaidi YOU†, Nonmembers, Yun CHEN†a), Zhiyi YU†b), Members,
and Xiaoyang ZENG†, Nonmember

SUMMARY Reed-Solomon (RS) codes are widely used in digital com-
munication and storage systems. Unlike usual VLSI approaches, this paper
presents a high throughput fully programmable Reed-Solomon decoder on
a multi-core processor. The multi-core processor platform is a 2-Dimension
mesh array of Single Instruction Multiple Data (SIMD) cores, and it is
well suited for digital communication applications. By fully extracting the
parallelizable operations of the RS decoding process, we propose multi-
ple optimization techniques to improve system throughput, including: task
level parallelism on different cores, data level parallelism on each SIMD
core, minimizing memory access, and route length minimized task map-
ping techniques. For RS(255, 239, 8), experimental results show that our
12-core implementation achieve a throughput of 4.35 Gbps, which is much
better than several other published implementations. From the results, it is
predictable that the throughput is linear with the number of cores by our
approach.
key words: parallel computing, mapping strategies, Reed Solomon de-
coder, multicore processor

1. Introduction

Digital communication systems need to send and receive
data accurately and reliably in the presence of noise and
interference in transmitting channels. Among many possi-
ble techniques to achieve this goal, forward error correction
(FEC) coding is one of the most effective and economical
methods, in which the sender adds some redundant codes
and the receiver can then detect and correct errors intro-
duced by the unreliable media or networks. Reed-Solomon
(RS) code is one of the most effective FEC codes, and is
widely used on the storage systems (e.g. RAID 6, DVD),
communication systems (e.g. cellular, broadcast, network),
et al.

Most FEC decoders, including RS decoder, are nor-
mally implemented using hardwired ASICs, but they are
meeting great challenges due to the rapidly proliferating of

Manuscript received January 12, 2012.
Manuscript revised April 20, 2012.
†The authors are with the State Key Lab of ASIC & System,

Fudan University, China.
∗This work is supported by NSFC 61103008, Science and

Technology Commission of Shanghai Municipality 10706200300
and Shanghai Rising-Star Program 11QA1400500, National
Significant Science and Technology Projects — 03 Special
2011ZX03003-003-03, Huawei Corporation and National Science
and Technology Major Project of China (No.2011ZX03003-003-
03) and Shanghai Municipal Education Commission ShuGuang
Plan (No.11SG07).

a) E-mail: chenyu@fudan.edu.cn
b) E-mail: zhiyiyu@fudan.edu.cn

DOI: 10.1587/transinf.E95.D.2939

wireless radio protocols. Different protocols require differ-
ent codes, and ASICs designed for one protocol cannot work
for another one. Due to the inflexibility, long development
cycle, and high design cost of hardwired ASICs, the idea of
Software-Defined Radio (SDR) is proposed, where compo-
nents that have typically been implemented in hardware (e.g.
mixers, filters, amplifiers, modulators/demodulators, digital
baseband, et al.) are instead implemented using software on
a personal computer or embedded computing devices [1].

Though the prospect of SDR is tempting, perfor-
mance inferiority of programmable processors compared
with hardwired ASICs becomes one key challenge of SDR
solution for digital baseband, while the high throughput and
real-time requirements of current digital baseband cannot be
satisfied. To overcome this performance bottleneck, multi-
core processor platform is an optimal choice, which can
provide high performance through parallel computing and
maintain flexibility due to its programmability [2].

The performance gained by utilization of pro-
grammable processor is highly dependent on the extraction
of parallelism in algorithms. In the best case, the speedup
factors can be close to the number of cores [3]. Many typical
applications, however, are not easy to be fully parallelized.
Thus, how to parallelize the application algorithms and how
to efficiently implement them on multi-core processors, in-
cluding the RS decoding algorithm, is a significant research
topic.

