
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012
3101

LETTER

Software FMEA for Safety-Critical System Based on Co-analysis of
System Model and Software Model

Guoqi LI†a), Member

SUMMARY Software FMEA is valuable and practically used for em-
bedded software of safety-critical systems. In this paper, a novel method
for Software FMEA is presented based on co-analysis of system model and
software model. The method is hopeful to detect quantitative and dynamic
effects by a targeted software failure. A typical application of the method
is provided to illustrate the procedure and the applicable scenarios. In ad-
dition, a pattern is refined from the application for further reuse.
key words: Software FMEA, safety critical system, co-analysis

1. Introduction

As early as in 1949, Procedures for conducting FMEA (Fail-
ure Mode and Effects Analysis) were described in US armed
forces military procedures document MIL-P-1629 [1]. In
1979, Reifer firstly introduced FMEA into software anal-
ysis [2]. Software FMEA is valuable and practical for em-
bedded software engineering. For example, at early stage
of embedded software lifecycle, it is used for determine the
critical level of the software and at verification stage, it is
valuable for efficient and effective testing.

John B. Bowles and Chi Wan presented a completed
demonstration of software FMEA in their paper in 2001 [3],
which is a good tutorial for software FMEA and was re-
ferred frequently by related papers. However, the object
being analyzed is a simple experimental system, so the
method is limited for large and complicated software in
practical industry of nowadays. Recent years, researches
on software FMEA is more active than ever. Chris Price
and Neal Snooke provided a method for automated Soft-
ware FMEA [4], which is mainly for source code analy-
sis. Many researchers show enthusiasm on UML aided
method [5], [6] and model-based method [7]. Failure mode
database [8] and knowledge oriented methods [9] are also
well invested. What’s more, tools are developed to aid Soft-
ware FMEA [10].

However, the current status and heritages of Software
FMEA are still not satisfying for practical requirements. In
this paper, we present a novel method based on co-analysis
of system model and software model to enhance the analysis
in 3 aspects:

1. It is hopeful to provide not only qualitative but also
quantitative effects of failure;

Manuscript received June 30, 2011.
Manuscript revised March 28, 2012.
†The author is with the Faculty of School of Reliability and

System Engineering, Beihang University, Beijing China
a) E-mail: gqli@buaa.edu.cn

DOI: 10.1587/transinf.E95.D.3101

2. Figure out dynamic effects of failure;
3. Suit to large and complicated embedded software and

systems.

Our method has benefit a lot from researches on hard-
ware and software co-design [11] and system FMEA [12].
In the following sections, we first describe the method.
Then, a typical application of the method is provided to clar-
ify the procedure and the applicable scenario. Finally, we
draw conclusions and address our future works.

2. Procedure of Software FMEA

To do FMEA, no matter for hardware or software, the pro-
cedures are the same [13]:

1. Identification of systems and functions;
2. Identification of failure modes;
3. Determination of effects of failure modes;
4. Identification of possible causes;
5. Documentation and risk reduction.

The novel method is the same as the traditional ones in
the above-mentioned steps 1,2,4 and 5, except that in step
1, both of the system models and software models must be
provided by the developers, which is practical due to the
popularity of the model-based development in safety-critical
embedded systems.

During the analysis, System/software is analyzed from
bottom to top. Analyzer recognizes failure modes at low
level, traces their transiting and finds their effects on higher
levels. For step 2, to identify the failure mode of a software
component, many heuristic rules are available. Besides, fail-
ure mode database and expert system aided methods are also
provided.

For step 4, Snooke states that there are three causes of
failure [14]:

1. Abnormal value input to the software from its environ-
ment;

2. Failure in the hardware upon which the software is ex-
ecuted;

3. Logical/algorithmic/semantic error in the implementa-
tion code (a bug).

The third step “Determination of effects of failure
modes”, practically speaking, is the hardest one, since this
step will be various according to specific applications. For

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



3102
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

software FMEA, the potential failures are captured by soft-
ware or originate from software. They are disguised, com-
bined and ultimately affects system behaviors. Finding out
the effects is tedious and boring. The novel part of our
method is for the step.

