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A Design of Genetically Optimized Linguistic Models

Keun-Chang KWAK†a), Member

SUMMARY In this paper, we propose a method for designing geneti-
cally optimized Linguistic Models (LM) with the aid of fuzzy granulation.
The fundamental idea of LM introduced by Pedrycz is followed and their
design framework based on Genetic Algorithm (GA) is enhanced. A LM is
designed by the use of information granulation realized via Context-based
Fuzzy C-Means (CFCM) clustering. This clustering technique builds infor-
mation granules represented as a fuzzy set. However, it is difficult to opti-
mize the number of linguistic contexts, the number of clusters generated by
each context, and the weighting exponent. Thus, we perform simultaneous
optimization of design parameters linking information granules in the in-
put and output spaces based on GA. Experiments on the coagulant dosing
process in a water purification plant reveal that the proposed method shows
better performance than the previous works and LM itself.
key words: linguistic model, context-based fuzzy c-means clustering, ge-
netic algorithm, coagulant dosing process

1. Introduction

During the past decades, a considerable number of studies
have been conducted on Fuzzy Model (FM), due to the rapid
growth in the variety of applications. The diversity of exist-
ing models is well documented in the literature with various
methodologies and architectures. While FM accuracy has
been target of many methods, the issue of transparency and
interpretability is still quite open. Interpretability implies a
certain level of granularity of basic constructs, the so called
information granules. By changing their level of specificity,
interpretability and accuracy requirements in FM can be de-
veloped [1]. From this point view, fuzzy clustering performs
a central role in the design of FM. For this purposes, various
clustering techniques have applied to structure identification
in neural networks and fuzzy modeling [2]–[5].

However, these clustering techniques are performed by
context-free clustering method without considering the ho-
mogeneity between input and output spaces. In contrast
to these context-free clustering methods, the objective of
context-based clustering is to generate clusters preserving
homogeneity of the clustered patterns in connection with
their similarity in the input variables as well as in the out-
put variable based on linguistic contexts. The effective-
ness of this context-based fuzzy clustering technique has
been demonstrated in previous works [6]–[11]. These mod-
els represented a nonlinear and complex characteristic more
effectively than conventional models based on context-free
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clustering. However, it is difficult to optimize the number
of context, the number of cluster generated by each context,
and weighting exponent.

Therefore, the objective of this study is to pursue the
systematic development of genetically optimized linguis-
tic models with the use of fuzzy granulation. The Genetic
Algorithm (GA) is a derivative-free stochastic optimization
method based on the concepts of natural selection and evolu-
tionary processes. Based on GA, we perform simultaneous
and parallel optimization of parameters that are the cause
of the design problem in the conventional LM (Linguistic
Model) [12]. The performance of GA-based LM when ap-
plied to the coagulant dosing process in a water purification
plant [11] is contrasted with that of LR (Linear Regression),
MLP (Multilayer Perceptron), RBFN (Radial Basis Func-
tion Networks), TSK (Takagi-Sugeno-Kang)-LFM [11], and
LM itself [8].

2. Linguistic Models with the Use of Fuzzy Granula-
tion

2.1 Context-Based Fuzzy C-Means (CFCM) Clustering

CFCM clustering is an effective approach to estimate the
cluster centers preserving homogeneity on the basis of fuzzy
granulation. In contrast to the context-free clustering meth-
ods, the CFCM clustering method is performed with the aid
of the contexts produced in output space. By taking into
account the contexts, the clustering in the input space is fo-
cused by some predefined fuzzy sets of contexts. Let us
introduce a family of the partition matrices induced by the
t-th context as follows

U(Wt) =

⎧⎪⎪⎨⎪⎪⎩uik ∈ [0, 1]

∣∣∣∣∣∣
c∑

i=1

uik = wtk ∀k

⎫⎪⎪⎬⎪⎪⎭ (1)

where wtk denotes a membership value of the k-th data point
included by the t-th context. The underlying objective func-
tion can be expressed as follows

Q =
c∑

i=1

N∑
k=1

um
ik‖xk − vi‖2 (2)

where ‖ . ‖ is the Euclidean distance and vi denotes the i-th
cluster. Here we perform the separate clustering tasks im-
plied by the corresponding context. The minimization of
objective function is realized by iteratively updating the val-
ues of the membership matrix and the prototypes. The up-
date of the membership matrix is computed as follows
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utik =
wtk

c∑
j=1

(
‖xk−vi‖‖xk−v j‖

) 2
m−1

i= 1, 2, . . . , c, k= 1, 2, . . . ,N

(3)

where utik represents the element of the membership matrix
induced by the i-th cluster and k-th data in the t-th context.
The cluster centers vi are calculated in the form

vi =

N∑
k=1

um
tik xk

N∑
k=1

um
tik

(4)

2.2 Linguistic Models

For the design of the LM, we consider the contexts to be
described by triangular membership functions being dis-
tributed in the output space with the 1/2 overlap occurring
between two successive fuzzy sets. The linguistic contexts
are automatically generated by histogram, probability den-
sity function, and conditional density function in order [10].
We denote those fuzzy sets by W1, W2, . . . , Wp as linguis-
tic contexts. Each context generates a number of induced
clusters whose activation levels are afterwards summed up
as shown in Fig. 1. Assuming the triangular form of the con-
texts, triangular fuzzy number E is expressed as

E = W1 ⊗ ξ1 ⊕W2 ⊗ ξ2 ⊕ · · · ⊕ .Wn ⊗ ξn (5)

We denote the algebraic operations by ⊗ and ⊕ to empha-
size that the underlying computing operates on a collection
of fuzzy numbers. The bias term is computed in a straight-
forward manner so that it eliminates a potential systematic
error

w0 =
1
N

N∑
k=1

(ek − yk) (6)

Fig. 1 The general architecture of the linguistic model.

where yk denotes the actual output for given input xk. The
resulting granular output E comes with the following equa-
tion

E =
p∑

t=1

ξtwt + w0 (7)

3. Genetically Optimized Linguistic Models

3.1 Genetic Algorithm (GA)

GA encodes each point to be optimized into a binary bit
string, and each point is concerned with a fitness value that
is equal to the objective function computed at the point. In
each generation, GA produces a new population using ge-
netic operators such as crossover and mutation.