In this paper, we propose a pure software solution of
RS decoder on a multi-core processor platform. We seek for
the efficient methods to optimize the program by exploring
the degree of parallelism of the algorithm, rationally parti-
tioning the algorithm into multiple tasks, and mapping dif-
ferent tasks into suitable cores. Imagine how attractive that
digital baseband, especially decoder part, the most intensive
part, can be implemented into software. That can greatly re-
duce the research and development price, and can be applied
to many communication applications such as mobile phone,
digital video broadcasting, data transmission systems, opti-
cal fiber communication.

The rest of the paper is organized as follows. In Sects. 2
and 3, fundamentals of RS codes and our multi-core proces-
sor platform are introduced, respectively. In Sect. 4 we dis-
cuss the realization of Galois field (GF) arithmetic, which is
the mathematical basis of RS codes. How to develop an ef-
ficient RS decoder on a multi-core processor is discussed in
Sect. 5. It is illustrated elaborately from each part of the de-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



2940
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 1 The structure of one codeword block of Reed-Solomon codes.

Fig. 2 Diagram of RS decoding process.

coding process, to the whole decoder on the multi-core plat-
form. The evaluation results and the comparison are listed
in Sect. 6. In the last section, conclusion is drawn.

2. Overview of Reed-Solomon Codes

The most common representation of RS codes is RS(n, k, t),
which means a block of k symbols is encoded into n sym-
bols by adding 2× t parity symbols. One encoded codeword
block has the capability of correcting up to t symbol errors.
Figure 1 shows the structure of one codeword block.

Practical RS codes are based on GF with 2m elements,
which will be explained in Sect. 4. In this case, each sym-
bol can be represented as an m-bit value, and the number
of symbols in one codeword block is no more than 2m − 1.
A commonly used code RS(255, 239, 8) encodes k = 239
message symbols into an n = 255 symbols block by adding
16 parity symbols, and is capable of correcting up to 8 sym-
bol errors per block. This code is based on GF(28) and each
symbol is represented as an 8-bit data.

The decoding process is much more complicated com-
pared with encoding. The classical decoding process can
be divided into four components, as Fig. 2 shows, including
Syndrome Calculation (SC), Key Equation Solving (KES),
Chien Search, and Error Correction [4].

The first step is to calculate syndrome values from one
received codeword block. If all the syndrome values are
zero, it can be concluded that there is no error in the code-
word. Otherwise, the received codes must contain some er-
rors.

If not all the syndrome values are zero, the second step,
KES is executed to find out the Error Location Polynomial
and Error Value Polynomial. The Error Location Polyno-
mial denotes the positions of error symbols in one code-
word. The Error Value Polynomial denotes error value of
the corresponding symbol.

In step 3, with Error Location Polynomial from step 2,
Chien Search determines the roots of the error location poly-
nomial by checking every location to find out whether error
occurs. It is an exhaustive search by substituting each of
the field elements in the Error Location Polynomial. If error
occurs in this location, then the forth step is executed.

Fig. 3 Architecture of the 2-dimension mesh multi-core processor
platform.

Fig. 4 5-stage pipeline of a single SIMD core.

Step 4 is calculating the error values by Forney algo-
rithm. These error values are then added to the correspond-
ing symbols to get the correct ones.

All these steps are GF based.

3. Architecture of Multi-Core Processor

In this section, we describe the architecture of our multi-
core processor since it affects the software implementation
approach significantly.

The multi-core processor employs homogeneous tiles,
with 2-dimension mesh topology and message-passing com-
munication method. It uses scalable mesochronous clocking
style which allows for clock-phase-insensitive communica-
tion across tiles and synchronous operation within each tile.
A 5 × 5 multi-core processor platform is shown in Fig. 3.

