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SUMMARY Because of numerous circuit resources of FPGAs, there
is a performance gap between FPGAs and ASICs. In this paper, we pro-
pose a small-memory logic cell, COGRE, to reduce the FPGA area. Our
approach is to investigate the appearance ratio of the logic functions in a
circuit implementation. Moreover, we group the logic functions on the ba-
sis of the NPN-equivalence class. The results of our investigation show that
only small portions of the NPN-equivalence class can cover large portions
of the logic functions used to implement circuits. Further, we found that
NPN-equivalence classes with a high appearance ratio can be implemented
by using a small number of AND gates, OR gates, and NOT gates. On the
basis of this analysis, we develop COGRE architectures composed of sev-
eral NAND gates and programmable inverters. The experimental results
show that the logic area of 4-COGRE is smaller than that of 4-LUT and
5-LUT by approximately 35.79% and 54.70%, respectively. The logic area
of 8-COGRE is 75.19% less than that of 8-LUT. Further, the total number
of configuration memory bits of 4-COGRE is 8.26% less than the number
of configuration memory bits of 4-LUT. The total number of configuration
memory bits of 8-COGRE is 68.27% less than the number of configuration
memory bits of 8-LUT.
key words: reconfigurable logic, COGRE, NPN-equivalent classes

1. Introduction

Reconfigurable logic devices (RLDs) provide a low-cost,
low-risk implementation medium for increasingly huge and
complex systems. These systems are more flexible than
application-specific integrated circuits (ASICs) and much
faster than general-purpose processors in several application
domains [1], [2]. Field programmable gate arrays (FPGAs),
which are the most popular RLDs, are used for fine-grain
operations and can be configured for implementing vari-
ous digital circuits. Modern FPGA architectures are typi-
cally implemented in cluster-based logic blocks and island-
style routing structures, where logic blocks are employed to
group basic logic elements (BLEs). The BLEs themselves
are groups of flip-flops (FFs) and look-up tables (LUTs).
However, for many applications, FPGAs based on LUTs are
less efficient than standard cell based designs. This is be-
cause FPGAs have numerous circuit resources such as con-
figuration memory bits and selectors that are used to imple-
ment any digital circuits.

In order to narrow the performance gap between FPGA
and ASIC, many fine-grained logic cells have been proposed
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as alternative LUTs. An example of such a logic cell is Actel
multiplexer-based logic cell that has a simple structure [3].
However, when such logic cells are used together to imple-
ment larger input functions, the percentage of functions that
cannot be implemented becomes significant. QuickLogic
FPGA [4] has 30 inputs and 6 outputs, as well as numerous
AND and MUX gates. Although this logic cell offers high
logic capacity and minimal logic delay, a large portion of the
logic cell is not used. We have studied the architecture of
a variable-grain logic cell (VGLC), which has the features
of both a coarse-grained and a fine-grained logic cells [5].
A VGLC delivers good performance until the technology
mapping phase. Conversely, a routing problem arises ow-
ing to the input/output pin overhead in the VGLC. Based on
these previous study, we focus on the following two points
to overcome these issues.

• Logic block functionality: The total number of logic
blocks can be reduced by increasing the functionality
per unit logic block. However, it is important to inhibit
increasing the logic area and the number of configura-
tion memory bits in a logic block.
• Number of logic block input/output pins: Generally,

the routing area increases with the number of input/
output pins in a logic block [6]. As long as an island-
style routing structure is employed, it is meaningless
if the total number of input/output pins increases more
than the number of LUT-based logic cell’s input/output
pins.