GA used in this paper includes encoding schemes, fit-
ness evaluation, parent selection, crossover operator, and
mutation operator. The fitness evaluation is to calculate
the fitness value of each individual in the population after
creating a generation. The fitness value of each individual
is computed by the objective function for a maximization
problem. The fitness function to be considered in this paper
is as follows

f =
1

QtRMSE + QcRMSE
(8)

QtRMSE =

√√√
1
N

N∑
k=1

[ek − yk]2,

QcRMSE =

√√√
1
N

N∑
k=1

[ek′ − yk′ ]2

(9)

Here we use the root mean square error (RMSE) to ex-
press the matching level of the granular output of the model.
QtRMSE and QcRMSE are RMSE of training and checking data,
respectively. For further details refer to [12]. The selection
process determines which parents participate in producing
offspring for the next generation. Crossover process is to
apply to selected pairs of parents with a probability of a
given crossover rate. Mutation process is to change the se-
lected bit with a probability of a given mutation rate. Thus,
it can prevent the population from converging at any local
optima. Furthermore, we choose the elitism principle of al-
ways keeping a certain number of best members when each
new population is generated.

3.2 Optimization Design

Based on the concepts as mentioned above, GA procedure
is described as follows
[Step 1] Initialize a population with randomly generated in-

dividuals and set to crossover and mutation rate, bit num-
ber, and fitness function. And then evaluate the fitness
value of each individual. GA simultaneously performs
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parallel search through six populations with the number
of different contexts.

[Step 2] Select two individuals from the population with
probabilities proportional to fitness values in each pop-
ulation. The coding scheme is to arrange the number of
cluster generated by each context and weighting exponent
into a chromosome such that the representation preserves
certain good properties after recombination specified by
crossover and mutation operators.

[Step 3] Apply crossover and mutation with a probability of
crossover and mutation rate, respectively.

[Step 4] Repeat Step 2 to Step 3 until a stopping criterion is
met.

4. Experimental Results

This section is to demonstrate the performance of GA in
the optimization design of the LM. For this, we apply the
proposed method to coagulant dosing process in a water pu-
rification plant. We use the successive 346 samples among
jar-test data for one year [11]. The input variable consists of
four, including the turbidity of raw water, temperature, pH,
and alkalinity. The output variable is PAC (Poli-Aluminum
Chloride) widely used as a coagulant. In order to evaluate
the resultant model, we divide the data sets into training and
checking data sets. Here we choose 173 training sets for
model construction, while the remaining data sets are used
for model validation.

In order to find the optimized parameters using GA, we
first confine the search domain such as the number of cluster
from 2 to 9 each context and weighting exponent from 1.5 to
3, respectively. Here, we need a new optimization strategy
because the number of chromosome varies from the number
of context. Thus we perform a parallel GA through six pop-
ulations of LM with the number of different contexts from
3 to 8. In the design of GA-based LM, we encountered a
data scarcity problem due to small data included in side lin-
guistic context when p = 9. Thus, we determined p = 8
as the maximum number in this experiments. We used 8-bit
binary coding for each variable. Each generation in GA im-
plementation contains 30 individuals. Furthermore, we used
a simple one-point crossover scheme with the crossover rate
equal to 0.97 and uniform mutation with the mutation rate
equal to 0.01. Figure 2 shows the best values of the ob-
jective function across 30 generations when the number of
context varies from 3 to 8. Since we used elitism to keep
the best two individuals at each generation, the best curve
is monotonically increasing with respect to generation num-
bers. Here we finally obtained the best parameters (p = 8,
c = [9 8 2 7 6 5 5 5], m = 1.714).

Figure 3 shows the comparison between the desired
and model output for both training and checking data, re-
spectively. As shown in Fig. 3, it is obvious that the pro-
posed GA-based LM has a good prediction performance.
Figure 4 shows the interval prediction performance repre-
sented by lower bound, modal output, and upper bound. Ta-
ble 1 lists the comparison results of RMSE of training and

Fig. 2 Performance of GA by generation and context variation.

Fig. 3 Generalization and approximation capability.

Fig. 4 Performance with interval prediction.

checking data, respectively. The RBFN used in Table 1 was
designed by supervised adjustments of the center and shape
of the receptive field functions. Here we used 45 receptive
fields, 1000 epoch, and learning rate 0.01. The best model
of TSK-LFM was obtained when the test error is minimal
(p = 5, c = 9). As listed in Table 1, the experimental re-
sults obtained by the proposed method yielded a good per-
formance in comparison to the previous works.
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Table 1 Comparison results of RMSE (*: num. of hidden node).

5. Conclusions

We have enhanced the design methodology by genetically
optimized linguistic model with the aid of fuzzy granula-
tion. For this, we used the parallel GA that is derivative-
free stochastic optimization methods based on the concepts
of natural selection and evolutionary processes. Thus, we
could optimize the number of context produced in the out-
put space, the number of clusters obtained from each con-
text, and weighting factor. To evaluate the performance of
the proposed method, we applied it to the coagulant dos-
ing process in a water purification plant. The experimental
results revealed that the GA-based LM showed a good per-
formance in comparison with the previous works.
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