Each core in Fig. 3 is an SIMD processor enhanced
from a MIPS-style processor. It has a five-stage pipeline
as in Fig. 4. The I stage fetches instructions according to
Program Counter (PC), and the instruction decoding is done
in the first half of E stage by Decoder. With the proper
data (from register file, immediate, or forward logic), SIMD
ALU/Mult., which can process four 8-bit data in parallel,
execute the operations in two or three cycles – two cycles



HUANG et al.: A FULLY PROGRAMMABLE REED-SOLOMON DECODER ON A MULTI-CORE PROCESSOR PLATFORM
2941

for add/simple mult. (16-bit data width multiplication) op-
eration, three cycles for complex mult. (32-bit data width
multiplication) operation. As shown in Fig. 4, second half
of E stage and M stage is used for ALU; for complex mult.,
it needs one more cycle to finish calculation before send-
ing result to A stage. A stage is an aligner. Forward logic
is used for ALU and Mult. to alleviate data hazard pipeline
penalties. In W stage, the Write Back block writes the re-
sults to register file. The MIPS-style instruction set pro-
vides high flexibility, and the added SIMD function provides
higher performance for many applications especially the tar-
get communication applications. Each processor can com-
municate with other processors through a packet-switching
network-on-chip (NoC) interface.

4. Realization of Galois Filed Arithmetic

Since the mathematical basis of RS is GF, this section
presents a brief overview of GFs’ properties and discusses
their implementation approaches on general purpose proces-
sors.

Galois field, or finite field, is a closed set with finite el-
ements. That is to say, the results of GF operations such
as addition or multiplication are always members of the
field. The algorithm of these arithmetic operations is dif-
ferent from the most widely recognized and used nonfinite
field, the field of real numbers. GF operations are performed
without carry and overflow. It means that a data can main-
tain m-bit even after a series of arithmetic operations have
been taken. Introduction of frequently used operations [5]
and their implementations are mentioned below.

4.1 Addition and Subtraction

In a finite field with characteristic 2, GF(2m), which is
widely used in communication systems, addition and sub-
traction are identical and can be simply accomplished by
exclusive or (XOR) operation.

4.2 Multiplication

GF multiplication is a bit more complicated. It is defined as
two polynomials multiplied then modulo the prime polyno-
mial as the formula (1), here p(x) denotes the prime polyno-
mial and “.*” denotes multiplication in a finite field.

f (x) .* h(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

i=0

⎛⎜⎜⎜⎜⎜⎜⎝ fi ×
m∑

j=0

h jx
i+ j

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠% p(x) (1)

GF multiplication can also be done using an exponential rep-
resentation, which is much more suited for software imple-
mentations. Here each element is represented by exponen-
tial representation, αi (α = 2 in GF(2m)). The multiplication
is presented in (2).

αi .* α j = α(i+ j)%(2m−1). (2)

Based on (1) and (2), there are four ways to do GF multipli-
cation.

1) Pure software
This approach is to perform calculating process as

(1) [6]. The advantage of this technique is that it requires
little memory. The disadvantage is that it can take many
processing steps to do the polynomial multiplication and the
prime polynomial division, and the performance is low.
2) Full look-up table

This technique is to create a table indexed by the com-
bination of multiplier and multiplicand whose content is the
product [6]. This solution is fast compared to the pure soft-
ware solution but requires large memory. For the most com-
mon GF(28), whose size is 256, it needs a look-up table of
256 × 256 = 65,536 bytes.
3) Partial look-up table

This approach is based on the (2). It needs two look-up
tables. One table (named Log table) fills with all the 256 el-
ements in GF(28) in the order of αi (0 ≤ i ≤ 255). The other
(named Alog table) is defined for mapping the index of Log
table to its content, which satisfies alog[log[i]] = i. When
processing GF multiplication, i and j are indexed by the
multiplier and multiplicand from Alog table, execute some
calculation ((i+ j) % (2m−1) in (2)), then get the result form
Log table. This approach requires far fewer operations than
the pure software approach, and far less memory amount
than full look-up table approach. It is an appropriate trade-
off choice.

4) Pure hardware
The pure hardware approach is to add some GF multi-

pliers and their corresponding instructions in the core. Be-
cause GF multiplier is frequently used throughout the whole
decoding process, speed of GF multiplication operation de-
termines the performance of RS decoder. In addition, the
hardware cost is low. Hence, the pure hardware approach
is the most suitable option. In our implementation, we
add two instruction types, GF MAC (multiplication-and-
accumulation) and mult. in SIMD cores. And each type
contains scalar and vector instructions. The architecture is
shown in Fig. 5.

