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Test Pattern Ordering and Selection for High Quality Test Set
under Constraints

Michiko INOUE†a), Member, Akira TAKETANI†∗, Nonmember, Tomokazu YONEDA†b), Member,
and Hideo FUJIWARA††, Fellow

SUMMARY Nano-scale VLSI design is facing the problems of in-
creased test data volume. Small delay defects are becoming possible
sources of test escapes, and high delay test quality and therefore a greater
volume of test data are required. The increased test data volume requires
more tester memory and test application time, and both result in test cost
inflation. Test pattern ordering gives a practical solution to reduce test cost,
where test patterns are ordered so that more defects can be detected as early
as possible. In this paper, we propose a test pattern ordering method based
on SDQL (Statistical Delay Quality Level), which is a measure of delay test
quality considering small delay defects. Our proposed method orders test
patterns so that SDQL shrinks fast, which means more delay defects can be
detected as early as possible. The proposed method efficiently orders test
patterns with minimal usage of time-consuming timing-aware fault simu-
lation. Experimental results demonstrate that our method can obtain test
pattern ordering within a reasonable time, and also suggest how to prepare
test sets suitable as inputs of test pattern ordering.
key words: small delay defects, SDQL, ATPG

1. Introduction

Nano-scale VLSI design is facing the problems on increased
test data volume. Small delay defects such as resistive-
opens and resistive-shorts are becoming possible sources of
test escapes [1]. Therefore, high quality test for small de-
lay defects is required, and several approaches have been
proposed [2]. High delay test quality and, in addition, in-
creased circuit size require more test data volume, and there-
fore more tester memory and test application time, and these
result in test cost inflation.

Test pattern ordering gives a practical solution to re-
duce test cost, where test patterns are ordered so that more
defects can be detected as early as possible [3]–[9]. The or-
dered test patterns can be used 1) to reduce test data volume
to satisfy a given constraint with minimal impact on defect
detection by removing the later part of test patterns, or 2) to
reduce test application time for defective chips in stop-on-
first-failure testing strategy. The previously proposed meth-
ods address how to detect defective chips with small number

Manuscript received May 9, 2012.
Manuscript revised August 20, 2012.
†The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan. Also with Japan Science and Technology Agency,
CREST, Tokyo, 102–8666 Japan.
††The author is with the Faculty of Informatics, Osaka Gakuin

University, Suita-shi, 564–8511 Japan.
∗Presently, with the Takenaka Corporation.

a) E-mail: kounoe@is.nasit.jp
b) E-mail: yoneda@is.naist.jp

DOI: 10.1587/transinf.E95.D.3001

of patterns, and some of works address test pattern ordering
considering small delay defects.

Chao et al. [7] proposed a test pattern selection method
for timing defects. Their method considers process varia-
tion using a probability density function for each pin-to-pin
segment (between output or input pins of gates), and eval-
uates test patterns based on critical probability. A segment
is critical if an arrival time of some primary output exceeds
the system clock period by a given fixed size delay defect
of the segment. Though their method considers the pro-
cess variation, test patterns are evaluated under a fixed de-
fect size. To handle various defect sizes, the method using
time-consuming Monte-Carlo simulation have to be applied
repeatedly.

Yilmaz et al. proposed test set pattern grading and se-
lection method for small delay defects [9]. They leverage
the method of output deviations [10] for screening small-
delay defects. Their method calculates gate delay defect
probabilities for a predetermined fixed size delay based on
a probability density function of a delay distribution, and
it then obtains signal-transition probabilities of observation
points (outputs) for each test pattern by propagating the
probabilities from the test application points. They select
test patterns from the largest deviations for each output,
where the deviation means a probability that the output does
not have the expected signal-transition. In the method, they
select test patterns in the order of the deviation, and do not
consider any cumulative effect of a selected test set. The
authors also proposed a time-efficient evaluation metric to
avoid time-consuming timing-aware simulation. The se-
lected test sets are evaluated by the number of sensitized
long paths, where a long path is a path with at least 70%
of the clock period. This metric evaluates test patterns with
whether they activate long paths or not.

