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LETTER

On d-Asymptotics for High-Dimensional Discriminant Analysis
with Different Variance-Covariance Matrices

Takanori AYANO†∗a), Student Member and Joe SUZUKI†, Member

SUMMARY In this paper we consider the two-class classification prob-
lem with high-dimensional data. It is important to find a class of distribu-
tions such that we cannot expect good performance in classification for any
classifier. In this paper, when two population variance-covariance matrices
are different, we give a reasonable sufficient condition for distributions such
that the misclassification rate converges to the worst value as the dimension
of data tends to infinity for any classifier. Our results can give guidelines
to decide whether or not an experiment is worth performing in many fields
such as bioinformatics.
key words: discriminant analysis, high-dimensional data, misclassifica-
tion rate, d-asymptotics.

1. Introduction

Recently in many fields such as microarray analysis, image
recognition, and data analysis on the Web we need to ana-
lyze high-dimensional data with small sample sizes. For ex-
ample in microarray analysis the number of data is at most a
few hundred, whereas the dimension of data is more than ten
thousand. In this paper we study the two-class classification
problem with high-dimensional data.

Let Nd(α(d), A(d)) and Nd(β(d), B(d)) be the d-variate
normal distributions with means α(d), β(d) and variance-
covariance matrices A(d), B(d), respectively. We regard
α(d), β(d), A(d), B(d) as sequences with respect to d. Let x
be an observation vector on an individual belonging to
Nd(α(d), A(d)) or to Nd(β(d), B(d)). Our aim is to decide
whether x comes from Nd(α(d), A(d)) or from Nd(β(d), B(d)).
A classification rule is defined by a set G ⊂ Rd. We attribute
x to Nd(β(d), B(d)) if x ∈ G and to Nd(α(d), A(d)) otherwise.
For a classification rule G ⊂ Rd the misclassification rate
R(G) (with prior probabilities 1/2) is

R(G) =
1
2

∫
G

fα(d) (x) dx +
1
2

∫
Rd\G

fβ(d) (x) dx,

where fα(d) (x) and fβ(d) (x) are the density functions of
Nd(α(d), A(d)) and Nd(β(d), B(d)), respectively. In practical
situations the parameters α(d), β(d), A(d), B(d) are unknown.
Therefore we need to estimate them from a data set.

The asymptotic property with respect to the dimension
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of data has been addressed by many authors. For example
Fan and Fan [4] gave an upper bound of the misclassification
rate for a classifier when both the dimension of data and the
number of data tend to infinity while assuming A(d) = B(d).
Also Aoshima and Yata [1] proposed a classifier Ĝ such that
the misclassification rate E[R(Ĝ)] converges to zero as the
dimension d tends to infinity under a condition without as-
suming A(d) = B(d), where E denotes the expectation with
respect to the data.

On the other hand it is important to find a class of
distributions such that we cannot expect good performance
in classification for any classifier. For example, when we
do experiments in bioinformatics, we need many resources
such as time, raw materials, and costs. If we know in ad-
vance that we cannot expect good performance in classifi-
cation for any classifier, we can stop doing useless experi-
ments. In theory we want to know a class of distributions
such that E[R(Ĝ)] converges to 1/2 as d tends to infinity
for any classifier Ĝ. This is interpreted as the fact that no
classification rule is better than a simple random guess. For
A(d) = B(d) Ingster et al. [5] gave a necessary and sufficient
condition for distributions such that E[R(Ĝ)] converges to
1/2 as d tends to infinity for any classifier Ĝ. In this paper
we consider such a condition for A(d) � B(d). For example
in hypothesis testing it is known as a difficult problem to
test the difference between the means of two normally dis-
tributed populations when the variances of the two popula-
tions are not assumed to be equal (Behrens-Fisher problem).
Also in the two-class classification problem it is not easy
to give such a condition for A(d) � B(d). Although Matsu-
moto and Wakaki [6] gave the asymptotic expansion of the
misclassification rate under a condition for A(d) � B(d), it
is hard to find a class of distributions such that E[R(Ĝ)]
converges to 1/2 from [6]. If α(d)

i → β(d)
i and a(d)

i j → b(d)
i j

as d → ∞ for any i, j, E[R(Ĝ)] does not necessarily con-
verge to 1/2 for any classifier, where α(d) = (α(d)