An 8-bit GF multiplier requires about 140 gates. Four
multiplications (including some necessary control logic)
cost about 1K gates, which is less than 1% of our SIMD
core and the hardware overhead is acceptable. It takes 1
clock cycle to execute each SIMD GF instruction and has
the highest performance among the four discussed solutions.
Embedded GF operators can speed up the decoding process
significantly with tiny overhead. Consequently, it is strongly
recommended implementing GF operations with pure hard-
ware, as EVP [7], TI DSP [8], and many other embedded
processors do [9], [10].



2942
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 5 The architecture of the extended SIMD core with GF operations.

4.3 Division

GF division is similar to GF multiplication. The exponential
representation of GF division is in (3),

αi ./ α j = α(i− j)%(2m−1), (3)

where “./” denotes GF division operation.
There are four similar ways to do GF division as GF

multiplication, including: pure software, full look-up table,
partial look-up table, and pure hardware. Since the division
is rarely used throughout the decoding process (it appears 8
times at most for RS(255, 239, 8) decoding one codeword),
and has little effects to the decoding efficiency, we choose
partial look-up table approach to get the best tradeoff be-
tween system performance and hardware cost.

5. Fully Programmable Implementation

This section discusses how to develop an efficient
RS(255, 239, 8) decoder on our SIMD multi-core proces-
sor. Any absolute description and figures in this section are
based upon RS(255, 239, 8). This RS code-rate was chosen
because it is widely used as an FEC scheme in lots of radio
protocols.

In each block, we first discuss how to parallelize the
program on the multiple-core processor and SIMD cores to
improve the performance, and then discuss how to mini-
mize the access of memory by fully utilizing the register file
since the latency and power consumption to access memory
is much larger than to access register file.

5.1 Syndrome Calculation

The first step of decoding an RS code is Syndrome Calcula-
tion. An RS(n, k, t) code has 2×t syndrome values, named as
S 0, S 1, S 2, . . . , S 2t−1. The following formula demonstrates
how to calculate S i (0 ≤ i ≤ 2t − 1),

S i = (. . . ((rn−1α
i + rn−2)αi + rn−3)αi . . .)αi + r0 (4)

Fig. 6 The algorithm structure and mapping diagram of SC block. A
group of four arrows alongside in SIMD core block means that 4 syndrome
values calculation is executed in parallel.

where αi is the element in finite field, r j is the j th symbol of
the codeword [11].

Equation (4) is an iterative process and can be imple-
mented using algorithm 2 above. It needs n × 2t = 4080
GF MAC operations, which will be very time-consuming if
sequentially calculated. Fortunately, the parallel computing
capability of our multi-core platform and SIMD core can
significantly improve the performance.

The key issue is how to parallelize this SC algorithm.
In algorithm 2, the variables are independent among the
outer loops but sharing the same codeword. It means that by
dividing the outer loop the entire algorithm can be split into
several parts, and the different syndrome values can be pro-
cessed in parallel. Furthermore, considering the 8 bit data
width of RS(255, 239, 8) and our SIMD core, four syndrome
values can be calculated concurrently in one SIMD core.

As shown in Fig. 6, the 16 syndrome values are divided
into four groups and mapped into four SIMD cores respec-
tively. All these four cores work in parallel without any data
exchange.

Register files are enough to hold the 28 bytes intermedi-
ate variables of algorithm 2. Only the codeword have to lo-
cate in the data memory which consumes 255 bytes in each
SC core.

5.2 KES

The syndrome polynomial S (x) is calculated in SC block,
and KES block is responsible to figure out the Error Loca-
tion Polynomial σ(x) and Error Value Polynomial ω(x) by
solving the equation

S (x) × σ(x) = ω(x) mod x2t, (5)

which is the key equation. Various algorithms are devel-
oped, such as ME [11], BM [12], RiBM [13] and so on.