SDQM (Statistical Delay Quality Model) is proposed
to evaluate test quality for small delay defects [11], [12]. It
evaluates not only test pattern quality but also quality of
fabrication, design and test timing, and it is adopted as a
measure for timing-aware test generation in several EDA
tools [13]–[15]. SDQL (Statistical Delay Quality Level) is
a delay test measure based on SDQM. For a given circuit,
SDQL of a test set represents a total amount of delay defects
that have to be detected but cannot be detected by the test set.
SDQL evaluates the minimum delay defect size detected by
a test set, and obtains an amount of delay test escape by con-
sidering statistical delay defect distribution. Though SDQL
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is promising as a delay test quality measure, timing-aware
ATPG and fault simulation based on SDQL tend to take long
CPU time. In addition, a test set based on SDQL becomes
large compared with test sets targeting other fault models.

In this paper, we address the problem of ordering test
patterns based on SDQL. Using SDQL, we address the
problem to order test patterns so that, when appending test
patterns in the obtained order to an initially empty test
set, each additional test pattern achieves maximal reduc-
tion of SDQL. The problem considers a cumulative effect
of SDQL, that is, SDQL shrinks fast when test patterns are
applied in that order. Since SDQL directly represents an
amount of test escape, and hence an amount of detectable
delay defect, it is a suitable metric for test pattern ordering.
This is different from the previous works since a selected
test set is optimized only for a fixed defect size in [7] and
[9].

In our test generation flow, we first generate a test set
called a base test set using existing ATPG and order test pat-
terns in the set. We propose a test pattern ordering method
for a given base test set. The proposed method orders test
patterns based on the lengths of sensitized paths, those are
efficiently evaluated and correlated with SDQL. The pro-
posed method avoids to apply time-consuming SDQL eval-
uation repeatedly, and therefore, orders test patterns within
a reasonable time. In the experiments, we demonstrate the
efficiency of the proposed test pattern ordering method, and
also evaluate ATPG methods as base test set generators.

The rest of the paper is organized as follows. We intro-
duce SDQM and SDQL in Sect. 2, and introduce the prob-
lem on test pattern ordering in Sect. 3. We then propose
a test pattern ordering method in Sect. 4. Experimental re-
sults are given to evaluate the proposed test pattern ordering
method and ATPG methods for base test set generation in
Sect. 5. Finally, Sect. 6 concludes this paper.

2. Statistical Delay Quality Model (SDQM)

In this section, we introduce SDQM (Statistical Delay Qual-
ity Model) and SDQL (Statistical Delay Quality Level) pro-
posed by Sato et al. [11], [12]. SDQM is proposed to evalu-
ate test quality based on a delay defect distribution function
which is derived from fabrication process. SDQL is a delay
test quality measure that shows an amount of delay defects
that should be detected but cannot be detected by a given
test set and test timing.

SDQM considers rising and falling delay faults on each
of input and output pins of each gate. Though the number
of faults is the same as transition faults, a delay defect size
is associated with each fault. SDQM considers delay defect
sizes that should be detected and can be detected by a given
test set and test timing. Let us consider an example shown
in Fig. 1. Assume each gate has a delay of 1 ns and test
timing is 5 ns. Test timing is an elapsed time from when test
pattern is applied to primary inputs to when the responses
are observed at primary outputs. In Fig. 1 (a) and (b), a rising
fault f of the output of a gate G is detected. The path from

Fig. 1 Lengths of sensitized paths and detectable delay defect size.

Fig. 2 Timing relations for the two types of paths.

a primary input PI2 to a primary output PO1 is sensitized in
Fig. 1 (a) (a transition 0 to 1 applied at PI2 is propagated to
PO1 through the path), while the path from a primary input
PI5 to a primary output PO2 is sensitized in Fig. 1 (b). The
lengths of the paths are 4 ns and 3 ns, respectively†. Since
the test timing is 5 ns, a test pattern in Fig. 1 (a) detects delay
defect of f if the size exceeds 1 ns, while Fig. 1 (b) detects
delay defect of f if the size exceeds 2 ns. That is the test
pattern in Fig. 1 (b) could not detect a small delay defect less
than 2 ns though it may affect system behavior.