2.1 Why do We Need a Novel Step 3?

To find out effects of failures, original method is based on
informal system models, such as descriptions of system in
natural language. It is highly subjective and dependent on
the skill of the practitioner and the analysis will be unlikely
complete, consistent, or error free. Therefore, people pro-
vide model-base method [7]. The main idea of the method
is to combine software model, system model and fault mod-
els to one extended model and find the effects of the fail-
ure by simulation or model checking. However, system de-
velopers and software developers share different knowledge
background and different modeling tools. It is difficult to
combine models together, especially for large scale embed-
ded systems. So, the analysis is usually conducted by ig-
noring the details of the implementation and obtains a qual-
itative analysis. However, we need a quantitative analysis
to meet the challenge of the market and the requirements of
increasingly rigorous safety.

2.2 Main Idea and Procedure of Step 3 in the Novel
Method

Firstly, the novel method accepts the fact that it is impossi-
ble to combine system and software models, which are de-
veloped and maintained separately. Co-analysis of the two
kinds of models is aided by traceability.

In many software standards for safety-critical systems,
such as DO-178B [15], traceability between high level and
low level requirements is required. High level requirements
describe the software to do “What” for system and low level
requirements describe “How” the software completes the
transactions listed in high level requirements. Figure 1 il-
lustrates the traceability. A high level requirement usually
is a transaction and a low level requirement is usually a soft-
ware module/component, such as a function. A high level

Fig. 1 Traceability between high level and low level requirements.
HREQ 01, HREQ 02, . . . , HREQ XX are high level requirements.
LREQ 01, LREQ 02, Derived Requirement XX . . . , LREQ XX are low
level requirements. Especially, Derived Requirement XX is a derived re-
quirement which could not be traced to any requirements on high level.

requirement could be traced to many low level requirements
and vice versa. For example, a transaction of high level
may be implemented by many functions and a function may
be invoked by different transactions. Consequently, the two
levels requirements are from different points of view. High
level requirements are stories about system. On the contrary,
Low level requirements are closed to source code. If the
low level requirements are well modeled, many tools could
translate low level requirements into source code automati-
cally.

Usually system and software are organized by different
models. High level requirements are talking about system
and could be mapped to system model. Contrarily, low level
requirements could be mapped to software models. System
model is defined as an abstraction of a system. A typical
system model is a block diagram of a control system, Fig. 2
is an example. Each block in the block diagram establishes
a relationship between signals. System models are based
on rules of physical world, for system itself is designed and
built to change something in the real world. Essentially, a
block diagram of a control system is a series of differen-
tial equations, representing features of system. On the other
hand, a software model is a description of structure or dy-
namic features of software, such as a data flow chart or a
state machine. Software models are based on Turing ma-
chine, for software itself is designed and built to process
information on computer.

So, to find out effects of a failure, we should:

1. Find out its effects on software according software
models;

2. Trace the effects to system modules aided by traceabil-
ity of high level and low level requirements.

3. Figure out the quantitative and dynamic effects on sys-
tem according to system models.

Even though such method is believed to be practical for
engineering, we need to look further into its theoretical ba-
sis, whereas “pattern”, a general reusable solution to a com-
monly occurring problem within a given context, which is
successful in the fields of object-oriented design [16], could
be resorted to. It is a description or template to be used in
many different situations. We could accumulate patterns of
co-analysis of system model and software model for FMEA
in the future. The following section is an effort for this pur-
pose.

3. A Typical Application

3.1 Description of the System being Analyzed

The system to be analyzed, shown in Fig. 2 is a control sys-
tem with PID (Proportional, Integral and Derivative) con-
troller. The PID controller, which consists of proportional,
integral and derivative elements, is widely used in feedback
control of industrial processes. A PID controller calculates
an “error” value e(t) as the difference between a measured



LETTER
3103

Fig. 2 The block diagram of a control system with PID controller.