HUANG et al.: A FULLY PROGRAMMABLE REED-SOLOMON DECODER ON A MULTI-CORE PROCESSOR PLATFORM
2943

Fig. 7 The algorithm structure and mapping diagram of KES. A group
of four arrows alongside in SIMD core block means that four SIMD oper-
ations are processed in parallel with regulated data stream.

In this paper, we choose simplified degree computationless
modified Euclid (S-DCME) algorithm [14], [15]. It is modi-
fied from ME algorithm to avoid calculating the polynomial
degree.

For multi-core implementation, the challenge is how
to partition and parallelize this algorithm because there is
much dependence among the variables throughout KES pro-
cess. However, multi-core processors can solve this per-
fectly by pipelining the tasks. Noting that S-DCME is on
the whole an iterative process and the data exchange be-
tween adjacent iterations is few and regular, it is possible to
take apart the 16 iterations and map them into several cores
by pipelining. As Fig. 7 shows, four cores are arranged to
perform KES algorithm. After completing iteration 1 to 4,
core 1 sends all the needed data for core 2 to continue the
iteration 5 to 8, and so on. In addition, data stream in each
core is regulated to fit four parallel SIMD operations.

All the intermediate variables are stored in the register
files which avoids a lot of memory load/store operations to
improve the performance and reduce power consumption.

5.3 Chien Search

In Chien search, we need to search every codeword to find
out the wrong ones with the Error Location Polynomial σ(x)
obtained from KES. Let σ(x) = σt × xt +σt−1 × xt−1 + · · ·+
σ0, finding the roots of σ(x) is what Chien search does. If
σ(αi) = 0, that means there is an error in this position [16].
The algorithm is described below.

σ(αi) in algorithm 3 can be rewritten as

σ(αi) = ((σt(α
i) + σt−1)αi + σt−2)αi + · · · + σ0, (6)

which is a recursive process.
The basic operation of Chien search, GF MAC, is the

same as SC algorithm. It needs 8 GF MAC operations to

Fig. 8 The algorithm structure and mapping diagram of Chien Search
block; a group of four arrows alongside in SIMD core block means that 4
positions searching is executed in parallel.

search one position.
Equation (6) is data independent between different αis,

which denote different positions. Therefore, we can map
different position searching into different cores. As in Fig. 8,
Chien search is mapped into three cores. Core 1 searches for
position 1 to 80, core 2 searches for position 81 to 160, and
core 3 searches for position 161 to 239. In addition, each
core can search for four positions in parallel by making use
of SIMD operations. The last 16 positions are abandoned
because they are parity messages and will be discarded at
last.

Chien search of RS(255, 239, 8) can be performed with
no memory access by fully utilizing the 32 register files.

5.4 Error Correction

Obtaining the error location information from Chien search,
Forney algorithm is employed to calculate the error value in
the corresponding position. The algorithm can be illustrated
in (7) [16].

E(k) =
αk · ω(αk)
σ′(αk)

, (7)

where k denotes that an error is detected at position k, and
ω(αk) and σ′(αk) can be written into the recursive format as
follows,

ω(αk) = ωt(α
t−1)k + · · · + ω1(α1)k + ω0, (8)

and

σ′(αk) = σt−1(αt−1)k + · · · + σ3(α3)k + σ1(α1)k. (9)

It is worth mentioning that σ′(αk) is obtained from
Chien search, too.

Getting the error value E(k), adding E(k) to the corre-
sponding symbol can finally find out the correct symbol.

According to (7), correcting one symbol needs 8 GF
MAC operations and 1 GF division operation. Eight errors
at most in one codeword do not cost much in our SIMD core.
And the memory consumption is minimized to 255 bytes
(storing one codeword) by making the best use of register
files.



2944
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 9 The parallelizing and pipelining of the complete RS decoding
algorithm.

Table 1 Number of operations and core allocation of each block.