Figure 2 shows a concept of delay defect sizes that
should be detected and can be detected by a given test set.
Let f be a fault, and let LA and LB be the lengths of the
longest true path passing through f and the longest path
passing through f that is actually sensitized by the given
test set, respectively. The true path is defined as a path that
is designed to keep timing constraints. Let TMC and TC be
system clock timing and test timing, respectively. The dif-
ference T f

mgn = TMC − LA is the minimum delay defect size
that can affect system behavior and therefore should be de-
tected. The difference T f

det = TC − LB is the minimum delay
†In this paper, a length of a path means an accumulated delay

of the path.
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Fig. 3 SDQL for one fault.

defect size that can be actually detected by the given test set.
The SDQL for a given test set is defined as follow,

where N is a set of faults and F(s) is a delay defect dis-
tribution function of delay defect of size s.

SDQL =
∑
f∈N

∫ T f
det

T f
mgn

F(s)ds (1)

It shows the total delay test quality of the chip based on the
delay defect test escapes. A shadow area in Fig. 3 shows
an amount of delay defect for one fault escaped during test.
The SDQL is the total amount of such test escapes for the
total faults. Therefore, smaller SDQL means better delay
test quality.

3. Test Pattern Ordering

In this paper, we propose a method to order test patterns so
that SDQL shrinks fast. We first formalize the problem with
the desired input/output relationship.

Test Pattern Ordering Problem
Input: a set P of n test patterns and a circuit
Output: a sequence of test patterns such that, for any i (1 ≤
i ≤ n), i-th pattern achieves maximal reduction of SDQL
among the last n − i + 1 test patterns when it is added to a
test set of the first i − 1 test patterns

When we apply the test patterns in the obtained order,
more defects can be detected as early as possible. We can
use the result for test pattern selection problems under some
constraints as follows.

Minimizing SDQL under Pattern Count Constraint
Input: a circuit, a set P of test patterns and an integer m
Output: a subset of P with the minimum SDQL among any
subsets with m or less test patterns

Minimizing Pattern Count under SDQL Constraint
Input: a circuit, a set P of test patterns and a real number Q
Output: a subset of P with the minimum number of test pat-
terns among any subsets with SDQL of Q or less

For both problems, we first generate a test set according
to some criteria, and then order the generated test patterns.
For the former problem, the first m test patterns in the ob-
tained order give a good solution. For the latter problem, we
can obtain a good solution by selecting test patterns in the
obtained order until a selected test set satisfies a constraint
on SDQL.

4. The Proposed Test Pattern Ordering Methods

In this section, we propose a method to solve the Test Pattern
Ordering Problem. To solve the problems of the Minimiz-
ing SDQL under Pattern Count Constraint or the Minimiz-
ing Pattern Count under SDQL Constraint, we first generate
a test set called a base test set. We will consider how to
generate a base test set as an input of test pattern ordering
later.

4.1 Ordering by Simulation

We first consider a straightforward method to solve the prob-
lem using timing-aware fault simulation that can evaluate
SDQL. We call the method OrderBySimulation.

OrderBySimulation
P: a given test set
S : a sequence of test patterns, initially S is an empty sequence
1. Repeat Steps 2 and 3 until P = ∅
2. For each p ∈ P, calculate SDQL by simulation

for a test set consisting of patterns in S and p
3. For p with the minimum SDQL,

delete p from P, and append p to S

Let Pbase be a base test set. The above OrderBySimu-
lation requires fault simulation |Pbase|−(i−1) times to obtain
SDQL to select the i-th test pattern. Therefore, fault simula-
tion is applied

∑|Pbase |
i=1 (|Pbase| − (i − 1)) = 1

2 |Pbase|(|Pbase| + 1)
times. In general, timing-aware fault simulation to obtain
SDQL is time-consuming. In timing-aware fault simulation,
it cannot be accelerated by fault dropping like fault simula-
tion to evaluate fault coverage. In case of fault simulation
for fault coverage, once some fault is detected by some test
pattern, the fault does not need to be cared by remaining test
patterns. However, in fault simulation for SDQL, we have
to consider not only detection but also the length of a sensi-
tized path, and a fault can be dropped when it is detected by
some test pattern with the longest true path passing through
the fault. Therefore, fault simulation for SDQL treats many
faults for every test pattern.