On the basis of these two points, we developed a
novel compactly organized generic reconfigurable element
(COGRE) logic cell [7]. The key feature of COGRE is
its architecture that helps reduce the logic area and the
number of configuration memory bits by considering NPN-
equivalence [8] functions. An analysis of the synthesized
benchmarks indicates that a large percentage of functions in
an LUT level netlist are specific NPN-equivalence classes.
COGRE can only implement high-appearance-ratio logics,
as seen in this analysis. Similar to an N-LUT, N-COGRE
requires at most N inputs. Moreover, a conventional CAD
tool set can still be used for COGRE with minor modifica-
tions. In this paper, we extended our work in [7] to further
reduce the number of configuration memory bits and area
by applying a cluster-based logic block. We also compare
the efficiency and effectiveness of our logic cell with those
of the LUT architectures.
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The rest of the paper is organized as follows. Section 2
discusses the COGRE architecture and CAD flow. Section 3
describes the evaluation process, and Sect. 4 presents a dis-
cussion on the results obtained herein. Section 5 describes
related research works. Finally, Sect. 6 includes the conclu-
sions of this study and provides an overview of our future
research plan.

2. Logic Cell Design

To design small and efficient logic cells, we must know the
nature of the logic functions used for circuit implementa-
tion. In this section, we report the investigation of the ap-
pearance ratio of logic functions in circuit implementation.
We then propose a logic cell architecture for area minimiza-
tion.

2.1 LUT-Based FPGA

An SRAM-based FPGA is typically a two-dimensional ar-
ray of configurable logic blocks (LBs) that are intercon-
nected by connection modules, wires, and a switch mod-
ule. An LB comprises one or more BLEs, where the truth
tables of the implemented functions are stored in SRAM ta-
bles. The structure of a cluster-based LB, which is used in
our work, is shown in Fig. 1 (a). An LB comprises exter-
nal inputs, clocks, outputs, and BLEs. The multiplexers in
the LB provide arbitrary connections from the external in-
puts of the LB and the outputs of the BLEs to the inputs of
any BLE. Additionally, the structure of a BLE is shown in
Fig. 1 (b). It consists of a three-input LUT, a D flip-flop, and
a 2:1 MUX that enables the transfer of the data to the ouput
of the BLE, either from the flip-flop or directly from the
LUT. Previously, the internal connections in a cluster LB
were assumed to be fully connected, where each BLE input
could come from any cluster input or feedback connection.
An N-input LUT can generally implement any N-input logic
function. However, 2N configuration memory bits and 2N−1
MUXes are required for an N-input LUT.

2.2 NPN-Equivalence Class

Before discussing the appearance ratio of logic functions,
we must explain an important concept, the NPN-equivalence
class [8], for classifying the logic functions.

Definition (NPN-Equivalence): Given two functions
F and G, if function F can be derived from G by negating
(N) and/or permuting (P) some inputs and/or by negating
(N) the output, functions F and G are NPN equivalent and
belong to the same NPN-equivalence class.

We consider the logic functions shown in Fig. 2, for
example. Given a function Y1 = A + BC, if we permute A
and B, we obtain a function Y2 = B + AC. If we negate the
some or all inputs of Y1, we obtain functions such as Y3 and
Y4. If the output is negated, we can obtain Y5. Finally, Y6 =

B + AC is obtained by negating all inputs, permuting inputs
A and B, and negating the output of Y1. In other words,

Fig. 1 Structure of (a) Logic block and (b) Basic Logic element.

Fig. 2 Example of NPN-equivalence Class: (a) Original function; (b)
Input permutation; (c) Input negation; (d) All inputs negation; (e) Output
negation; (f) Inputs negation, inputs permutation, and output negation.

functions Y1-Y6 are NPN equivalent. It should be noted
that for the above mentioned example functions, a total of 48
logic functions belong to the same NPN-equivalence class.
Generally, there are at most 2(N+1) ·N! distinct functions that
belong to the same NPN-equivalence class for an N-input
function. In this expression, 2(N+1) indicates the negation of
the inputs and the output, and N! indicates the permutation
of the inputs.

2.3 Appearance Ratio of Logic Functions

To determine the appearance ratio of the logic functions
in a circuit implementation, we perform technology map-
ping of several benchmark circuits and count the logic func-
tions that are implemented as LUTs. In this investigation,
mapping is performed using a priority-cut-based LUT map-
per [9]. This mapping tool is implemented on an ABC plat-
form developed by the University of California, Berkeley
(UCB) [10]. Moreover, we prepare 120 MCNC circuits [11]
as our benchmark.