5.5 Mapping the Whole Decoder on Multi-Core Processor

Figure 9 shows the complete RS decoder algorithm. SC
block consists of 16 data independent parts. KES block con-
sists of 16 iterations executing sequentially. Chien search
block consists of 239 parts with no data exchange.

The overall mapping solution is pipelining the four
blocks shown in Fig. 9 to maximize the throughput. The
key issue here is how many cores should be arranged to
each stage to balance the computation load in each processor
core.

In the second column of Table 1, we list the number
of operations of each block, and the original core allocation
plan is listed in the third column with balanced computa-
tion load on each core. The final core allocation increased
the cores planed for KES block, as listed in the fourth col-
umn, because this block has a lot additional exchange oper-
ations in S-DCME algorithm which are not well supported
by SIMD cores where one exchange operation needs two or
three instructions to complete.

Figure 10 shows the task mapping on processor cores.
The mapping is based on the rules to minimize the overall
latency and energy in inter-processor communication [17].
Considering the XY routing of our multi-core processor, the
shorter the Manhattan distance [17] of mapping diagram, the
less communication cost and latency are. The overall route
length of our RS decoder mapping diagram in Fig. 10 is 16,
which indicates a very good mapping scheme.

6. Evaluation and Comparison

We implement the RS decoder using C language with opti-
mization at assembly level. The decoder runs on the RTL

Fig. 10 Mapping diagram of RS(255, 239, 16) decoder on the 25-core
processor. The gray ones with “IDLE” mark are unused and shut down.

Table 2 Execution time of all cores of processing one codeword without
waiting processed data.

model of our multi-core platform.
The following performance analysis is based on the 12-

core mapping scheme as in Fig. 10 and in the case of pure
hardware approach for GF multiplication, unless otherwise
mentioned. The multi-core processor is designed to achieve
700 MHz clock frequency.

6.1 Execution Time

The execution time (counted in clock cycle) of processing
one RS(255, 239, 8) codeword in the worst case (8 errors)
is evaluated. The results are listed in Table 2. Here the



HUANG et al.: A FULLY PROGRAMMABLE REED-SOLOMON DECODER ON A MULTI-CORE PROCESSOR PLATFORM
2945

Fig. 11 The overall activity of each core implemented RS decoder.

Table 3 Throughput of the RS decoder corresponding to the occupied
core number.

process time is the cycles spent on data processing, and the
total run time includes the process time plus communication
time (send and receive). SC cores have the largest execution
time (320 cycles) and determine the throughput of the RS
decoder.

6.2 Processor Activity Analysis

The execution time of each core shown in Table 2 doesn’t
include the information of the stall time waiting for inputs.
The overall timing analysis of each cores’ behavior includ-
ing both their execution and stall time is shown in Fig. 11,
which is averaged from thousands of test cases for different
number of symbol errors in one codeword. The error sym-
bols were introduced randomly.

The inter-processor communication and stall (idle)
time in Fig. 11 is low, which shows the excellence of our
parallelizing, pipelining and mapping strategies.

6.3 Throughput of Scalable Results

Figure 10 is not the only way for mapping an RS decoder.
The decoding algorithm scales well with the number of core.
When the occupied core number is increased, the through-
put increases nearly linearly as some examples in Table 3.
The 23-core mapping reaches throughput of 8.02 Gbps; 12-

Table 4 Comparison of latency and throughput under the worst case
(8 errors) condition.

core implementation in line 2 can reach a throughput of
4.35 Gbps. Both are suitable for optical fiber communica-
tion. The single core implementation in the last line has a
throughput of 420 Mbps which is prominently suitable for
many applications such as mobile phone communication,
data transmission technologies (e.g. DSL and WiMAX), and
broadcast systems (e.g. DVB). So it is a flexible solution
that we can decide using how many cores according to the
throughput requirement.