We examined CPU time required for fault simulation
for ITC benchmark circuits. We used DesignComplier
(Synopsys) for logic synthesis, PrimeTime (Synopsys) for
static timing analysis, TetraMAX (Synopsys) for test pat-
tern generation and fault simulation and SunFireX4100 with
AMD Opteron256 3.0 GHz and 16 GB memory (Oracle).
Table 1 shows circuit characteristics after logic synthesis
and test generation results. In the table, the columns “CP”,
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Table 1 Circuit characteristics and timing-aware test generation results.

circuit #gates #FFs TMC (ns) CP (ns) #faults #patterns TGT (s) FC (%) FE (%) SDQL B in F(s)

b04 1,025 66 0.73 0.63 2,620 124 2.20 67.37 85.57 126.66 3.14
b12 1,730 121 0.55 0.46 4,794 698 6.71 88.40 91.20 51.27 4.22
b13 643 51 0.56 0.44 1,262 97 0.45 72.98 84.79 16.42 4.08
b14 8,460 215 3.27 2.94 22,904 1,325 2,429.06 84.27 86.74 8,497.64 0.70
b15 8,983 417 1.93 1.74 26,428 1,793 439.21 79.00 84.21 1,993.73 1.19
b17 27,766 1,317 1.93 1.74 80,612 5,745 2,193.66 85.96 88.17 5,654.23 1.19
b18 79,401 3,020 3.24 2.91 223,312 13,030 32,898.94 80.82 83.22 32,453.11 0.71
b19 152,599 6,042 3.24 2.91 433,410 24,058 103,917.61 81.24 83.04 63,921.51 0.71
b20 17,546 430 3.26 2.93 46,538 3,894 14,542.42 94.13 95.39 15,001.30 0.71

Table 2 CPU time of fault simulation(s).

circuit transition SDQL

b04 0.03 0.27
b12 0.14 3.29
b13 0.01 0.08
b15 1.98 86.30
b17 18.86 390.70
b18 185.07 5,501.43
b19 719.72 19,992.62
b20 12.87 1,504.55

“TGT”, “FC”, and “FE” are critical path length, test gener-
ation time, fault coverage, and fault efficiency, respectively.

Test patterns were generated under launch-on-capture
(LoC) clocking scheme. TetraMAX Small Delay Defect
Test mode are used for timing-aware test generation and
fault simulation. We provided a delay defect distribution
function F(s) to TetraMAX in the form described as Eq. (2).

F(s) = A · e−Bs +C (2)

In this experiment, we set A = 1, C = 0, and set B so that
F(TMC) = 0.1 holds. The values of B are shown in the
column “B in F(s)” in Table 1.

Note that SDQL calculated by TetraMAX may be
larger than the definition of SDQL. In the definition of
SDQL, T f

mgn is a difference of a system clock timing TMC

and the length of the longest true path passing through f .
However, it is practically intractable to identify the longest
true paths for all the faults. TetraMAX uses the longest path
passing through each fault obtained by a static timing anal-
ysis instead. TetraMAX may use smaller values of T f

mgn for
some faults, and therefore, SDQL values in Table 2 do not
reach zero.

Table 2 shows CPU time required for fault simula-
tion to evaluate fault coverage of transition fault model and
SDQL. From the table, we can find that fault simulation
for SDQL takes too long CPU time, and therefore, Order-
BySimulation is impractical for large circuits. Actually, the
experiments in Sect. 5, we give up to apply OrderBySimu-
lation.

