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A Design Method of a Regular Expression Matching Circuit Based
on Decomposed Automaton

Hiroki NAKAHARA†a), Tsutomu SASAO†b), and Munehiro MATSUURA†c), Members

SUMMARY This paper shows a design method for a regular expression
matching circuit based on a decomposed automaton. To implement a reg-
ular expression matching circuit, first, we convert a regular expression into
a non-deterministic finite automaton (NFA). Then, to reduce the number
of states, we convert the NFA into a merged-states non-deterministic fi-
nite automaton with unbounded string transition (MNFAU) using a greedy
algorithm. Next, to realize it by a feasible amount of hardware, we de-
compose the MNFAU into a deterministic finite automaton (DFA) and an
NFA. The DFA part is implemented by an off-chip memory and a simple
sequencer, while the NFA part is implemented by a cascade of logic cells.
Also, in this paper, we show that the MNFAU based implementation has
lower area complexity than the DFA and the NFA based ones. Experiments
using regular expressions form SNORT shows that, as for the embedded
memory size per a character, the MNFAU is 17.17-148.70 times smaller
than DFA methods. Also, as for the number of LCs (Logic Cells) per a
character, the MNFAU is 1.56-5.12 times smaller than NFA methods. This
paper describes detail of the MEMOCODE2010 HW/SW co-design contest
for which we won the first place award.
key words: regular expression, NFA, DFA, MNFAU, FPGA

1. Introduction

1.1 Regular Expression Matching for Network Applica-
tions

A regular expression represents a set of strings. Regular
expression matching detects a pattern represented by a reg-
ular expression. Various network applications (e.g., intru-
sion detection systems [8], [20], a spam filter [21], a virus
scanning system [6], and an L7 filter [11]) use regular ex-
pression matching. Regular expression matching spends a
major part of the total computation time for these appli-
cations. The throughput using the perl compatible regular
expressions (PCRE) [17] on a general purpose MPU is at
most hundreds of Mega bits per second (Mbps) [18], which
is too slow. Thus, hardware regular expression matching is
required. For network applications, since the high-mix low-
volume production and the flexible support for new proto-
cols are required, FPGAs are widely used. Recently, ded-
icated high-speed transceivers for the high-speed network
are embedded in FPGAs. So, we expect extensive use of
FPGAs in the future.
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Different users require systems with different perfor-
mance and price. Thus, different architectures should be
used. For the IXPs (Internet eXchange Points) and the ISPs
(Internet Service Providers), since extremely high through-
put (e.g., more than tens of Giga bits per second (Gbps))
is required, such systems tend to have high cost. How-
ever, for low-end users, such as SOHO (small office and
home office), low cost systems are necessary. The Xilinx
FPGA consists of a logic cell (LC) and an embedded mem-
ory (BRAM)∗ [22]. For the Xilinx Spartan III FPGA, the
LC consists of a four input look-up table (LUT) and a flip-
flop (FF). Since the cost for the FPGA is proportional to
the number of LCs, reduction of the number of LCs means
reduction of the system cost. In this paper, we propose a de-
sign method of the regular expression matching circuit with
fewer LCs than conventional methods.

1.2 Proposed Method

The conventional NFA based method uses single-character
transitions [19]. In the circuit, each state for the NFA is
implemented by an LC. Although a modern FPGA con-
sists of LCs and embedded memories, the conventional
NFA based method fails to use available embedded mem-
ories (Fig. 1 (a)). In contrast, our previous method uses
both LCs and embedded memory to implement the de-
composed NFA with string (multi-character) transition [14].
Thus, this method requires fewer LCs than the conventional

Fig. 1 Platforms for regular expression matching circuits.

∗In addition, it consists of a DSP (multiply and accumulation)
block, a PLL, a DLL, and a Power PC (embedded processor).
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method (Fig. 1 (b)). Moreover, in this paper, to further re-
duce the FPGA cost, we use the off-chip SRAM to imple-
ment most of the regular expression matching circuit. Since
the cost for the off-chip SRAM is much lower than for the
FPGA, the total cost using an FPGA and the off-chip SRAM
is also small. Since our method reduces the FPGA resource
drastically, it also reduces the system cost (Fig. 1 (c)).