6.4 Comparison with Others

Table 4 shows the comparison of our approach with others.
The overall latency of ours, 1955 clock cycles, has little ad-
vantage than others because our core is with much fewer
extended GF instructions compared with EVP [7] and TI
DSP [8] and the parallelism degree of our SIMD core (4) is
lower than EVP (32) and TI DSP (8). However, the through-
put of our implementation can reach 4350 Mbps in the worst
case of 8-error incoming codeword under a 700 MHz opera-
tion clock frequency, which is much better than others. The
high throughput is the result of our multiple optimization
techniques including well partitioning, pipelining, and map-
ping strategies. Each core in our processor is much simpler
than others so that the overall system cost still remains in a
low level with multiple cores.

7. Conclusion

In this paper, we present a fully software implementation
of an RS decoder on a multi-core processor platform. Our
multi-core processor provides significant advantages over
traditional CPUs and DSPs. A high throughput RS decoder
is realized on the multi-core processor by fully utilizing its
parallelism and minimizing the inter-processor communi-
cation cost. The parallelism techniques include task-level
parallelism, pipelining on many cores and data-level paral-



2946
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

lelism on SIMD cores. The decoder can achieve a through-
put of 4.35 Gbps at the worst case of the incoming codeword
with each core runs at 700 MHz. In summary, the proposed
software implementation of RS decoder will have wide ap-
plications in many communication protocols which require
RS code.

Acknowledgment

The authors gratefully thank our co-workers, Shuangqu
Huang, Ruijin Xiao, Heng Quan, Zewen Shi, Yan Ying,
Lin Dai, Xingxing Zhang, for a productive collaboration and
helpful discussion.

References

[1] W.H.W. Tuttlebee, Software Defined Radio: Origins, drivers, and
international perspectives, 3rd ed., pp.3–17, John Wiley & Sons,
Hoboken, 2002.

[2] Z. Yu, M.J. Meeuwsen, O. Sattari, M. Lai, J.W. Webb, E.W. Work,
D. Truong, T. Mohsenin, and B.M. Baas, “AsAP: An asynchronous
array of simple processors for DSP applications,” IEEE Journal of
Solid-State Circuits, vol.43, no.3, pp.695–705, 2008.

[3] D.P. Rodgers, “Improvements in multiprocessor system design,”
ACM SIGARCH Computer Architecture News archive, vol.13,
no.3, pp.225–231, 1985.

[4] S.B. Wicker, V.K. Bhargava, Reed-Solomon Codes and Their Appli-
cations, pp.12–240, John Wiley & Sons, Hoboken, 1999.

[5] S. Lin, Error Control Coding: Fundamentals and Applications,
Prentice-Hall, Englewood Cliffs, NJ, 1983.

[6] D. Taipale, I.E. Scheiwe, and T.M. Redheendran, “Reed Solomon
decoding on the StarCore processor,” Motorola Semiconductors,
AN1841/D, May 2000.

[7] A. Kumar1 and K. van Berkel, “Vectorization of Reed Solomon de-
coding and mapping on the EVP,” Design, Automation and Test in
Europe, pp.450–455, 2008.

[8] J. Sankaran, “Reed Solomon decoder: TMS320C64x implementa-
tion,” Texas Instruments, SPRA686, Dec. 2000.

[9] H.M. Ji, “An optimized processor for fast Reed-Solomon encod-
ing and decoding,” IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’02), vol.3, pp.3097–3100,
2002.

[10] A. Koohi, N. Bagherzadeh, and C. Pan, “A fast parallel Reed-
Solomon decoder on a reconfigurable architecture,” First IEEE/
ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis, pp.59–64, 2003.

[11] H.M. Shao, T.K. Truong, L.J. Deutsch, J.H. Yuen, and I.S. Reed,
“A VLSI design of a pipeline Reed-Solomon decoder,” IEEE Trans.
Comput., pp.393–397, 1985.

[12] E.R. Berlekamp, “Bit-serial Reed-Solomon encoders,” IEEE Trans.
Inf. Theory, vol.IT-28, no.6, pp.869–874, Nov. 1982.

[13] D.V. Sarwate and N.R. Shanbhag, “High-speed architectures for
Reed-Solomon decoders,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol.9, pp.641–655, Oct. 2001.