Table 1 Modes and corresponding parameters.

Mode a b c PK TI TD

Mode 1 6 5 1 18 1.4000 0.3360
Mode 2 5.4 2 1 6.48 2.2217 0.5331
Mode 3 20.2 4 0.2 242.4 1.5708 0.3770

Fig. 3 The Flow chart of the software module/component to implement
PID controller.

process variable c(t) and a desired setpoint r(t). The con-
troller attempts to minimize the error by adjusting the pro-
cess control inputs. e(t) = r(t) − c(t) is the input of PID
controller and u(t) is the output. The Process is the object to
be controlled.

The transfer function of the PID controller is:
C(s) = KP{1 + 1

TI s + TDD(s)}
Where KP, TI , and TD are parameters of proportional,

integral and derivative respectively.
The transfer function of the Process is:
P(s) = c

s3+as2+bs
Where a, b, c and KP, TI , TD are determined by specific

mode. Table 1 lists the modes and corresponding parame-
ters.

The block diagram is a system model. Blocks in the
model are implemented by software or hardware. Specifi-
cally, in this case, the P(s) is implemented by hardware and
C(s) is by software. All the blocks cooperated to complete
missions assigned to the system.

A function written in C language is designed to imple-
ment the PID controller. Figure 3 shows its flow chart. Ini-
tially, sensors are to be checked by “Query sensors” to clar-
ify the condition of the system. The parameters of P(s) are

changed by the the condition automatically. Based on the
data of sensors, correct model is selected, then correspond-
ing KP, TI , and TD are assigned. Lastly calculate the output
of the PID controller u(t) according the model in Fig. 2. In
fact, the u(t) is calculated by difference equations according
to specific PID controller arithmetic. Details are here omit-
ted for the maturity of this technology as well as the fact that
errors are generally impossible.

3.2 Procedure of the Analysis

If a fault, which is quite possible, in one of the sensors ap-
peared, and provided error data for “Query sensors”, what
will be the effects to the system? We must pay due attention
to this problem.

From the software model, shown in Fig. 3, we can see
that if “Query sensors” get error data, “Select mode” would
assign wrong data for KP, TI , and TD. From the traceability
between the system model and the software model, it is clear
that the KP, TI , and TD in Fig. 3 correspond to the coefficient
of the proportional, integral and derivative elements respec-
tively in the system model, shown in Fig. 2. Even though
the information of the traceability is not explicitly described
in the previous subsection, it is generally required in safety
critical system development.

Now, let’s turn to the system model and find out what
the effects of error assignment of KP, TI , and TD in the sys-
tem model. Figure 4, Fig. 5 and Fig. 6, show the step re-
sponse of every mode of the system with every possible PID
controllers. The first column of the figures are situations
in which there are no PID controller. The second column
of the figures are correctly matched PID controllers. Other
columns are error matched. From the figures we can see:

1. When P(s) in Mode 1, if error data of sensors leading
error matched PID controller, there will be no damage
and system will work well.

2. When P(s) in Mode 2, if error data of sensors leading
error matched PID controller, the effect it produces to
the system will depend on which mode PID controller
is for: if it is for Mode 3, there will be no damage;
but if Mode 2, there will be a noticeable shock before
the system becomes stable and thus the system will be
damaged.

3. When P(s) in Mode 3, if error data of sensors leading
error matched PID controller, no matter PID controller
is for Mode 1 or for Mode 2, the system will be unsta-
ble and the output of the system is in danger.

The analysis result is summarized in Table 2.

3.3 The Obtained Pattern for Reuse

The scenario of the application is popular in practical en-
gineering of safety-critical systems, such as a controller for
jet engine, UAV or nuclear reactor, though practically there
usually have more modes.

We call the pattern “Mismatch pattern”, which has 3



3104
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 4 The step response of system. P(s) is in Mode 1.

Fig. 5 The step response of system. P(s) is in Mode 2.

Fig. 6 The step response of system. P(s) is in Mode 3.

Table 2 Software FMEA Table.