Table 1 lists the appearance ratios of the logic functions
obtained by the 4-LUT-based technology mapping. These
logic functions are ranked in the descending order of their
appearance ratios. In this table, the input variables of the
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Table 1 Appearance ratio of 4-input logic functions.

Rank Logic Function Appearance Ratio [%]
1 ABCD 40.0
2 AB(C + D) 13.5
3 A(B +C + D) 10.5
4 A(B +CD) 9.6

5 A + BC + BD 6.0
6 AB +CD 5.4

7 AB + ACD 2.7
- Others 12.3

logic functions are represented by A, B, C, and D. It should
be noted that we group logic functions that belong to the
same NPN-equivalence class. This is because these logic
functions are supposed to have a similar structure.

The total number of NPN-equivalence classes of 4-
input logic functions is 222. As shown in Table 1, the top 7
NPN-equivalence functions cover 87.7% of the logic func-
tions implemented by 4-LUTs. In other words, 87.7% of
the 4-input logic functions can be implemented by using
logic cells that cover only 7 out of the 222 NPN-equivalence
classes. By effectively using the abovementioned appear-
ance ratios of the logic functions, we can design highly effi-
cient logic cells.

2.4 Proposed 5-Input Logic Cell

First, we find that implementing the top 7 logic func-
tions listed in Table 1 needs a maximum of four 2-input
AND and/or OR gates and one NOT gate. Moreover, be-
cause AND gates and OR gates belong to the same NPN-
equivalence class, we can interchange these 2-input logic
gates by inverting their inputs and an output.

On the basis of this assumption, we propose a 5-input
logic cell, namely 5-COGRE, as shown in Fig. 3. The
COGRE stands for compactly organized generic reconfig-
urable element. In this figure, the NOT gates indicate
programmable inverters that are inverting or non-inverting
buffers depending on the configuration memory bit. Actu-
ally, when the output of one COGRE cell is connected to
another COGRE’s input, the output programmable inverter
can be redundant. Hence, the output programmable inverter
does not real exist. And for the adjustment of primary out-
put signals, we place programmable inverters in I/O pads
instead. By using 5-COGRE, we can implement the top 7
logic functions listed in Table 1. It is found that, this 5-
COGRE can cover 93.4% of the logic functions in bench-
marks implemented as LUTs (for 4 or less input functions).
Since 5-COGRE can implement any 2-input logic function,
more than 2-input functions that cannot be covered are di-
vided into 2-input logic and then mapped to COGRE. How-
ever, the COGRE architecture cannot implement full adder
for arithmetic circuits efficiently like LUT in commercial
FPGAs, because 3-XOR is needed while the COGRE can-
not provide. We are planning to improve this in the future
work.

Generally, a conventional 4-LUT requires 16 config-

Fig. 3 Proposed 5-COGRE logic cell.

uration memory bits for implementing 4-input logic func-
tions. On the other hand, 5-COGRE requires only 8 con-
figuration bits. In other words, the number of configuration
bits required by 5-COGRE is half of that required by 4-LUT.
In addition, 5-COGRE can implement several 5-input logic
functions. These 5-input logic functions are very useful ow-
ing to the fact that they have a relatively high appearance
ratio.

Because 5-COGRE has five input pins, we require spe-
cial handling methods to implement 4-input logic functions,
such as bridging or constant assignment (e.g, H-level or L-
level logic) of input pins [12]. To carry out constant assign-
ment, we require both the VDD and the GND signals. How-
ever, we can omit either the VDD signal or the GND signal
because we can generate the omitted signal by using pro-
grammable inverters connected to the input pins. Clearly,
these operations can be used to implement 3 or a lesser num-
ber of input logic functions.