1 , . . . , α
(d)
d )T ,

β(d) = (β(d)
1 , . . . , β

(d)
d )T , A(d) = (a(d)

i j ), and B(d) = (b(d)
i j ). In

fact, if α(d) = β(d), A(d) = a(d)Id, B(d) = b(d)Id, and a(d) → b(d)

satisfying (a(d) − b(d))4d → ∞, there exists a classifier Ĝ
such that E[R(Ĝ)] → 0 as d → ∞ (cf. [1] p.372). In this
paper, although we do not obtain a necessary and sufficient
condition, for A(d) � B(d) we give a reasonable sufficient
condition for distributions such that E[R(Ĝ)] converges to
1/2 as d tends to infinity for any classifier Ĝ, i.e., we show
that if α(d)

i → β(d)
i and a(d)

i j → b(d)
i j fast enough, we cannot

expect good performance in classification for any classifier.
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There exists no previous work where a sufficient condition
is given for A(d) � B(d). Our results can give guidelines to
decide whether or not an experiment is worth performing in
many fields such as bioinformatics.

Throughout this paper we use the following notations:
R is the set of reals. For x ∈ Rd ‖x‖ denotes the Euclidean
norm of x. For a square matrix M, |M| and MT denote the
determinant of M and the transpose of M, respectively. The
matrix Id denotes the unit matrix with order d.

2. Main Result

Since A(d) is symmetric and positive definite, there exists a
regular matrix P such that PA(d)PT = Id. Let λ(d)

1 , . . . , λ
(d)
d

be the eigenvalues of PB(d)PT . Since |PB(d)PT − λId | =
|P||B(d) − λA(d)||PT |, λ(d)

1 , . . . , λ
(d)
d are the roots of |B(d) −

λA(d)| = 0. Since PB(d)PT is symmetric and positive def-
inite, λ(d)

1 , . . . , λ
(d)
d are positive reals. There exists an or-

thogonal matrix Q such that QPB(d)PT QT = Λd, where
Λd = diag(λ(d)

1 , . . . , λ
(d)
d ). Set R = QP, then RA(d)RT = Id

and RB(d)RT = Λd. Let ε(d) = min1≤i≤d{1 − (λ(d)
i )−1},

δ(d) = max1≤i≤d{λ(d)
i − 1}, γ(d) = R(β(d) − α(d)), and γ(d) =

(γ(d)
1 , . . . , γ

(d)
d )T . Then we have the following theorem.

Theorem. Assume the following conditions:

[I] For any i and d we have λ(d)
i > 1, and there exists C0 > 0

such that (1/ε(d)) − (1/δ(d)) ≤ C0 for any d.

[II]
d∑

i=1

(λ(d)
i − 1)→ 0 as d → ∞.

[III]
d∑

i=1

⎛⎜⎜⎜⎜⎜⎝ γ
(d)
i

λ(d)
i − 1

⎞⎟⎟⎟⎟⎟⎠
2

→ 0 as d → ∞.

Then we have

lim
d→∞

inf
Ĝ

E[R(Ĝ)] = 1/2,

where infĜ denotes the infimum over all the classifiers.