Items Contents
Component being analyzed PID controller
Failure mode “Query sensors” on the flow chart of software model “PID” get wrong data
Local Effect If there should be Mode 3 and recognized as Mode 1 or Mode 2, the PID module will give danger outputs.
System Effect Step response of the system will be unstable, shown in Fig. 7.
Causes Electric error of sensors or software logic errors when query sensors.
Recommended measures Add additional protection module to monitor c(t). If c(t) is beyond threshold, ignore the PID module and set u(t) = e(t).
Remarks about tractability The data flow diagram shown in Fig. 3 maps to the blocks of proportional, integral and derivative in Fig. 2.

features:

1. object to be controlled has many modes.
2. controller is implemented by software.
3. Coefficients of the controllers are determined by sen-

sors.

4. Conclusion and Future Works

The main contribution of this paper is to provide a co-
analysis based method for determining effects of software
failure on system. It is highly hopeful to find out the quan-
titative and dynamic effects of a software failure on the sys-
tem with the method. In our future works, we will make

deeper exploration on the topic and provide more patterns
for co-analysis based software FMEA.

The C and Matlab source code used in Sect. 3 is avail-
able by email: gqli@buaa.edu.cn.

References

[1] “Procedures for performing a failure mode, effects and criticality
analysis,” U.S. Departmento fo Denfense, Nov. 1949.

[2] D.J. Reifer, “Software failure modes and effects analysis,” IEEE
Trans. Reliability, vol.R-28, no.3, pp.247–249, 1979.

[3] J.B. Bowles and C. Wan, “Software failure modes and effects anal-
ysis for a small embedded control system,” Proc. Reliability and
Maintainability Symposium, 2001.

[4] C. Price and N. Snooke, “An automated software fmea,” Proc. In-



LETTER
3105

ternational System Safety Regional Conference, Singapore, April
2008.

[5] W. Wang and H. Zhang, “Fmea for uml-based software,” Proc. 2009
WRI World Congress on Software Engineering, Los Alamitos, CA,
USA, pp.456–460, IEEE Computer Society, 2009.

[6] H. Hecht, X. An, and M. Hecht, “Computer aided software fmea for
unified modeling language based software,” Annual Symposium of
Reliability and Maintainability, 2004.

[7] A. Joshi, M. Whalen, and M.P. Heimdahl, “Model-based safety anal-
ysis final report,” tech. rep., NASA, 2005.

[8] W.M. Goble and J.V. Bukowski, “Development of a mechanical
component failure database,” Reliability and Maintainability Sym-
posium, 2007. RAMS ’07. Annual, Orlando, FL, pp.451–455, Jan.
2007.

[9] X. Zhao and Y. Zhu, “Research of fmea knowledge sharing method
based on ontology and the application in manufacturing process,”
DBTA, pp.1–4, 2010.

[10] J. Elmqvist and S. Nadjm-Tehrani, “Tool support for incremen-
tal failure mode and effects analysis of component-based systems,”

Proc. Conference on Design, Automation and Test in Europe,
DATE ’08, New York, NY, USA, pp.921–927, ACM, 2008.

[11] M. Ishikawa, G. Saikalis, and S. Oho, “Cpu model-based mecha-
tronics/hardware/software co-design technology for real-time em-
bedded control systems,” IEICE Trans. Electron., vol.E90-C, no.10,
pp.1992–2001, Oct. 2007.

[12] V. Motevalli and M.S. Mohd, “New approach for performing fail-
ure analysis of fuel cell-powered vehicles,” International Journal of
Automotive Technology, vol.10, pp.743–752, 2009.

[13] H. Pentti and H. Atte, “Failure model and effects analysis of
software-based automation systems,” tech. rep., STUK, 2002.

[14] N. Snooke, “Model-based failure modes and effects analysis of soft-
ware,” Proc. DX04, Carcassonne, pp.221–226, France, June 2004.

[15] RTCA, “Do-178b software considerations in airborne systems and
equipment certification,” 1992.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1994.