2.5 COGRE Class

On the basis of the concept of 5-COGRE, to adapt to various
input logic functions, we proposed an input extension model
of the COGRE permutable logic part. An N-input COGRE
structure is called N-COGRE, and all COGRE logic cells
are named the COGRE class. It is important to note that
our method of designing logic cells with a tree structure is
applicable to logic functions with different input sizes. We
simply need to vary the levels of the tree of programmable
inverters and NAND gates to design different logic cells. In
order to obtain a minimum critical path delay, we have to
design N-COGRE in least logic levels. Therefore, the logic
depth of the N-input logic is �logN�. Examples of 4- and 6-
to 8-input COGREs are shown in Fig. 4.

We also investigated the appearance ratio of 6-input
logic functions in the same manner as we did for 5-COGRE.
The data shows a similar result; in other words, small por-
tions of NPN-equivalence class can cover large portions of
the logic functions that are used to implement circuits. How-
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Fig. 4 Other COGRE permutable logics.

ever, as the number of inputs increases, the logic functions
grow exponentially. Therefore, in this research, we only ex-
plore the 8-input COGRE at most.

2.6 CAD Tools for Proposed Logic Cells

To implement various applications into our COGRE archi-
tecture, we require several CAD tools. It should be noted
that we can also use the existing CAD tools after minor mod-
ifications. However, unlike LUT-based FPGAs, COGREs
require special technology mapping tools because COGREs
can implement only a subset of logic functions. For this
reason, we have developed a library-based technology map-
ping tool, as in [13]. This technology mapping tool is based
on a priority-cut-based LUT mapper [9]. We have created a
library that includes implementable NPN-equivalence class
representatives for each COGRE. This library is required
for determining whether a given target function is imple-
mentable or not. In addition, we use an efficient boolean
matcher [14] to generate NPN-equivalence class representa-
tives.

3. Evaluation Method

We evaluate 4 types of LUTs and 4 types of COGREs to
show the efficiency of our architecture. In particular, we
evaluate the area, the total number of routing tracks, the total
number of configuration memory bits, and the critical path
delay. In this section, we first describe the evaluation flow
and then introduce the architectural model.

Fig. 5 Evaluation flow.

Table 2 20 largest MCNC benchmark circuits.

alu4 apex2 apex4 bigkey clma
des diffeq dsip elliptic ex1010

ex5p frisc misex3 pdc s298
s38417 s38584.1 seq spla tseng

3.1 Evaluation Flow

Figure 5 shows the evaluation flow. This flow is typically
a CAD flow for circuit implementation on a cluster-based
island-style FPGA. We use the 20 largest MCNC circuits
listed in Table 2 as the benchmark set. The details of our
modified technology mapping tool are described in Sect. 2.6.
Further, we use the original T-VPack [15] to perform clus-
tering and VPR 5.0 [16] to place and route circuits. Finally,
we evaluate the target architectures by analyzing the reports
derived from VPR.

Some points concerning the use of VPR should be ex-
plained here. We perform VPR multiple times for each cir-
cuit. After the first time, we obtain an initial channel width
on the basis of which we change the delay of the connection
box (CB) in the architecture file. The structure of the CB is
determined on the basis of the channel width and the inputs
of the LB. We obtain the delay of the CB by synthesizing it
with a standard cell library. After the second time, we ob-
tain a reasonable channel width which we multiply by 1.2 to
obtain the channel width of the final VPR process. Again,
the delay of the CB in the architecture file is changed. In
the final VPR process, we perform placement by using 10
different VPR seeds for each benchmark circuit. The final
result is obtained by taking the average of the 10 results.

As we mentioned in Sect. 2.4, because we have saved
the output programmable inverter, we have to add an output
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Fig. 6 I/O block (a) I/O block overview (b) Boundary buffer part for LUT
(c) Boundary buffer part for COGRE.

programmable inverter to each I/O block. For both COGRE
and LUT device architecture, a boundary buffer part is at-
tached to each I/O block. Figure 6 (a) shows the structure
of I/O block and boundary buffer part. Figure 6 (b) and (c)
show boundary buffer parts for LUT and COGRE architec-
ture, respectively. The data in and data out signals are con-
nected to routing tracks of reconfigrable logic array.