4.2 Proposed Method

OrderBySimulation uses SDQL values to select a test pat-
tern in each iteration, and therefore needs to apply time-
consuming fault simulation repeatedly. In contrast, the pro-

posed test pattern ordering uses the length of the longest sen-
sitized path for selection. The lengths of the longest sensi-
tized paths for all the faults for a test set can be easily found
without fault simulation, once we obtain the length of the
longest sensitized path for each pair of fault and test pattern.
The proposed method first obtains, for each test pattern, an
SDQL value and the lengths of the longest paths sensitized
by the test pattern for all the faults. Though this first step
needs timing-aware fault simulation to obtain SDQL, we do
not need further fault simulation to order test patterns.

First, we explain how to find the lengths of the longest
paths for a test set without fault simulation. Assume that
we already order the first i − 1 test patterns in S and the
lengths of the longest paths sensitized by the patterns for
all the faults are known. We also know the lengths of the
longest paths sensitized by each test pattern p for all the
faults. Let lSf and lp

f be the length of the longest path sen-
sitized by S and p for a fault f , respectively. It is obvious
that the length of the longest path sensitized by S or p is
max(lSf , l

p
f ), and hence, we can easily obtain the the longest

sensitized path length for a test set consisting of test patterns
in S and p.

In the proposed method, we use the sum of the longest
sensitized path lengths for all the faults as a metric to se-
lect patterns instead of an SDQL value. Though we do not
directly evaluate SDQL values in each iteration like Order-
BySimulation, the increase of the longest sensitized path
length for some fault f implies the decrease of T f

det. From
Eq. (1), it implies the decrease of SDQL. Let LS denote the
sum of the longest sensitized path lengths for a test set con-
sisting of patterns in S , and let LS ,p denote the sum of the
longest sensitized path lengths for a test set consisting of
patterns in S and p. LS ,p is obtained as follows.

LS ,p = LS +
∑
f∈N

max(lp
f − lSf , 0) (3)

Let us define GainS ,p as follows.

GainS ,p = LS ,p − LS

=
∑
f∈N

max(lp
f − lSf , 0) (4)

The proposed method orders test patterns based on
Gain. The test pattern p with the largest GainS ,p is selected
as the next pattern to S .

Let us explain the above idea using an example. In
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Fig. 4 Metric for test pattern selection.

Fig. 4, fault lists with the longest sensitized path lengths
for a sequence S , test patterns p1 and p2 are shown. The
longest sensitized path lengths when test patterns p1 and
p2 are appended to S are also shown, respectively. These
longest sensitized path lengths are obtained by fault lists
for S and p1, and fault lists for S and p2, respectively.
In this example, Gain(S , p1) = 10.09 − 7.39 = 2.70 and
Gain(S , p2) = 14.09 − 7.39 = 6.70.

The outline of the proposed method is as follows. Note
that the method applies timing-aware fault simulation for
each test pattern in Step 1, and it reports SDQL for each
test pattern. Therefore, we choose the test pattern with the
minimum SDQL as the first test pattern.

Proposed
P: a given test set
S : a sequence of test patterns, initially S is an empty sequence
1. For each test pattern p ∈ P,

apply timing-aware fault simulation
and obtain SDQL and lp

f for each f .
2. Select p with the minimum SDQL, and

delete p from P, and append p to S
3. Repeat Steps 4 and 5 until P = ∅
4. For each p ∈ P, calculate GainS ,p

5. For p with the maximum GainS ,p

delete p from P, and append p to S

In the proposed method, we apply timing-aware fault
simulation to obtain SDQL for a test set with one test pattern
only |Pbase| times, and therefore, it can order test patterns
much faster than OrderBySimulation.

5. Experiments

We made experiments to evaluate the proposed test pattern
ordering method and also to analyze test generation methods
suitable for base test sets. The experiment environment is
the same as described in Sect. 3.

5.1 Evaluation of Test Pattern Ordering Method

To evaluate the test quality of the proposed method, we com-
pared the method with other selection methods. For compar-
ison, we prepared three different test pattern ordering meth-
ods: (1) OrderByATPG: select test patterns in the order that
they are generated by ATPG, (2) OrderByCoverage: select
test patterns based on a gain of transition fault coverage, and
(3) OrderBySDQL: select test patterns based on a gain of
SDQL.