[14] J. Baek and M.H. Sunwoo, “Low hardware complexity key equation
solver chip for Reed-Solomon decoders,” IEEE Asian Solid-State
Circuits Conference, pp.51–54, 2007.

[15] J. Baek and M.H. Sunwoo, “Simplified degree computationless
modified Euclid’s algorithm and its architecture,” IEEE International
Symposium on Circuits and Systems, pp.905–908, 2007.

[16] H. Lee, “High-speed VLSI architecture for parallel Reed-Solomon
decoder,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.11,
no,2, pp.288–294, April 2003.

[17] J. Hu and R. Marculescu, “Energy-and performance-aware mapping

for regular NoC architectures,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol.24, no.4, pp.551–562, 2005.

[18] L. Song, K.K. Parhi, I. Kuroda, and T. Nishitani, “Hard-
ware/software codesign of finite field datapath for low-energy Reed-
Solomon codecs,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol.8, no. 2, pp.160–172, 2000.

Bei Huang received the B.S. degree in
Electronic Science & Technology from Tianjin
University, in 2008 and received the M.S. de-
gree in Microelectronics at the ASIC & Sys-
tem State Key Lab in Fudan University in 2011,
where she is a member of the Multi-core Pro-
cessor Research & Develop group. Her research
interests include the communication system and
their VLSI architecture design, in particular, the
channel coding and decoding implementations
in both VLSI and multi-core platform.

Kaidi You received the B.S. degree in
microelectronics from Fudan University China
in 2008, and received his master degree in
microelectronics at the ASIC & System State
Key Lab of Fudan University in 2011. His
research interests include RISC processor and
multi-processor SoC.

Yun Chen received the B.S. and M.S. de-
grees in microelectronics from UESTC, China,
in 2001 and 2004, respectively, and the Ph.D.
degree from Fudan University in 2007. Dr. Chen
is currently a lecturer with the State Key Labo-
ratory of ASIC & System, Microelectronics De-
partment, Fudan University, Shanghai, China.
Her research interests include VLSI architec-
tures and integrated circuit (IC) design for com-
munications and digital signal processing sys-
tems. She serves as a member of the Techni-

cal Program Committee of the IEEE International Conference on ASIC in
2009.



HUANG et al.: A FULLY PROGRAMMABLE REED-SOLOMON DECODER ON A MULTI-CORE PROCESSOR PLATFORM
2947

Zhiyi Yu received the B.S. and M.S. de-
grees in electrical engineering from Fudan Uni-
versity, Shanghai, China, in 2000 and 2003, re-
spectively, and the Ph.D. degree in electrical and
computer engineering from the University of
California, Davis in 2007. From 2007 to 2008,
he was with IntellaSys Corporation, CA, USA,
where he participated in the design of the many-
core SEAForth chips which utilize stack-based
processors with extremely small area and low
power consumption. In January 2009 he joined

the State Key Laboratory of ASIC & System, Microelectronics Depart-
ment, Fudan University, China, where he is now an associate professor.
His research interests include high-performance and energy-efficient digi-
tal VLSI design with an emphasis on many-core processors. He serves as
a member of the Technical Program Committee of the IEEE Asian Solid-
State Circuits Conference (ASSCC) and a member of the TPC of the IEEE
International Conference on ASIC. He has published 1 book and over 20
papers, and has applied 3 patents.

Xiaoyang Zeng received the B.S. degree
from Xiangtan University, Xiangtan, China, in
1992, and the Ph.D. degree from Changchun In-
stitute of Optics, Fine Mechanics, and Physics,
Chinese Academy of Sciences, Changchun,
China, in 2001. From 2001 to 2003, he was a
Postdoctoral Researcher with Fudan University,
Shanghai, China. Then, he joined the State Key
Laboratory of ASIC and System, Fudan Univer-
sity, as an Associate Professor, where he is cur-
rently a Full Professor and the Director. His re-

search interests include information security chip design, system-on-chip
platforms, and VLSI implementation of digital signal processing and com-
munication systems.