3.2 Logic Block Structure

Conventional FPGAs adopt a cluster-based architecture to
improve performance [17]. By packing several near logics
into single LB, the local connections within a cluster are
much faster than global routings. In this evaluation, we
assume the cluster architecture with size of 4, which are
adopted in several conventional FPGAs. Figure 7 shows the
cluster structure. One BLE consists of K-input COGREs,
D-FFs, and an output-selection MUX. The number of clus-
ter inputs I is determined by I = K

2 × (N + 1) [18]. Where,
K is the number of logic cell inputs, and N is the cluster
size. Several input-selection MUXes select the cluster in-
puts, cluster outputs, or the GND signal to the input pins
of the COGRE BLE. It should be noted that this GND sig-
nal is required for the constant assignment of the COGRE
input pins so that some relative logic functions can be im-
plemented.

The LUT architectures are also based on a similar clus-
ter structure. The only difference is that the GND signal for
the input-selection MUXes is not required. Because LUTs
can implement any logic function, the constant assignment
of input pins is not necessary.

3.3 Area and Delay Model

We synthesize both COGREs and LUTs using Synopsys De-
sign Compiler with e-Shuttle 1.2 V, 65 nm CMOS technol-
ogy standard cell library. The physical parameters of area,
delay, and the number of configuration memory bits of all
target architectures are listed Table 3. These parameters are
used in the FPGA architecture description file in VPR. For
the routing architecture, we use wilton style SB, whose Fs
is set to 3. The value of Fc of CB is set to 0.5. The val-
ues of R and C of routing wire segment are calculated from
the area of one tile. It should be noted that CBs and switch

Table 3 Summary of area, delay, and number of configuration memory
bits.

BLE Logic Cluster (including 4 BLEs)

Area
[µm2]

Delay
[ps]

# of
conf. bits

Area
[µm2]

Delay
[ps]

# of
conf. bits

4-LUT 377.76 127.14 17 2,778.24 230.05 132

5-LUT 759.84 149.75 33 4,690.56 265.22 212

6-LUT 1,392.48 167.08 65 7,977.60 300.22 380

7-LUT 2,265.12 195.64 129 12,044.16 345.42 656

8-LUT 4,471.20 236.36 257 21,555.84 373.71 1,188

4-COGRE 103.68 116.01 7 1,681.92 218.92 92

5-COGRE 161.28 132.42 9 2,449.92 257.91 136

6-COGRE 216.00 137.07 11 3,271.68 270.21 164

7-COGRE 264.00 136.67 13 4,039.68 286.45 192

8-COGRE 314.40 137.36 15 4,928.64 274.71 220

Fig. 7 Structure of logic cluster comprising 4 BLEs.

boxes (SBs) for the routing structures are also synthesized
under the same condition. We do not show the values here
because they vary with the channel width of different cir-
cuits. In the I/O blocks, we only consider the area and delay
of the buffer part. The elimination of the custom part which
includes analog circuits does not affect our evaluation, be-
cause the structure of the custom part is the same for both
LUT and COGRE,

The first part of Table 3 corresponds to the model of
BLE. Each BLE includes a D-FF, an output-selection MUX,
and all the configuration memory bits. It is important to note
that output-selection MUX uses one bit of memory. More-
over, all the configuration memory bits are evaluated with
D-latches. The delay shown in this table is a combinational
delay from the input to the output of the BLE.

The second part of Table 3 includes the model of a clus-
ter, as shown in Fig. 7. This model includes 4 BLEs, input-
selection MUXes, and the configuration bits for MUX con-
trol. The delay is the logic delay from the input of a cluster
to the output of the output-selection MUX.

We speculate that the actual FPGAs are designed using
pass-transistor MUXes and that the configuration memory
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bits are the manufactured SRAM cells. However, detailed
constitution and area are not opened. Although [19] sug-
gests the use of the LB area, the present study includes a
routing region that has a large number of tracks. For this
reason, we believe that a fair comparison can be made by
using the standard cell information.