For the second method OrderByCoverage, we slightly
modified Steps 2–5 in the proposed method so that it evalu-
ates transition fault coverage of a test set consisting of test
patterns in S and p, instead of GainS ,p. This evaluation is
also possible without fault simulation, once we apply fault
simulation for each test pattern at the beginning.

The third method OrderBySDQL was used to evaluate
accuracy of the proposed method. In the proposed method,
we use the length of the longest sensitized path for each pair
of test pattern and fault. From this information and system
clock timing TMC , we can calculate SDQL corresponding to
each pair of test pattern and fault. This evaluation is also
possible without fault simulation, once we apply fault sim-
ulation for each test pattern at the beginning. In OrderBy-
SDQL, we evaluate how much SDQL decreases when we
select a test pattern p as the next pattern. This value is used
instead of GainS ,p in Proposed. This method can get the
same order as OrderBySimulation while reducing the num-
ber of applications of timing-aware fault simulation.

The efficiency of this method depends on the complex-
ity to evaluate SDQL using a delay defect distribution func-
tion. Actually, in these experiments, we used a delay defect
distributed function in the form described as Eq. (2) and, in
this case, we can calculate SDQL with a little computational
effort.

We applied the three test pattern ordering methods for
base test sets generated by timing-aware ATPG in Table 1.
Table 3 shows CPU time for the proposed method Proposed
and OrderByCoverage. The columns “fsim”, “other” and
“total” show CPU times for fault simulation, the other com-
putation, and total computation, respectively. The proposed
method takes longer CPU time than OrderByCoverage,
since the proposed method applies timing-aware fault simu-
lation to obtain SDQL at the beginning. However, the total
CPU time is less than double of fault simulation time for the
whole circuit shown in Table 2 except for a few small cir-
cuits. That is, the proposed method can order test patterns
in a reasonable time. In addition, proposed method obtains
test pattern ordering by selecting test patterns one by one in
the order of the final test pattern order. Therefore, when we
use the test pattern ordering for test set selection under some
constraints, we don’t need to order all the test patterns. It is
enough to select test patterns until it satisfies a given con-
straint. In this case, we can reduce CPU time more.

Figures 5 and 6 show SDQL transition curves for b18
and b19. From Figs. 5 and 6, we can find that both Proposed
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Table 3 CPU time of test pattern ordering.

proposed coverage based
circuit

fsim other total fsim other total

b04 0.85 0.13 0.98 0.40 0.09 0.49
b12 5.20 0.94 6.14 1.50 0.65 2.15
b13 0.49 0.09 0.58 0.29 0.05 0.34
b14 190.34 5.55 195.89 25.23 2.92 28.15
b15 73.23 7.11 80.34 17.46 3.26 20.72
b17 537.21 65.72 602.93 175.17 23.57 198.74
b18 5,168.63 390.59 5,559.22 1,191.56 120.45 1,312.01
b19 24,727.96 1,828.55 26,556.51 4,807.91 534.31 5,342.22
b20 1,071.01 23.55 1,094.56 162.51 10.72 173.23

Fig. 5 SDQL and test pattern ordering methods for b18.

Fig. 6 SDQL and test pattern ordering methods for b19.

and OrderByCoverage shrink SDQL faster than OrderBy-
ATPG, and Proposed shrinks SDQL the fastest. When we
use the proposed method for test pattern selection under a
constraint, Proposed selects smaller (almost half size of)
test set compared with OrderByCoverge under the same
SDQL constraint, or Proposed achieves smaller SDQL un-
der the same pattern count constraint.

We then compared Proposed with OrderBySDQL. We
implemented OrderBySDQL using TetraMAX Small De-
lay Defect Test mode as follows. We first applied timing-
aware fault simulation for each test pattern and obtained
the longest path and the longest sensitized path for each
fault. Then we calculated SDQL corresponding to each pair
test pattern and fault. Since TetraMAX internally calculates
SDQL corresponding to each fault to obtain total SDQL for
all the faults, our implementation calculated SDQL for each
fault twice. We do think it is fair to compare CPU time
for both methods. Therefore, we use the result of OrderBy-
SDQL only to evaluate the test quality.