Proof. For simplicity we omit the suffix (d). Let G∗ :=
{x ∈ Rd | fα(x) ≤ fβ(x)}. Then G∗ is the optimal classifier,
i.e., R(G∗) = infĜ E[R(Ĝ)], where infĜ denotes the infimum
over all the classifiers. Therefore it is sufficient to prove that
limd→∞ R(G∗) = 1/2. From

fα(x) =

(
1

2π

)d/2

|A|−1/2 exp

{
−1

2
(x − α)T A−1(x − α)

}

and

fβ(x) =

(
1

2π

)d/2

|B|−1/2 exp

{
−1

2
(x − β)T B−1(x − β)

}

we have G∗ = {x ∈ Rd | (x−α)T A−1(x−α)− (x−β)T B−1(x−
β) + log |AB−1| ≥ 0}. Set y = R(x − α), then

R(G∗) =
1
2

∫
G∗

fα(x) dx +
1
2

∫
Rd\G∗

fβ(x) dx

=
1
2

∫
H1

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dy +
1
2

∫
Rd\H1

·
(

1
2π

)d/2

|Λd |−1/2exp

{
−1

2
(y−γ)TΛ−1

d (y−γ)
}

dy,

(1)

where

H1 =⎧⎪⎪⎨⎪⎪⎩y ∈ Rd |
d∑

i=1

(1−λ−1
i )

(
yi− γi

1−λi

)2

≥
d∑

i=1

⎛⎜⎜⎜⎜⎝ γ2
i

λi−1
+log λi

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Set zi = λ
−1/2
i (yi − γi) for (1), then

R(G∗) =
1
2

∫
H1

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dy

+
1
2

∫
H2

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

z2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dz,

where

H2=

⎧⎪⎪⎪⎨⎪⎪⎪⎩z ∈ Rd |
d∑

i=1

(λi−1)

⎛⎜⎜⎜⎜⎜⎝zi−
λ1/2

i γi

1−λi

⎞⎟⎟⎟⎟⎟⎠
2

<

d∑
i=1

⎛⎜⎜⎜⎜⎝ γ2
i

λi−1
+log λi

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Since λi > 1 for any i, we have ε, δ > 0. Therefore

R(G∗) ≥ 1
2

∫
‖y−p‖≥q

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dy

+
1
2

∫
‖y−r‖<s

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dy,

where

p =

(
γ1

1 − λ1
, . . . ,

γd

1 − λd

)T

, r =

⎛⎜⎜⎜⎜⎜⎝λ
1/2
1 γ1

1 − λ1
, . . . ,

λ1/2
d γd

1 − λd

⎞⎟⎟⎟⎟⎟⎠
T

,

q =

√√√
1
ε

d∑
i=1

⎛⎜⎜⎜⎜⎝ γ2
i

λi−1
+ log λi

⎞⎟⎟⎟⎟⎠, s=

√√√
1
δ

d∑
i=1

⎛⎜⎜⎜⎜⎝ γ2
i

λi−1
+ log λi

⎞⎟⎟⎟⎟⎠.
Let θ = q + ‖p‖ and η = s − ‖r‖, then by the triangle

inequality we have {y ∈ Rd | ‖y‖ ≥ θ} ⊂ {y ∈ Rd | ‖y − p‖ ≥
q} and {y ∈ Rd | ‖y‖ < η} ⊂ {y ∈ Rd | ‖y−r‖ < s}. Therefore

R(G∗) ≥ 1
2

∫
‖y‖≥θ

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dy

+
1
2

∫
‖y‖<η

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dy.

Since λi > 1 for any i, we have ε < δ, i.e., η < θ. Therefore

R(G∗) ≥ 1
2

⎧⎪⎪⎨⎪⎪⎩1−
∫
η≤‖y‖<θ

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dy

⎫⎪⎪⎬⎪⎪⎭ . (2)

Let φ : Rd → R be the function defined by φ(y) = ‖y‖.
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Let μ be the measure on R induced by φ and the Lebesgue
measure on Rd. Then by the formula of change of variables
(cf. [2], p.216, Theorem 16.13) we have

∫
η≤‖y‖<θ

(
1

2π

)d/2

exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
2

d∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎟⎠ dy

=

∫ θ

η

(
1

2π

)d/2

exp

(
−1

2
t2

)
μ(dt).