4. Experimental Results

4.1 Implementation Area

Figure 8 shows the logic area evaluation for each individual
benchmark. The data is normalized by the performance of
4-LUT. In this figure, the logic area of 4-COGRE is smaller
than that of 4-LUT and 5-LUT by approximately 35.79%
and 54.70%, respectively. The logic area of 8-COGRE is
approximately 75.19% smaller than that of 8-LUT. For ap-
plications that require better area efficiency, the 5-COGRE
performs the best.

Figure 9 shows the total number of routing tracks for
each individual benchmark. The data is normalized by the
performance of 4-LUT. As seen in this figure, the total
number of routing tracks of 4-COGRE exceeds that of 4-
LUT and 5-LUT by 3.71% and 9.65%, respectively. Further,
the total number of routing tracks for 8-COGRE is almost
11.72% greater than that for 8-LUT. These results show
similar findings to those of the routing area evaluation.

Figure 10 shows the total area for each individual
benchmark. The data is normalized by the performance of
4-LUT. The total area includes the logic area and the rout-
ing area. These areas are calculated by multiplying the logic
or the routing area of one tile by array size × array size,
which are introduced in the previous section. In this figure,
the total area of 4-COGRE is smaller than that of 4-LUT
and 5-LUT by approximately 17.55% and 30.38%, respec-
tively. The total area of 8-COGRE is approximately 67.56%
smaller than that of 8-LUT. We can see that although the
number of routing tracks of COGREs is greater than that
of LUTs, which will lead to a larger routing area, the to-
tal area of COGREs is still smaller than that of LUTs for
better logic area performance. The logic area of N-LUT is
O(2N). On the other hand, the logic area of N-COGRE is
only O(N). This means that when the number of inputs in-
crease, the logic area of LUTs increases exponentially while
that of COGREs increases linearly. Therefore, the logic area
advantage of the proposed COGRE architecture is more sig-
nificant when implementing larger input logic cells.

4.2 Total Number of Configuration Memory Bits

Figure 11 shows the total number of configuration memory
bits for each individual benchmark. The data is normalized
by the performance of 4-LUT. This number is the product
of the array size and the number of configuration memory
bits per unit tile, which includes a logic block, an SB, and
a CB. It should be noted that the number of memory bits
of the SBs and CBs depends on the channel width. In this

Fig. 8 Logic area.

Fig. 9 Total number of routing tracks.

Fig. 10 Total area.

evaluation, we assume that in SBs and CBs are built with
standard cell MUXes, and not two-level MUXes [20] that
are used in VPR, because our area evaluation is based on
the standard cell library.

As shown in Fig. 11, the total number of configuration



300
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Fig. 11 Total number of configuration memory bits.

Fig. 12 Critical path delay.

bits of 4-COGRE is approximately 8.26% and 15.61% less
than that of 4-LUT and 5-LUT, respectively. Moreover, the
total number of configuration memory bits for 8-COGRE
is approximately 68.27% less than that for 8-LUT. We can
clearly see that COGREs use less configuration memory bits
than LUTs. For applications that require less configuration
bits, the 5-COGRE performs the best on average. How-
ever, several results show that the total number of config-
uration memory bits for 8-COGRE is less than that of 5-
COGRE. Similar to the logic area performance, the config-
uration memory bits of the logic cell of N-LUT are O(2N),
those of the logic cell of N-COGRE are only O(N). More
configuration memory bits can be saved by using COGRE
when implementing larger input logic cells.

4.3 Critical Path Delay

Figure 12 shows the critical path delay for each individual
benchmark. As shown in this figure, the delay for 8-COGRE
is approximately 22.44% greater than that for 8-LUT. How-
ever, the delay for 8-COGRE is approximately 22.02% less
than that for 4-LUT. Further, the delay in 4-COGRE is ap-

Fig. 13 Average area delay product.

proximately 7.71% greater than that in 4-LUT and 20.65%
greater than that in 5-LUT. These results vary considerably
depending on the benchmark circuits. For applications that
require better speed efficiency, 8-COGRE performs the best
in the COGREs.