We compared two methods for ITC99 benchmark cir-
cuits. Table 4 shows the results. We provided a delay de-
fect distribution function F(s) to TetraMAX in the form de-
scribed as Eq. (4). We set A = 1, C = 0, and set B so that
F(TMC) = 0.1 holds for all the 7 circuits in Table 4. In ad-
dition, we used different delay defect distribution functions
for circuits b17, b18 and b19, where we also set B so that
F(TMC) = 0.05 and F(TMC) = 0.025 hold. The values of B
are shown in the column “B in F(s)” in Table 4.

In this comparison, we found that differences of SDQL
transition curves between Proposed and OederBySDQL
are sufficiently small for all the cases. Therefore, in-
stead of showing SDQL transition curves, we show the dif-
ference of SDQL transitions between two methods. Let
SDQLProposed(i) and SDQLSDQL(i) be SDQL for the first i
patterns selected by Proposed and OrderBySDQL, respec-
tively. We evaluated differences between SDQLProposed(i)
and SDQLSDQL(i) for all i from 0 to the number of test pat-
terns as follows.

difference(i)

=
|SDQLPath(i) − SDQLSDQL(i)|

SDQLSDQL(i)
× 100(%) (5)

In Table 4, “#no diff.”, “max diff.” and “ave. diff.” show
the number of cases with “difference(i) = 0” (cases where
selected i patterns are the same for both methods), the max-
imum difference and the average difference among all i.

The maximum differences and the average differences
between two methods are at most 1.05% and at most 0.16%,
respectively. That is, for all the cases, differences between
Proposed and OrderBySDQL are sufficiently small. For
larger circuits b17, b18 and b19, we evaluated the two meth-
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Table 4 Comparison between Proposed and OrderBySDQL.

circuit #patterns B in F(s) #no diff. max diff.(%) ave. diff.(%)

b04 124 3.14 78 0.33 0.02
b12 698 4.22 263 0.37 0.08
b13 97 4.08 53 0.45 0.13
b15 1,793 1.19 503 0.81 0.09

1.19 1,641 0.87 0.10
b17 5,745 1.55 1,752 0.55 0.05

1.91 1,664 0.74 0.06
0.71 3,533 1.05 0.16

b18 13,030 0.92 3,536 0.62 0.07
1.14 3,623 0.35 0.04
0.71 5,943 0.84 0.15

b19 24,058 0.92 5,965 0.56 0.07
1.14 6,266 0.35 0.03

Table 5 Test pattern ordering for various base test sets.

circuit b18 b19
base test set selection base test set selection

ATPG TGT #tp SDQL FC CPU time (m) TGT #tp SDQL FC CPU time (m)
method (m) (%) fsim other total (m) (%) fsim other total

timing-aware 548.3 13,030 32,742 80.82 86.1 6.5 92.7 1,732.0 24,058 64,190 81.24 412.1 30.5 442.6
1-detect 8.3 7,494 36,816 74.83 51.0 3.8 54.8 27.9 13,403 70,944 75.26 210.3 14.6 225.0
2-detect 14.1 13,755 36,045 75.51 103.4 7.0 110.4 50.4 24,789 69,528 76.06 328.1 26.7 354.9
4-detect 25.1 25,932 35,429 76.27 196.3 13.7 210.0 88.7 46,878 68,440 76.73 680.2 55.8 736.0

ods with three different delay defect distribution functions.
Though the maximum differences and the average differ-
ences are slightly different, they are sufficiently small. That
is, Proposed can achieve almost the same test quality as
OrderBySDQL. In addition, Proposed can achieve almost
the same test quality as OrderBySimulation since OrderBy-
SDQL obtains the same order of test patterns as Order-
BySimulation.

5.2 ATPG for Base Test Set

Since the effectiveness of the proposed method depends on
base test sets, in order to find a suitable base test set, we
compared several base test sets generated by different test
generation methods. In the experiment, we applied timing-
aware ATPG and n-detect ATPGs for transition faults for
n = 1, 2, 4 under LoC clocking scheme.