1.3 Analysis of Complexities of Finite Automata (FAs) on
Parallel Hardware Model

Yu et al. [25] compared complexities of the NFA with the
DFA on a random access machine (RAM) model. How-
ever, to our knowledge, complexities of FAs on the parallel
hardware model has not been reported. In this paper, we
compare the non-deterministic finite automaton (NFA),
the deterministic finite automaton (DFA), and the decom-
posed NFA with string transition on the parallel hardware
model. The decomposed NFA is much smaller than conven-
tional methods.

1.4 Related Work

Regular expressions are detected by finite automata. In a
DFA, for each state and each input, there is a unique transi-
tion, while in a NFA, for each state for each input, multiple
transitions may exist. In an NFA, there exist ε-transitions
to other states without consuming input characters. Various
DFA-based regular expression matchings exist: An Aho-
Corasick algorithm [1]; a bit-partition of the Aho-Corasick
DFA by Tan et al. [23]; a combination of the bit-partitioned
DFA and the MPU [3]; and a pipelined DFA [5]. Also, vari-
ous NFA-based regular expression matchings exist: an algo-
rithm that emulates the NFA (Baeza-Yates’s NFA) by shift
and AND operations on a computer [2]; an FPGA realiza-
tion of Baeza-Yates’s NFA (Sidhu-Prasanna method) [19];
prefix sharing of regular expressions [12]; and a method that
maps repeated parts of regular expressions to the Xilinx
FPGA primitive (SRL16) [4].

1.5 Organization of the Paper

The rest of the paper is organized as follows: Section 2
shows a regular expression matching circuit based on the fi-
nite automaton; Section 3 shows a regular expression match-
ing circuit based on an NFA with string transition; Section 4
shows a design method of a regular expression matching
circuit based on an NFA with string transition; Section 5
compares complexities on the parallel hardware model; Sec-
tion 6 shows the experimental results; Section 7 shows the
result of MEMOCODE 2010 HW/SW co-design contest;
and Sect. 8 concludes the paper.

This paper is an extension of previous publica-
tions [13]–[15].

2. Regular Expression Matching Circuit Based on Au-
tomaton

2.1 Regular Expression

A regular expression consists of characters and meta charac-
ters. A character is represented by eight bits. The length of
the regular expression is the number of characters. Table 1
shows meta characters considered in this paper. Note that,
in Table 1, r denotes a regular expression.

2.2 Regular Expression Matching Circuit Based on Deter-
ministic Finite Automaton

Definition 2.1: A deterministic finite automaton (DFA)
consists of a five-tuple MDFA = (S ,Σ, δ, s0, A), where S =
{s0, s1, . . . , sq−1} is a finite set of states; Σ is a finite set of
input characters; δ is a transition function (δ : S × Σ → S );
s0 ∈ S is the initial state; and A ⊆ S is the set of accept
states. Since our system accommodates ASCII characters, it
is convenient to choose |Σ| = 28 = 256.

Definition 2.2: Let s ∈ S , and c ∈ Σ. If δ(s, c) ∈ S , then c
denotes a transition character from state s to state δ(s, c).

To define a transition string accepted by the DFA, we
extend the transition function δ to δ̂.

Definition 2.3: Let Σ+ be a set of strings, and δ̂ : S ×Σ+ →
S be the extended transition function. If C ⊆ Σ+ and s ∈ S ,
then δ̂(s,C) represents a transition state of s with respect to
the input string C.

Definition 2.4: Suppose that MDFA = (S ,Σ, δ, s0, A). Let
Cin ⊆ Σ+. Then, MDFA accepts a string Cin, if the following
relation holds:

δ̂(s0,Cin) ∈ A. (1)

Let ci be a character of a string C = c0c1 · · · cn, and δ be
a transition function. Then, the extended transition function
δ̂ is defined recursively as follows:

δ̂(s,C) = δ̂(δ(s, c0), c1c2 · · · cn). (2)

From (1) and (2), the DFA performs the string match-
ing by repeating state transitions.

Table 1 Meta characters for perl compatible regular expression consid-
ered in this paper.