4.4 Area Delay Product

Figure 13 shows the average area delay product for each
evaluated target architecture. The data is normalized by the
performance of 4-LUT. In this figure, the area delay prod-
uct of 4-COGRE is smaller than that of 4-LUT and 5-LUT
by approximately 10.82% and 16.09%, respectively. The
area delay product for 8-COGRE is approximately 59.29%
smaller than that for 8-LUT. For applications that require
better balance between area and delay, the 5-COGRE per-
forms the best. The results show that each COGRE archi-
tecture has better area delay product performance than LUT
with the same number of inputs. Moreover, the area delay
product of LUTs decreases quickly with an increase in in-
put N. On the other hand, COGREs have better structure
balance so their area delay product does not change much
from 4- to 8-COGRE.

The area delay product shows the performance based
on the consideration of both the area and the delay. We can
see that although the speed of COGREs is slower than that
of LUTs on an average, the area delay product shows signif-
icant improvement because of COGRE’s better area perfor-
mance.

5. Related Studies

To reduce the circuit resources, several researchers have at-
tempted to design logic blocks that are more compact than
conventional LUTs. Kimura et al. [21] proposed a folding
method of logic functions for reducing the number of con-
figuration memory bits. This architecture will be used to
implement arithmetic functions, rather than a more general
logic circuit. Other researchers have designed compact logic
blocks on the basis of the concept of NPN equivalence [14].
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Meyer and Kocan [1] proposed a novel logic block architec-
ture, in which the configuration SRAMs of LUTs are shared
among NPN-equivalent functions to reduce the number of
configuration memory bits. Because the structures of these
logic blocks are constructed on the basis of conventional
LUTs, significant improvement was not achieved. [12],
[22], and [23] include methods for designing new univer-
sal logic modules (ULMs), which use the concept of NPN-
equivalence. In [23], the proposed 4-input ULM is com-
posed of only 13 configuration memories. However, these
logic cells described only four inputs and did not evaluate
the result of placement and routing. In [24], Hu et al. pro-
posed a heterogeneous programmable logic block using a
combination of LUTs and macrogates. They presented a
method for extracting a small set of logic functions that can
implement large portions for the given FPGA applications.
By using this report, they developed the macro-gates that
could cover many logic functions used in the circuit imple-
mentation. However, they did not focus on the final place-
ment and routing results.

6. Conclusion

In this paper, we propose a small-memory logic cell named
COGRE that helps minimize the chip area. Our approach
is to investigate the appearance ratio of the logic functions
in a circuit implementation. Moreover, we group the logic
functions on the basis of the NPN-equivalence class. The
results of our investigation show that only small portions
of the NPN-equivalence class can cover large portions of
the logic functions used to implement circuits. Further, we
found that NPN-equivalence classes with a high appearance
ratio can be implemented by using a small number of AND
gates, OR gates, and NOT gates. On the basis of this obser-
vation, we develop N-COGRE architectures composed of
several NAND gates and programmable inverters.

The experimental results show that the logic area of
4-COGRE is smaller than that of 4-LUT and 5-LUT by ap-
proximately 35.79% and 54.70%, respectively. The logic
area of 8-COGRE is 75.19% less than that of 8-LUT. Fur-
ther, the total number of configuration memory bits of 4-
COGRE is 8.26% less than the number of configuration
memory bits of 4-LUT. The total number of configuration
memory bits of 8-COGRE is 68.27% less than the number
of configuration memory bits of 8-LUT.

In the future, we will investigate the effectiveness of
our cluster architecture. Because each n-COGRE cannot
implement all logic functions, the logic depth evaluation
showed a worse result than that of LUT-based logic cell. For
example when implementing a full adder, more logic cells
are needed by COGRE than LUT. Actually, the COGRE
performs not much efficiently for arithmetic applications
yet. To overcome this disadvantage, we will introduce a
cluster structure with a combination of COGREs and LUTs.
In addition, we will study the heterogeneous COGRE clus-
ter.
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