Table 5 shows CPU times to order test patterns in base
test sets, where “# tp” and “FC” show the number of test pat-
terns and transition fault coverage of the base sets. Though
timing-aware APTG takes much longer CPU time compared
with n-detect ATPGs, it achieved less SDQL and higher
fault coverage. That is timing-aware ATPG can generate
test sets with higher test quality. In addition, the numbers of
test patterns of timing-aware ATPG are comparative or less
than 2-detect and 4-detect ATPGs. That means each test pat-
terns generated by timing-aware ATPG detect more amount
of defects than n-detect ATPGs.

We ordered test patterns using the proposed selection
method for four types of base test sets. Figures 7 and 8
show the SDQL transition curves for b18 and b19. In the
figures, “(Proposed)” and “(ATPG)” mean the results on the
proposed test pattern ordering and ordering by ATPG, re-

Fig. 7 SDQL and base test sets for b18.

Fig. 8 SDQL and base test sets for b19.
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spectively. We compared the curves up to the numbers of
test patterns generated by 1-detect ATPG. From these fig-
ures, it can be found that base test sets generated by timing-
aware ATPG can effectively shrink SDQL. That is, timing-
aware ATPG is suitable to generate base test sets for test
pattern ordering.

6. Comparison with Existing Methods

As we mentioned in Sect. 1, there are existing pattern se-
lection methods. In this section, we compare the proposed
method with existing methods.

Chao et al. [7] proposed a test pattern selection method
for delay defects. The motivation of their method is to pro-
vide a high quality test sets for small delay defects without
using timing-aware test generation or fault simulation, since
they consider such timing-aware tools are time-consuming
and impractical to be used. They used a large number of
test patterns for n-detection of transition faults, and select
small number of test patterns sufficient to detect small delay
defects. That is different from our proposed method where
we adopt timing-aware ATPG to generate a base test set,
and our experiments revealed timing-aware ATPG obtained
higher test quality than n-detection ATPG. In addition, Chao
et al. proposed a dynamic timing analysis method to analyze
capability of detecting a fixed size delay defect for each test
pattern. The role of this method is like timing-aware fault
simulation. This method selects, for every fault site, a test
pattern with a criteria whether the pattern can detect a given
fixed size of delay defect or not. This is different from our
proposed method where SDQL is considered to evaluate test
quality. That is, our selection method tries to select, for ev-
ery fault site, a test pattern that can detect smaller defect.
Therefore, we consider our proposed method provides more
precise analysis to test quality for small delay defects.

Yilmaz et al. proposed test set pattern grading and se-
lection method for small delay defects [9]. They used out-
put deviations for screening small-delay defects, where the
output deviation means a probability that the output does
not have the expected signal-transition for a given test pat-
tern. Their method achieved high test quality in terms of
long path coverage that evaluates the number of sensitized
long paths (a long path is a path with at least 70% of the sys-
tem clock timing). This metric evaluates test patterns with
whether they activate long paths or not. That is different
from our method where we consider SDQL and hence con-
sider total amount of test escape. We think comparison be-
tween different metrics of test quality is out of the range of
this paper.

7. Conclusions and Remarks

In this paper, we proposed a test pattern ordering method
which is a practical solution to reduce test data volume and
hence test cost. Test pattern ordering orders test patterns so
that more defective chips can be detected as early as possible
to reduce test cost. We addressed test pattern ordering prob-

lem base on SDQL since it represents an amount of delay
defects escaped to be detected by a test set, and therefore, it
is suitable metric for test pattern ordering.

We proposed time efficient test pattern ordering method
based on SDQL. The proposed method obtains test pattern
ordering, which shrink SDQL fast, in a reasonable time.
Furthermore, we can reduce CPU time more when we use
the proposed test pattern ordering for test pattern selection
under some constraints. We also examined suitable test gen-
eration for base test sets, and found the timing-aware test
generation can lead to high delay test quality.

The proposed method can be used to reduce test data
volume, and it can be combined with other test data volume
reduction methods. For example, seeds for LFSR-based test
compression method can be ordered, if we apply the pro-
posed method for test patterns decompressed from seeds.
Indeed, there have been proposed such seed ordering meth-
ods [16], [17].
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