Regular Expression Meaning
r1r2 concatenation (r1 followed by r2)

r1 | r2 r1 or r2 (union)
r* repeat r zero or more times (Kleene closure)
r+ repeat r one or more times
r? repeat r zero or one time

r{n,m} repeat r at least n and at most m times
. match any single character except newline (\n)
[] set of characters

[ˆ] complement set of characters
ˆ matching start from the first character
$ matching ends at the last character
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Fig. 2 DFA for the regular expression “A+[AB]{3}D”.

Fig. 3 DFA machine.

Example 2.1: Figure 2 shows the DFA for the regular
expression “A+[AB]{3}D”. Note that, “A+” denotes one
or more “A”, and “[AB]{3}=[AB][AB][AB]” denotes three
times occurrences of “A” or “B”.

Example 2.2: Consider the string matching for an input
“AABAD” using the DFA shown in Fig. 2. Note that,
[AB] denotes “A” or “B”, while “AB” denotes the con-
catenation “A” and “B”. [AB][CD] denotes the set of four
strings {AC,AD,BC,BD}. Let s0 be the initial state. First,
δ(s0, A) = s1. Second, δ(s1, A) = s2. Third, δ(s2, B) = s5.
Fourth, δ(s5, A) = s9. Finally, δ(s9,D) = s11. Since the state
s11 is an accept state, the string “AABAD” is accepted.

Figure 3 shows the DFA machine, where the register
stores the present state and the memory realizes the transi-
tion function δ. Let q = |S | be the number of states, and n =
|Σ| be the number of characters in Σ. Then, the amount of
memory to implement the DFA is �log2 q�2�log2 n�+�log2 q� bits†.

2.3 Regular Expression Matching Circuit Based on Non-
deterministic Finite Automaton

Definition 2.5: A non-deterministic finite automaton
(NFA) consists of a five-tuple MNFA = (S ,Σ, γ, s0, A), where
S , Σ, s0, and A are the same as Definition 2.1, while the tran-
sition function γ : S × (Σ ∪ {ε}) → P(S ) is different. Note
that, ε denotes an empty character, and P(S ) denotes the
power set of S .

In the NFA, the empty (ε) input is permitted. Thus, a
state for the NFA can transit to multiple states. The state
transition with the ε input denotes an ε transition. In this
paper, in a state transition diagram, an ε symbol with an
arrow denotes the ε transition.

Example 2.3: Figure 4 shows the NFA for the regular ex-

Fig. 4 NFA for the regular expression “A+[AB]{3}D”.

Fig. 5 A circuit for the NFA shown in Fig. 4.

pression for “A+[AB]{3}D”, and also shows the states vis-
ited when the input string is “AABAD”. Note that, multiple
state transitions occur in certain rows, since the NFA can be
in multiple states given input string “AABAD”. There is at
least one path from the initial state s0 to the accept state s5.
Thus, “AABAD” is accepted by this NFA.

Sidhu and Prasanna [19] realized an NFA with single-
character transitions for regular expressions [2]. Figure 5
shows the circuit for the NFA. To realize the NFA, first, the
memory detects the character for the state transition, and
then character detection signals are sent to small machines
that correspond to states of the NFA. Each small machine
is realized by a flip-flop and an AND gate. Also, an ε-
transition is realized by OR gates and interconnections on
the FPGA. Then, machines for the accepted states generate
the match signal.

3. Regular Expression Matching Circuit Based on NFA
with String Transition

3.1 MNFAU

Sidhu-Prasanna’s method [19] does not use embedded mem-
†Since the size of the register in the DFA machine is much

smaller than that for the memory storing the transition function,
we ignore the size of the register.
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ory†. So, their method is inefficient with respect to the re-
source utilization of an FPGA, since a modern FPGA con-
sists of LCs and embedded memories. In the circuit for
the NFA, each state is implemented by an LC of an FPGA.
Thus, the necessary number of LCs increases with the num-
ber of states. To reduce the number of states, we propose
a regular expression matching circuit based on a merged-
states non-deterministic finite automaton with unbounded
string transition (MNFAU). To convert an NFA into an MN-
FAU, we merge a sequence of states. However, to retain the
equivalence between the NFA and the MNFAU, we merge
the states as follows:

Lemma 3.1: Let S = {s0, s1, . . . , sq−1} be the set of
states for the NFA. Assume that for a subset S ′ =
{sk, sk+1, . . . , sk+p−1} ⊆ S , where k ≤ i ≤ k + p − 2, si goes
to si+1 only. Then, the states in S ′ are merged into one state
of the MNFAU only if both the in-degree and the out-degree
for si (k ≤ i ≤ k + p − 1) are one.

Definition 3.1: Suppose that a set of states {sk, sk+1, . . . ,
sk+p} of an NFA is merged into a state S M of an MN-
FAU. A string C = ckck+1 · · · ck+p is a transition string
of S M , where c j ∈ Σ is a transition character of s j for
j = k, k + 1, . . . , k + p.

Example 3.1: In the NFA shown in Fig. 4, the set of states
{s2, s3, s4, s5} can be merged into a state of the MNFAU.
However, the set of states {s1, s2} cannot be merged, since
e1 � 0.

Example 3.2: Figure 6 shows possible MNFAUs derived
from the NFA shown in Fig. 4. In the NFA, since three states
{s2, s3, s4} have ei = 0, the number of possible MNFAUs
are eight. In Fig. 6, the MNFAU (h) is the most compact
MNFAU.

As shown in Example 3.2, the conversion of the com-
pact MNFAU from the given NFA exist. However, we must
consider the restriction for the hardware. The next Section
shows the hardware realization for the MNFAU, and Sect. 4

Fig. 6 Possible MNFAUs derived from the NFA shown in Fig. 4.

shows the design method for the MNFAU.

3.2 Realization of MNFAU

An MNFAU is decomposed into a DFA and an NFA. The
DFA is realized by the transition string detection circuit, and
the NFA is realized by the state transition circuit. Figure 7
shows a decomposed MNFAU. Since transition strings do
not include meta characters††, they are detected by exact
matching. Exact matching is a subclass of regular expres-
sion matching and the DFA can be realized by a feasible
amount of hardware [25]. On the other hand, the state tran-
sition part treating the ε transition is implemented by the
cascade of logic cells shown in Fig. 5.

3.2.1 Transition String Detection Circuit

Since each state of the MNFAU consists of different num-
ber of states of the NFA, lengths of the transition strings
for states of the MNFAU are different. To detect multi-
ple strings with different lengths, we use the Aho-Corasick
DFA (AC-DFA) [1]. To obtain the AC-DFA, first, the tran-
sition strings are represented by a text tree (Trie). Next, the
failure paths that indicate the transitions for the mismatches
are attached to the text tree. Since the AC-DFA stores fail-
ure paths, no backtracking is required. By scanning the in-
put only once, the AC-DFA can detect all the strings repre-
sented by the regular expressions. The AC-DFA is realized
by the circuit shown in Fig. 3. Let q = |S | be the num-
ber of states, and n = |Σ| be the number of characters in Σ.
Then, the amount of memory to implement the AC-DFA is
�log2 q�2�log2 n�+�log2 q� bits.

Example 3.3: Figure 8 illustrates the AC-DFA accepting
transition strings “A” and “[AB][AB][AB]D” for the MN-
FAU shown in Fig. 6.

3.2.2 State Transition Circuit [15]

In an NFA, each state is realized by the small machine con-
sisting of a flip-flop and an AND gate. Figure 9 shows the
state transition circuit for the MNFAU. When the AC-DFA
detects the transition string (“ABD” in Fig. 9), a detection
signal is sent to the state transition circuit.Then, the state

Fig. 7 Decomposed MNFAU.

†Their method uses single character detectors (comparators)
instead of the memory shown in Fig. 5.
††However, a meta character “[]” can be used.
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Fig. 8 AC-DFA accepting strings “A” and “[AB][AB][AB]D”.

Fig. 9 State transition circuit for the MNFAU.

Fig. 10 Two LUT modes for Xilinx FPGA.

transition is performed. The AC-DFA scans a character in
every clock, while the state transition requires p clocks to
perform the state transition, where p denotes the length of
the transition string. Thus, a (p − 1)-bit shift register is in-
serted between small machines to synchronize with the AC-
DFA (In Fig. 9, a two-bit shift register is inserted). A four
input LUT of a Xilinx FPGA can also be used as a shift reg-
ister with up to 16 bits (SRL16) [24]. Figure 10 shows two
LUT modes of a Xilinx FPGA†. With the SRL16, we can

Fig. 11 An example circuit for the decomposed MNFAU.

reduce the necessary number of LUTs and flip-flops.
Figure 11 shows an example circuit for the decomposed

MNFAU. We decompose the MNFAU into the transition
string detection circuit and the state transition circuit. The
transition function for the AC-DFA is realized by the off-
chip memory (i.e., SRAM), while other parts are realized
by the FPGA. In the AC-DFA, a register with �log2 q� bits
shows the present state, where q is the number of states for
the AC-DFA. On the other hand, a u-bit detection signal is
necessary for the state transition circuit, where u is the num-
ber of states for the MNFAU. We use a decoder that converts
a �log2 q�-bit state to a u-bit detection signal. Since the de-
coder is relatively small, it is implemented by the embedded
memory†† in the FPGA.

Example 3.4: In Fig. 11, the address for the decoder mem-
ory corresponds to the assigned state number for the AC-
DFA shown in Fig. 8. The decoder memory produces the de-
tection signal for the state transition circuit. As for the NFA
based regular expression matching circuit shown in Fig. 5,
the number of LUTs is five, and the number of FFs is five.
On the other hand, as for the MNFAU based regular expres-
sion matching circuit shown in Fig. 11, the number of LUTs
is three, and the number of FFs is two.

4. Design of a Decomposed Regular Expression Match-
ing Circuit

4.1 Design Flow

This section shows the design method for the decomposed
regular expression matching circuit. Figure 12 shows the
design flow. First, the NFA is constructed from the given

†In the Xilinx Spartan III FPGA, a CLB consists of four
SLICEs, and a SLICE consists of two LCs. In the CLB, two
SLICEs can be configured as an SRL16 or an LUT, while other
two SLICEs can be configured as an LUT only.
††It can also be implemented by LUTs. However, when q is

large, it requires a large number of LUTs. In our experiment for
the SNORT, q = 10, 066.
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Fig. 12 Design flow for regular expression matching circuit.

regular expression. Then, it is converted into an MNFAU.
The conversion method is described in Sect. 4.3. Next, the
MNFAU is decomposed into the DFA part and the NFA part.
The DFA part is realized by the sequencer shown in Fig. 3
and a decoder, while the NFA part is realized by the cascade
of LCs shown in Fig. 9. Then, the decomposed MNFAU
is converted into the HDL source file. Finally, we use the
Xilinx ISE Design Suite, an FPGA synthesis tool to generate
the configuration data for the FPGA.

4.2 Construction of the NFA

The regular expression shown in Table 1 satisfies the follow-
ing relations:

r+ = rr ∗
r? = (ε | r)

r{n,m} =
n
︷︸︸︷

r · · · r |
n+1
︷︸︸︷

r · · · r | · · · |
m
︷︸︸︷

r · · · r
[cic j] = ci | c j,

where r denotes a regular expression, ci ∈ Σ denotes a char-
acter, Σ denotes the set of characters, ε denotes an empty
character, and ci, c j denotes distinct characters. Thus, to
construct an NFA from a regular expression, it is sufficient to
consider the “state transition with a character”, “concatena-
tion”, “Kleene closure (*)”, and “union (|)”. To construct the
NFA from the given regular expression, we use the modified
McNaughton-Yamada construction [9]. Figure 13 shows the
modified McNaughton-Yamada construction.

4.3 Design Algorithm for the Decomposed MNFAU

As shown in Example 3.2, any NFA can be converted into an
MNFAU satisfying Algorithm 3.1. Thus, the conversion into
a compact MNFAU is important. The conversion problem to
an MNFAU from an NFA is formulated as follows:

Problem 4.1: Let S = {s0, s1, . . . , sq−1} be the set of states

Fig. 13 Modified McNaughton-Yamada constructions.

of the NFA; t be the number of states for the NFA with
ei > 0 (0 ≤ i ≤ q−1), where ei be the total number of ε tran-
sition inputs and outputs in the state si; (S 1, S 2, . . . , S u) be
a partition of S , where S i ⊆ S and S i ∩ S j = φ(i � j); Ci be
a transition string for a set of states S i; C = {C1,C2, . . . ,Cu}
be a set of transition strings; M(C) be the memory size of
the AC-DFA for C; and Mo f f−chip be the memory size for the
off-chip memory. Then, find a partition S that minimizes u
satisfying the memory constraint M(C) < Mo f f−chip, where
u is the number of partitions in S . Note that, for each
S i = {sk, sk+1, . . . , sk+p}, ei = 0 for i = k, k+ 1, · · · , k+ p− 1.

Since the number of possible MNFAUs 2q−t−1 can be
very large, an exhaustive method to find a minimum MN-
FAU satisfying the off-chip memory constraint M(C) <
Mo f f−chip is impractical. In this paper, we propose a greedy
method to find a near minimum MNFAU.

Algorithm 4.1: (Find a near minimum MNFAU from the
NFA)
Let S = {s0, s1, . . . , sq−1} be a set of states for the NFA, and
Mo f f−chip be the memory size for the off-chip memory.

1. Obtain a minimum partition S = S 1 ∪ S 2 ∪ · · · ∪ S u,
where S i ∩ S j = φ(i � j), such that, for each S i =

{sk, sk+1, . . . , sk+p}, ei = 0 for i = k, k + 1, · · · , k +
p − 1. Then, obtain a set of transition strings C =
{C1,C2, . . . ,Cu}.

2. Construct the AC-DFA for C. Then, obtain M(C).
3. If M(C) ≤ Mo f f−chip, then go to Step 6.
4. Select the maximum S i = {sk, sk+1, . . . sk+n} from

S , and partition it into two subsets S i 1 and S i 2,
where S i 1 = {sk, sk+1, . . . , sk+� n

2 �} and S i 2 =

{sk+� n
2 �+1 . . . , sk+n}. Also, obtain a set of transition

strings C = {C1,C2, . . . ,Ci 1,Ci 2, . . . ,Cu}, where Ci 1

is a transition string for S i 1, and Ci 2 is that for S i 2.
5. Go to Step 2.
6. Terminate the algorithm.

Algorithm 4.1 partitions the maximum subset of S until
the memory size M(C) does not exceed Mo f f−chip.

5. Complexity of Regular Expression Matching Circuit
on Parallel Hardware Model

The Xilinx FPGA consists of logic cells (LCs) and embed-
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ded memories. An LC consists of a four input look-up ta-
ble (LUT) and a flip-flop (FF) [22]. Therefore, as for the
area complexity, we consider both the LC complexity and
the embedded memory complexity.

5.1 Theoretical Analysis

5.1.1 Aho-Corasick DFA

As shown in Fig. 3, a machine for the DFA consists of a
register storing the present state, and the memory for the
state transition. The DFA machine reads one character and
computes the next state in every clock. Thus, the time com-
plexity is O(1). Also, since the size of the register is fixed,
the LC complexity is O(1). Yu et al. [25] showed that, for m
regular expressions with length s, the memory complexity
is O(|Σ|sm) for the Aho-Corasick DFA, where |Σ| denotes the
number of characters in Σ.

5.1.2 Baeza-Yates NFA

As shown in Fig. 5, an NFA consists of the memory for the
transition character detection, and a cascade of LCs each of
which consists of an LUT (realizing AND and OR gates)
and a FF. Thus, for m regular expressions with length s, the
LC complexity is O(ms). Since the amount of memory for
the transition character detection is m × |Σ| × s, the memory
complexity is O(ms). A regular expression matching circuit
based on an NFA has s states and processes one character
every clock, including ε transitions. By using m circuits
shown in Fig. 5, the circuit can match m regular expressions
in parallel. Thus, the time complexity is O(1).

5.1.3 Decomposed MNFAU

As shown in Fig. 7, the decomposed MNFAU consists of a
transition string detection circuit and a state transition cir-
cuit. The transition string detection circuit is realized by
the DFA machine shown in Fig. 3. Let pmax be the maxi-
mum length of the transition string in the MNFAU, and |Σ|
be the number of characters in the set Σ. From the anal-
ysis of the DFA [7], the memory complexity is O(|Σ|pmax ),
while the LC complexity for the AC-DFA machine is O(1).
The state transition circuit is realized by the cascade of LCs
shown in Fig. 11. Let pave be the average number of merged
states in the NFA, s be the length of the regular expression,
and m be the number of regular expressions. Since one state
in the MNFAU corresponds to pave states in the NFA, the
LC complexity is O( ms

pave
). By using m parallel circuits, the

circuit matches m regular expressions in parallel. Thus, the
time complexity is O(1).

Note that, in most cases, the NFA requires longer word
length than the MNFAU. The NFA requires sm-bit words,
while the MNFAU requires �log2 q�-bit words†, where q is
the number of states for the MNFAU. For the NFA, off-
chip memories are hard to use, since the FPGA has a limited
number of pins. Thus, the NFA requires a large number of

Table 2 Complexities for the NFA, the DFA, and the decomposed MN-
FAU on the parallel hardware mode.

Time Area
Memory #LC

Baeza-Yates’s NFA O(1) O(ms) O(ms)
Aho-Corasick DFA O(1) O(|Σ|ms) O(1)
Decomposed MNFAU O(1) O(|Σ|pmax ) O( ms

pave
)

Fig. 14 Relation between the length s of regular expression and the num-
ber of LCs.

on-chip memories. On the other hand, for the MNFAU, off-
chip memory is easy to use, since the required number of
pins is small. Although the MNFAU requires larger memory
than the NFA, the MNFAU can use off-chip memory and a
small FPGA. This reduces the hardware cost.

Table 2 compares the area and time complexities for the
NFA, the DFA, and the decomposed MNFAU on the parallel
hardware model. As shown in Table 2, by using the decom-
posed MNFAU, the memory size is reduced to 1

|Σ|ms−pmax of

the DFA, and the number of LCs is reduced to 1
pave

of the
NFA.

5.2 Analysis Using SNORT

To verify the analysis of the previous part, we compared the
memory size and the number of LCs for practical regular ex-
pressions. We selected 80 regular expressions from the in-
trusion detection system SNORT [20], and for each regular
expression, we generated the DFA, the NFA, and the decom-
posed MNFAU. Then, we obtained the number of LCs and
the memory size. Figure 14 shows the relation between the
length of the regular expression s and the number of LCs,
while Fig. 15 shows the relation between s and the mem-
ory size. Note that, Fig. 14, has a linear vertical axis, while
Fig. 15 has a logarithmic vertical axis. As shown in Fig. 14,
the ratio between the number of LCs and s is a constant. On
the other hand, as shown in Fig. 15, the ratio between the
memory size and s increases exponentially.

Therefore, both the theoretical analysis and the experi-
ment using SNORT show that the decomposed MNFAU re-
alizes regular expressions efficiently.

†For example, in the SNORT, the value of sm is about 100,000,
while �log2 q� = 14.
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Table 3 Comparison with other methods.

Method FA FPGA Th #LC MEM #Char #LC/ MEM/
Type (Gbps) (Kbits) #Char #Char

Pipelined DFA [5] (ISCA’06) DFA Virtex 2 4.0 247,000 3,456 11,126 22.22 3182.2
MPU+Bit-partitioned DFA [3] (FPL’06) DFA Virtex 4 1.4 N/A 6,000 16,715 N/A 367.5
Improvement of Sidhu-Prasanna method [4] (FPT’06) NFA Virtex 4 2.9 25,074 0 19,580 1.28 0
MNFA(3) [14] (SASIMI’10) MNFA(p) Virtex 6 3.2 4,707 441 12,095 0.39 37.3
MNFAU (Proposed method) MNFAU Spartan 3 1.6 19,552 1,585 75,633 0.25 21.4

Table 4 Result of MEMOCODE2010 HW/SW co-design contest.

Team Name Place Number of Performance Platform Institution
Regular Expressions (Mbps)

Sasao Lab (Our team) 1 (tie) 140 798 FPGA: Altera Stratix III Kyushu Institute of Technology, Japan
Limenators 1 (tie) 140 500 FPGA: Xilinx V5LX330 IBM Research, USA
SpbSU 3 126 500 FPGA: Xilinx ML505 Lanit-Tercom, Russia
Kraaken 4 85 734 FPGA: Xilinx XUPV5 AMD, USA
Battery 5 35 524 GPU: NVIDIA Tesla T10 Iowa State University, USA
Team IISC 6 25 584 FPGA: Xilinx XUPV5 Indian Institute of Science, India
Tosan 7 25 524 GPU: NVIDIA GTX 295 Sharif University of Technology, Iran
[Ii][Ss][Uu][0-2]{4} 8 42 534 FPGA: Altera Stratix III Iowa State University, USA

Fig. 15 Relation between the length s of regular expression and the
memory size.

6. Experimental Results

6.1 Implementation of the MNFAU

We selected regular expressions from SNORT (open-source
intrusion detection system), and generated the decomposed
MNFAU. Then, we implemented these on the Xilinx Spar-
tan III FPGA (XC3S4000: 62,208 logic cells (LCs), total
1,728 Kbits BRAM). The total number of regular expres-
sions is 1,114 (75,633 characters). The number of states for
the MNFAU is 12,673, and the number of states for the AC-
DFA for the transition string is 10,066. This implementation
requires 19,552 LCs, and an off-chip memory of 16 Mbits.
Note that, the 16 Mbits off-chip SRAM is used to store the
transition function of the AC-DFA, while 1,585 Kbits on-
chip BRAM is used to realize the decoder. The FPGA op-
erates at 271.2 MHz. However due to the limitation on the
clock frequency by the off-chip SRAM, the system clock
was set to 200 MHz. Our regular expression matching cir-
cuit scans one character in every clock. Thus, the throughput
is 0.2 × 8 = 1.6 Gbps.

6.2 Comparison with Other Methods

Table 3 compares our method with other methods. In Ta-
ble 3, Th denotes the throughput (Gbps); #LC denotes the
number of logic cells; MEM denotes the amount of embed-
ded memory for the FPGA (Kbits); and #Char denotes the
number of characters for the regular expression. Table 3
shows that, as for the embedded memory size per a charac-
ter, the MNFAU requires 17.17-148.70 times smaller mem-
ory than the DFA method. Also, as for the number of LCs
per a character, the MNFAU requires 1.56-5.12 times fewer
LCs than the NFA method.

7. Result of Eighth MEMOCODE2010 HW/SW Co-
design Contest [16]

In July 2010, the eighth ACM/IEEE international confer-
ence on formal methods and models for co-design (MEM-
OCODE2010) challenged teams to implement the architec-
ture for an unique type of a deep packet inspector called
CANSCID (Combined Architecture for Stream Categoriza-
tion and Intrusion Detection). Metrics judging the design
are:

1. The number of category patterns and the intrusion pat-
terns represented by regular expressions.

2. The system throughput must be higher than the line rate
of 500 Mbps.

We implemented CANSCID on a Terasic Technolo-
gies Inc. DE3 development board utilizing an Altera
Stratix III FPGA (EP3S340H1152C3N4). We realized
140 regular expression patterns of the design contest using
MNFA (3)† [15]. Table 4 shows the result of design con-

†MNFA (3) is a special case of MNFAU whose transition string
has at most three characters [14]. After the design contest, we gen-
eralized MNFA (3) to the MNFAU. Although the MNFA (3) is
easy to generate, it requires more hardware than the MNFAU.
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test. Team Sasao Lab (our team) and Limenators were joint
winners, each implementing 140 patterns while maintaining
a line rate of 500 Mbps. Only our team used the MNFA (3)
approach rather than DFAs for the regular expression match-
ing. In this way, we could implement regular expressions
compactly while maintaining the highest speed.

8. Conclusion

In this paper, we proposed a regular expression matching
circuit based on a decomposed MNFAU. To implement the
circuit, first, we converted the regular expressions into an
NFA. Then, to reduce the number of states, we converted
the NFA into an MNFAU by a greedy method. Next, to
realize it by a feasible amount of the hardware, we decom-
posed the MNFAU into a transition string detection part and
a state transition part. The transition string detection part
was implemented by an off-chip memory and a simple se-
quencer, while the state transition part was implemented by
a cascade of logic cells. Also, this paper showed that the
MNFAU based implementation has lower area complexity
than the DFA and the NFA based ones. The implementation
of SNORT showed that, as for the embedded memory size
per a character, the MNFAU is 17.17-148.70 times smaller
than DFA methods. Also, as for the number of LCs per a
character, the MNFAU is 1.56-5.12 times smaller than NFA
methods. With MNFA (3), we won the first place award in
the MEMOCODE2010 HW/SW co-design contest.
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