Let F(t) be the Lebesgue measure of {y ∈ Rd | ‖y‖ ≤ t}.
Then it is well-known that

F(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for t < 0
πd/2 td

Γ(d/2 + 1)
for t ≥ 0,

where Γ(·) is Gamma function (cf. [3]). Therefore

dμ
dt
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for t < 0
d πd/2 td−1

Γ(d/2 + 1)
for t ≥ 0,

where (dμ)/(dt) denotes the density function of μ. There-
fore ∫ θ

η

(
1

2π

)d/2

exp

(
−1

2
t2

)
μ(dt)

=

∫ θ

max{η,0}

(
1

2π

)d/2

exp

(
−1

2
t2

)
d πd/2

Γ(d/2 + 1)
td−1 dt.

Let

g(t) :=

(
1

2π

)d/2

exp

(
−1

2
t2

)
d πd/2

Γ(d/2 + 1)
td−1.

Then g(t) reaches its maximum at t =
√

d − 1. By Stirling’s
formula there exists C1 > 0 (which does not depend on d)
such that

g(
√

d − 1)=

(
1

2π

)d/2

exp

{
−d − 1

2

}
d πd/2

Γ(d/2 + 1)
(d−1)(d−1)/2

≤ C1

(
1

2π

)d/2

exp

{
−d − 1

2

}
d πd/2

d
d+1

2

(
1
2

) d
2 exp(− d

2 )
(d − 1)(d−1)/2

= C1 exp

(
1
2

) (
d − 1

d

)(d−1)/2

< ∞.

Therefore there exists C2 > 0 (which does not depend
on d) such that g(t) ≤ C2 for any t ≥ 0. Therefore∫ θ

max{η,0}

(
1

2π

)d/2

exp

(
−1

2
t2

)
d πd/2

Γ(d/2 + 1)
td−1 dt ≤ C2(θ − η).

On the other hand we have the following claim.

Claim. θ − η→ 0 as d → ∞. (See Appendix for proof.)

Therefore from (2) and R(G∗) ≤ 1/2 we obtain
limd→∞ R(G∗) = 1/2. The proof is complete. �

3. Conclusion

In this paper for A(d) � B(d) we gave a reasonable sufficient
condition for distributions such that E[R(Ĝ)] converges to
1/2 as d tends to infinity for any classifier Ĝ. For A(d) = B(d)

Ingster et al. [5] gave a necessary and sufficient condition for
distributions such that E[R(Ĝ)] converges to 1/2, but there
exists no previous work where such a condition is given
for A(d) � B(d). Our results can give guidelines to decide
whether or not an experiment is worth performing in many
fields such as bioinformatics.
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Appendix A: Proof of Claim

From [III] we have ‖p‖ → 0. From [II] there exists C3 > 0
(which does not depend on d) such that λi ≤ C3 for any
i. Therefore from [III] we have ‖r‖ → 0. From [I] and
(1/ε) > 1 we have

q − s =
(1/ε) − (1/δ)√

1/ε +
√

1/δ

√√√ d∑
i=1

⎛⎜⎜⎜⎜⎝ γ2
i

λi − 1
+ log λi

⎞⎟⎟⎟⎟⎠

≤ C0

√√√ d∑
i=1

⎛⎜⎜⎜⎜⎝ γ2
i

λi − 1
+ log λi

⎞⎟⎟⎟⎟⎠.
From [III] we have

d∑
i=1

γ2
i

λi − 1
=

d∑
i=1

(λi − 1)

(
γi

λi − 1

)2

≤ C3

d∑
i=1

(
γi

λi − 1

)2

→ 0.

From [II] we have
d∑

i=1

log λi ≤
d∑

i=1

(λi − 1)→ 0.

Therefore q − s→ 0. Therefore we obtain θ − η→ 0. �


