IEICE TRANS. INE. & SYST., VOL.E95-D, NO.2 FEBRUARY 2012

503

| PAPER Special Section on Architectures, Protocols, and Applications for the Future Internet |

A Multi-Domain Access Control Infrastructure Based on Diameter

and EAP

Souheil BEN AYED'?, Student Member and Fumio TERAOKA ™Y, Member

SUMMARY The evolution of Internet, the growth of Internet users and
the new enabled technological capabilities place new requirements to form
the Future Internet. Many features improvements and challenges were im-
posed to build a better Internet, including securing roaming of data and ser-
vices over multiple administrative domains. In this research, we propose
a multi-domain access control infrastructure to authenticate and authorize
roaming users through the use of the Diameter protocol and EAP. The
Diameter Protocol is a AAA protocol that solves the problems of previous
AAA protocols such as RADIUS. The Diameter EAP Application is one of
Diameter applications that extends the Diameter Base Protocol to support
authentication using EAP. The contributions in this paper are: 1) first im-
plementation of Diameter EAP Application, called DiamEAP, capable of
practical authentication and authorization services in a multi-domain envi-
ronment, 2) extensibility design capable of adding any new EAP methods,
as loadable plugins, without modifying the main part, and 3) provision of
EAP-TLS plugin as one of the most secure EAP methods. DiamEAP Server
basic performances were evaluated and tested in a real multi-domain envi-
ronment where 200 users attempted to access network using the EAP-TLS
method during an event of 4 days. As evaluation results, the processing
time of DiamEAP using the EAP-TLS plugin for authentication of 10 re-
quests is about 20 ms while that for 400 requests/second is about 1.9 sec-
ond. Evaluation and operation results show that DiamEAP is scalable and
stable with the ability to handle more than 6 hundreds of authentication re-
quests per second without any crashes. DiamEAP is supported by the AAA
working group of the WIDE Project.

key words: authentication and authorization infrastructure, diameter EAP
application, multi-domain access control, roaming service

1. Introduction

The current Internet is the most important communica-
tion network for information exchange connecting people
all around the world. Nevertheless, with the continuous
increase of Internet users, the emerging of services and
the new technological advance several critical shortcom-
ings discovered in terms of security, flexibility, mobility,
and others leading to start many researches to develop a Fu-
ture Internet. Additional challenges for the Future Internet
have been identified including security/privacy/trust, mobil-
ity and availability. In addition, requirements for roaming
access control and security are addressed particularly over
multi-domains infrastructure.

The access control is a set of mechanisms and systems

Manuscript received May 16, 2011.
Manuscript revised September 20, 2011.
"The author is with the Graduate School of Science and Tech-
nology, Keio University, Yokohama-shi, 223-8522 Japan.
"'The author is with the Faculty of Science and Technology,
Keio University, Yokohama-shi, 223-8522 Japan.
a) E-mail: souheil @tera.ics.keio.ac.jp
b) E-mail: tera@ics.keio.ac.jp
DOI: 10.1587/transinf. E95.D.503

that enables an authority to control the access to resources
and protects valuable data from prohibited access. An ac-
cess control system is based on some processes essentially
providing the functionalities of Authentication, Authoriza-
tion and Accounting (AAA) in an environment for securing
access to resources. Authentication is the process of iden-
tifying the requestor of the resource and validating whether
the identity is what he/she claimed to be. Authorization pro-
cess is granting the right that determines what the requestor
can do on which resource or which service he/she can re-
ceive. Information of the user consumption of resources and
services, such as the delivered service, the begin time and
the end time of the service, are collected by the Account-
ing process. Popular AAA protocols, TACACS and RA-
DIUS [1], are the most frequently and widely used. Theses
two protocols had some problems and complications which
have been improved in the new IETF AAA protocol called
Diameter.

Diameter Base Protocol [2] was proposed to overcome
the problems that raised with the previous AAA protocols
and offering improvements in scalability, flexibility, security
and reliability. In addition, Diameter is designed to provide
access control in a multi-domain environment. Moreover,
for supporting and be compatible with additional protocols
and standards, it can be enhanced with additional function-
alities through adding new Diameter applications. Recently,
many standard bodies including 3GPP [3], 3GPP2 [4], MSF
(the MultiService Forum)[5] and WimaxForum [6] have
adopted the Diameter protocol as the AAA protocol.

In this paper, we propose DiamEAP [7],[8], a part of a
project of the AAA working group of the WIDE project [9]
to build a “Universal AAA Infrastructure” and design a
AAA architecture for next-generation services in the Future
Internet. DiamEAP provides easily applicable AAA func-
tions to new services requiring AAA, aiming to become
a foundation of AAA services in the Future Internet. Di-
amEAP provides authentication and authorization services
for network access based on the Diameter EAP Applica-
tion [10] over freeDiameter [11], an implementation of Di-
ameter Base Protocol. As DiamEAP is the first implementa-
tion of the Diameter EAP Application, we design a new state
machine interacting with the three state machines: Diameter
Base Protocol, EAP, and an EAP method. In addition, Di-
amEAP architecture is designed to support pluggable com-
ponents, EAP method plugins, that can be implemented sep-
arately.

The main contributions of this paper are: 1) design-

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers

504

ing and implementing the first open source Diameter EAP
Application, DiamEAP, capable of practical authentication
and authorization services in a multi-domain environment,
2) providing an extensible design able to support any EAP
method by enabling loadable plugins called EAP method
plugins without modifying the main DiamEAP Server, and
3) including EAP-TLS plugin as one of the most secured
EAP methods. An evaluation of the basic performance of
DiamEAP server is conducted. Further, we tested the scal-
ability and stability of DiamEAP server in a real multi-
domain environment.

The remainder of this paper is structured as follows.
In Sect. 2, we give a brief overview of protocols and stan-
dards involved in the authentication process within a Diame-
ter multi-domain environment. In Sect. 3, we discuss related
work and projects. Then, we present the architecture of Di-
amEAP and the EAP plugins in Sect.4. In Sect. 5, we de-
scribe DiamEAP implementation and the authorization ser-
vice. In Sect. 6, we present the basic performance evaluation
results, followed by the scalability and stability test opera-
tion conducted in a real multi-domain environment. Finally,
in Sect. 7, we conclude the paper.

2. Overview of Diameter Protocol and Authentication
Methods

2.1 Diameter Protocol

The Diameter protocol is an Authentication, Authorization
and Accounting protocol that comes to overcome limitations
and complications revealed with the previous AAA proto-
cols such as RADIUS. It provides a general framework for
future AAA architectures. The Diameter protocol is con-
stituted by Diameter Base Protocol defined in [2] and addi-
tional Diameter applications. Diameter Base Protocol was
standardized in IETF and focuses on general message ex-
changing. It provides the necessary and common function-
alities for negotiation and accounting capabilities. However,
it does not define authentication and authorization function-
alities because these mechanisms vary among applications.
Diameter Base Protocol can be extended by Diameter appli-
cations that provide additional functionalities. All Diameter
applications are defined on top of Diameter Based Protocol
and can benefit from its capabilities (Fig.1). Various Di-
ameter applications were defined and standardized in IETF
such as for IP mobility [12], [13], network access [14] and
Session Initiation Protocol (SIP) [15].

The Diameter protocol is a peer-to-peer protocol. Any
Diameter peer can initiate a request and act either as a client
node, a Diameter server or both. It can also act as an in-
termediate node in the network called the Diameter agent.
The role of a Diameter peer depends on its tasks in the AAA
network and the supported functionalities. Diameter peers
exchange Diameter messages identified by their command
codes. The Diameter message consists of a message header
and a number of Attribute-Value Pairs (AVPs). The header
identifies the type of the message and the Diameter applica-

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.2 FEBRUARY 2012

wernoes (0

i ERER)

(Diameter base protocol

suonedijddy
J918wWwelq

—J

Fig.1 Relationship between Diameter Base Protocol and Diameter Ap-
plications.

Diameter
Server

Diameter
Server

Fig.2 Diameter Network and Diameter Agents (redirect agent, relay
agent, proxy agent and translation agent).

tion to which the message is applicable. AAA data as well as
security and routing information are carried by AVPs. Di-
ameter introduces agents to support a multi-domain envi-
ronment that perform added value processing, reduce com-
plexity of authentication networks, and simplify Diameter
servers configurations and tasks. A Diameter agent can per-
form numerous tasks that can be divided into four kinds of
agents (Fig.2): 1) relay agents: used to forward Diameter
requests to other Diameter peers based on some information
included in the Diameter message such as the Destination
Realm AVP. The relay agents may modify routing informa-
tion of the message but are not allowed to make any change
to other parts of the message, 2) proxy agents: are similar
to the relay agents, in addition they may modify the Diame-
ter message for providing added value service, enforce poli-
cies or perform administrative tasks. 3) redirect agents: are
acting as a centralized configuration repository for Diam-
eter nodes such for routing configuration. Redirect agents
do not relay message; they only reply to requests with the
necessary information and do not modify the message con-
tent, and 4) translation agents: are used to provide transla-
tion between two protocols such as between RADIUS and
Diameter.

2.2 Diameter EAP Application

Diameter EAP Application [10] is a Diameter application
providing authentication capabilities based on Extensible
Authentication Protocol (EAP) [16]. The application defines
the protocol and Diameter messages for carrying authentica-
tion data between the Network Access Server (NAS), acting
as the authenticator, and the back-end authentication server.

BEN AYED and TERAOKA: A MULTI-DOMAIN ACCESS CONTROL INFRASTRUCTURE BASED ON DIAMETER AND EAP

Diameter EAP Application is based on the Diameter Net-
work Access Server Application [14], which defines a Di-
ameter application providing AAA functionalities for net-
work access service.

The authentication data is exchanged between a re-
questor and a Diameter authentication server. Basically, the
exchanged data includes EAP-Payload and keying materi-
als. In addition, it may accommodate authorization and ac-
counting information. When the NAS receives a user au-
thentication request, it creates and sends a Diameter-EAP-
Request message to the Diameter authentication server. If
the user is located in his/her home domain, Diameter peers
forward the Diameter-EAP-Request to the local Diameter
authentication server. Otherwise, Diameter peers, either a
relay agent or a proxy agent, forward the message to the
user’s home domain where it will be handled by the Diam-
eter authenticator server. The client and the Diameter EAP
server continue exchanging messages until success or reject
of the authentication request.

2.3 Extensible Authentication Protocol

The Extensible Authentication Protocol (EAP) is an au-
thentication framework for execution of an authentication
method. It transports authentication information and param-
eters between the two parties involved in the authentication
process, the user and the authentication server. In addition,
EAP provides functionalities for negotiation and selection
of the appropriate authentication method among those pro-
posed by the both extremities of the authentication. EAP
is not an authentication method; it provides necessary func-
tions and defines message formats for supporting authenti-
cation method.

The EAP standard defined in [16] was designed to be
extensible by adding new EAP methods without any change
on the lower layer protocols. It supports various authentica-
tion methods called EAP methods such as EAP-MDS5 [16],
EAP-TLS [17], EAP-TTLS [18], EAP-PSK [19], and many
others. Most of them are defined by IETF and some others
are vendor methods or proposed methods. Many standards
support EAP authentication methods, such as IEEE 802.11,
WPA and WPA2 which have adopted EAP as the authen-
tication protocol in addition to a number of authentication
methods.

2.3.1 EAP-MDS5

EAP-MDS is a password based authentication method de-
fined in [16]. The user is authenticated by verifying the
MD?5 hash of his/her password. The method does not sup-
port key generation and does not provide mutual authentica-
tion, only the user is authenticated to the server. Typically,
EAP-MDS5 is used on trusted and low risk networks, and it
is deprecated on public networks or wireless networks due
to its vulnerability to dictionary and man-in-the-middle at-
tacks.

505

Internet

o~ ;,:,,’L%L €

Diameter Relay
Agent

P >

< % Y

S A}

o= < A~

o ol <
AR S Diameter Relay Diameter

l:)‘ Agent (9 Authentication

5 Server

Diameter Authentication
Server

~
.

Visitor Domain Home Domain

Fig.3 Access control in diameter multi-domain environment.

2.3.2 EAP-Transport Layer Security

EAP-Transport Layer Security (EAP-TLS) defined in [17] is
a PKI (Public Key Infrastructure) based EAP method based
on the Transport Layer Security (TLS) [20], a cryptographic
protocol defined in IETF, providing a secure communication
across a network. EAP-TLS uses the handshake procedure
in the TLS protocol to provide mutual authentication. Upon
success of the handshake, both the client and the server gen-
erate the key material, used for encryption and decryption
of messages, to establish a secure connection. EAP-TLS is
considered as one of the most secure authentication meth-
ods. It is supported mostly by all recent versions of operat-
ing systems and all wireless LAN equipments and devices.

2.4 Diameter Protocol in Multi-Domain Environment

Administrative domains are interconnected via the Internet.
However, due to lack of security and reliability the previous
AAA protocols do not have support for inter-domain AAA
applications. The Diameter protocol is designed to handle
issues that arose with these previous AAA protocols. With
its various features, the Diameter protocol explicitly sup-
ports a multi-domain environment.

With multi-domain support, the Diameter protocol al-
lows communication and exchange of authentication and au-
thorization information between two different administra-
tive domains. Hence, it provides roaming users with the
ability to access network while moving to a visitor domain.
For example, when a user wants access to a service pro-
vided by a visitor domain, first he/she sends a request to the
visitor domain (Fig.3). The visitor domain starts authen-
ticating the user and forwards the authentication messages
to the home domain. The Diameter authentication server at
the home domain will handle authentication messages and
exchange data with the user. All the authentication mes-
sages are exchanged between the two domains through the
Diameter Relay agents. After successfully authenticating
the user, the Diameter authentication server at the home do-
main sends user’s authentication and authorization attributes
to the visitor domain. Based on received attributes, the vis-
itor domain decides to allow or refuse the user to access the
service.

506

3. Related Work

Several access control architectures have been proposed for
resource sharing. In these architectures, trust relationships
should be established among organizations for authenticat-
ing users and granting access to shared resources based on
their credentials stated by the organization to which the user
belongs. However, adopting authorization decision to ac-
cess the organization resources is an extremely critical pro-
cess that should precisely provide the strictly required and
enough privileges to users for performing the allowed ac-
tions on each of the accessed resources. DiamEAP offers
authentication and authorization services for controlling ac-
cess in a multi-domain environment. Besides, DiamEAP
provides the way to support any EAP authentication method
as an EAP method plugins.

3.1 Eduroam

Eduraom (education roaming)[21] is an international
roaming service for members of different universities, re-
search institutions and educational organizations. In the
Eduroam architecture, users from these institutions are able
to access the Internet at any of the participated institutions.
Eduroam is a hierarchically federated service based on a
number of technologies: principally the RADIUS AAA pro-
tocol and the IEEE 802.1X technology. The principle of
Eduroam control access is that when a user tries to access
the Internet, its credentials are checked at the institution to
which the user belongs.

Eduroam lacks some critical features such as for con-
trolling user’s authorizations to access the Internet. In ad-
dition, an institute may provide additional services and re-
sources for visitor users, however, after being authenticated
successfully, the home institution and the institution pro-
viding Internet access are not exchanging user’s attributes
which can be useful for access-control at service layers.
Some solutions were proposed to extend Eduroam with au-
thorization mechanisms [22], [23].

3.2 Shibboleth

Shibboleth [24] is an Internet2 federated identity manage-
ment middleware focusing on educational institutions. It is
an open-source project based on Security Assertion Markup
Language (SAML) [25], an OASIS Security Services Tech-
nical Committee XML-based standard for creating and ex-
changing authentication and authorization information, to
protect online resources from unauthorized access. It also
provides a federated Single Sign-On (SSO) and designed to
offer authentication and authorization for web-based appli-
cations. The Shibboleth protocol aims to allow federated
organizations and different Service Providers (SPs) to man-
age and exchange information about shared resources. It
defines a set of interactions between a service provider and
an identity provider to facilitate exchange of attributes.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.2 FEBRUARY 2012

mation

Authorization Decision

EAP back-end
authentication Server

EAP Protocol EAP Methods
|
|
1
|
{L
|
1
1
1
I

t

DiamEAP Core

(dv3welaqr)

qiadAI) dviwelq

Received
message

Send
message

AJeaqi) uowwod dyjwelq
)
i
|
|
|
|
1
|
|
[
1
|
1
(uoneayddy dv3 J212welq)
dv3iweiq

DiamEAP

Decision
Poli initializer

0
DiamEAP Server 4

Lower Layer

freeDiameter | 2 \

Fig.4 DiamEAP Architecture.

4. Design of DiamEAP and Plugins
4.1 DiamEAP Architecture

As we mentioned above, DiamEAP is a project based on
freeDiameter, an open-source implementation of Diame-
ter Base Protocol. DiamEAP is designed as an extension
for freeDiameter, implementing the Diameter EAP Appli-
cation, EAP and authentication methods for authenticating
and authorizing a client in a network access environment.
Since DiamEAP is interacting and exchanging information,
data and signal with the lower and upper layers, Diam-
eter Base Protocol and EAP, in designing DiamEAP we
take into account to separate between layers and decompose
the DiamEAP into components. The different components
and layers communicate and exchange data using some de-
fined interfaces. In addition, two libraries, libDiamEAP and
Cryptlib, are designed to provide common DiamEAP func-
tionalities, cryptography APIs and functionalities that can
be used by all the DiamEAP components and EAP meth-
ods. Besides, in the way to be extensible and flexible with
the variety of EAP methods, EAP method plugins are intro-
duced to support any EAP methods.

As shown in Fig. 4, the structure of DiamEAP is prin-
cipally composed of five components:

e DiamEAP core is considered as the main component in
DiamEAP. It includes two parts:

— The DiamEAP initializer which is called by free-
Diameter to initialize the Diameter EAP server,
load, configure and start the extension. In addi-
tion, it loads and initializes all the configured EAP
method plugins to be supported during the authen-
tication process.

— The DiamEAP server is responsible for managing
Diameter EAP messages. It is in charge of creat-
ing and maintaining authentication sessions, pars-
ing AVPs, checking attributes, delivering EAP in-
formation for the authentication process, verifying
authorization, making decision based on the au-
thentication and the authorization results, gener-
ating answer attributes and sending the Diameter-
EAP-Answer.

BEN AYED and TERAOKA: A MULTI-DOMAIN ACCESS CONTROL INFRASTRUCTURE BASED ON DIAMETER AND EAP

o EAP back-end authentication server composes the au-
thenticator part of the DiamEAP. It includes the EAP
process in addition to the management of EAP pack-
ets, handling the communication with the EAP method
plugins, and the authentication EAP methods.

e EAP method plugins are authentication method plugins
built on the top of of DiamEAP. Each plugin represents
an authentication method that is loaded by DiamEAP
and can be invoked by the EAP Back-End Authentica-
tion Server during the authentication process. All EAP
method plugins are loaded and configured by the Di-
amEAP initializer. Any loaded EAP method plugin can
be initiated for as much sessions as it is required by Di-
amEAP. Furthermore, it can be invoked simultaneously
by two or more separated authentication sessions.

e Two libraries are provided with DiamEAP: a common
library libDiamEAP and Cryptlib. Libraries are shared
and may be used by any DiamEAP component includ-
ing plugins.

— libDiamEAP provides the tools for manipulating
EAP packets and related data, accessing user’s in-
formation database and managing the data struc-
ture of user’s authentication.

— Cryptlib includes functionalities for handling and
managing the TLS mechanism for EAP-TLS over
the EAP layer, besides other cryptographic and
hash functions.

o The user’s information Database stores user’s and
group’s accounts, in addition to policies and rules for
the authorization and the authentication processes.

4.2 DiamEAP State Machine

The DiamEAP core represents the central component in
the DiamEAP architecture (Fig.4). It manages Diameter
messages and exchanges information among the DiamEAP
components. As far as we know, there is no design or im-
plementation of the Diameter EAP Application. Therefore,
in order to describe the various behaviors of the system,
we propose a new state machine for the DiamEAP server
(Fig.5) with respect to the objectives of the designed Di-
amEAP architecture. In this design, we considered to sat-
isfy the requirements for the interaction with the other lay-
ers state machines: Diameter Base protocol, EAP, and EAP
method. This state machine is designed based on the con-
ventions specified in [26], Annex C. In addition, we re-
design the state machine of EAP back-end authenticator
based on that described in [27]. We updated the EAP state
machine to fit the DiamEAP architecture such as to support
dynamically loadable EAP method plugins and to take into
account of interactions with the EAP method plugins and
the Diameter EAP server.

All received Diameter-EAP-Requests are handled by
the DiamEAP core. For each new EAP authentication re-
quest, a new state machine is created and initialized for man-

507

aging the authentication session and its attributes. This ses-
sion is maintained until success, reject or a not achieved
request for one of these reasons: the round trip timeout
elapsed with no response from the client or the reception
of multiple invalid EAP packets. When receiving a new
Diameter-EAP-Request, the message is firstly parsed for
checking the AVPs contents and retrieving the required at-
tributes for authentication and authorization processes. In
addition, before proceeding to the authentication and ac-
cording to the current state machine, either INITIALIZE or
RECEIVED, the DiamEAP server updates the session pa-
rameters with the new message attributes and initiates the
DiamEAP-EAP interface with the response authentication
information.

Typically, all Diameter-EAP-Requests for Diameter
EAP Application are for authenticating the user. In addition,
if authorization is requested, Diameter EAP Application can
check the user authorization to access the requested service.
The DiamEAP server forwards all received requests to the
back-end authenticator for authenticating the user, then de-
cides whether to check the user authorization or not. The au-
thorization is checked only if the user is authenticated suc-
cessfully. In the AUTHENTICATE state, one or more EAP
method plugins may be invoked by the back-end authenti-
cator. Based on the authentication result and the request at-
tributes, the DiamEAP server makes decision on the request
as success, reject, continue or waiting for checking the au-
thorization.

Once decision is made, the Diameter-EAP-Answer is
prepared with the appropriate AVPs and attributes. In addi-
tion, based on the DiamEAP authentication and authoriza-
tion decision, Success or Failure AVPs are added for success
and rejected authentication, respectively. If the EAP method
requires additional exchanges for authenticating the user, an
EAP-Payload AVP encapsulating the EAP packet is created
and included in the Diameter-EAP-Answer. The state ma-
chine passes to IDLE waiting for a Diameter-EAP-Request
including an EAP response packet.

Upon reception of a response from the client, the Di-
amEAP server parses the Diameter message, initiates the re-
quired attributes and prepares the parameters and interfaces
for the authentication process.

4.3 Dynamically Pluggable EAP Method Plugins

In DiamEAP, EAP methods are defined as plugins that can
be implemented and integrated for authenticating clients
without the need to any modification in DiamEAP. Plug-
ins are dynamically loaded and configured prepared for any
authentication session. All EAP Method Plugins (Fig. 6) are
enabled and unregistered by DiamEAP. When enabled, a
plugin is firstly configured and initiated for accepting au-
thentication requests. Each plugin defines its functions and
objects that can be invoked externally by the DiamEAP or
the back-end authenticator as required for the authentication
process and/or the use of the authentication mechanism.
After negotiating EAP methods with the client, the

508

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.2 FEBRUARY 2012

INITIALIZE

invalidEAPPackets=0;

resultCode = NONE;

authorizationVerified=FALSE;

Initialize(eapAAAlnterface,eap_sm);

(resultCode, authRequest, regAttributes,failedAVP,eapAAAinterface)=
Parse_AVPs(rmsg);

l resultCode== NONE

resultCode== NONE

o

@

[0
=
—
m

RECEIVED

resultCode = NONE;

AUTHENTICATE <

Error=NONE;
| (eapDecision,Error,eap_sm)=Authentication(eap
AAAlnterface);

retrieveAuthSession(eapAAAinterface,eap_sm);
(resultCode, authRequest,
regAttributes,failedAVP,eapAAAinterface)= Parse_AVPs(rmsg)

}

T AUTHORIZE
else attributes=getAuthzAttributes(eap_sm);
authorized=authorization(eap_sm,attributes);
If(authorized==TRUE){
Error==FATAL AnswerAuthzAttributes(regAttributes,attributes,ansAttributes);
}
auth==SUCCESS authorizationVerified==TRUE;
&& authRequest ==AUTHORIZE_AUTHENTICATE ucT
Error==NON- &8& authorizationVerified==FALSE v
FATAL R AUTH_DECISION
v 71 (auth,resultCode)=PolicyDecision(eapDecision,eap_sm,eapAAAlnterface);
DIAMETER_EAP_ANSWER
ansmsg=createAnswerMessage(rmsg);
addAVPs(ansmsg,eap_sm,rmsg);
If(Error==FATAL){ else
auth = FAILURE;
} <
If((auth!=FAILURE) && (eap_sm.user != NULL)){
attributes=getAuthAttributes(eap_sm); SEND ANSWER
AnswerAuthAttributes(regAttributes,attributes,ansAttributes); addResultCode(resultCode,ansmsg);
} addEAPPayload(eapAAAlinterface,ansmsg);
! l storeAuthSession();
auth==FAILURE auth==SUCCESS send(ansmsg);
v else
ucTt
SEND FAILURE
addResultCode(resultCode,ansmsg);
addFailureEAPPayload(eapAAAlinterface,ansmsg); SEND ERROR MESSAGE
send(ansmsg); invalidEAPPackets++;
If(invalidEAPPackets==MAXINVALIDEAPPACKETS){

resultCode=AUTHENTICATION_REJECTED;
- UcT

addResultCode(resultCode,ansmsg);

addSuccessEAPPayload(eapAAAlinterface,ansmsg);
addAuthAVPs(ansAttributes,ansmsg);
addAccountingAVPs(ansAttributes,ansmsg);
send(ansmsg);

}

SEND_SUCCESS ansmsg=createAnswerN\ ge(rmsg);

addAVPs(ansmsg,eap_sm,rmsg);

addUserSessionAVPs(ansAttributes,ansmsg); € If(Ermr::’;lgN:g?:&;é?ﬁﬁi—#??gﬁ;)S\UTH.
If(authorized==TRUE){ } resultCode= _| _| ! ; P

ddAuthzAVPs(ansAttributes, ; <
} @ i slanshttrioutes,ansmsg) If(resultCode==DIAMETER_MULTI_ROUND_AUTH){

}
If(resultCode==DIAMETER_INVALID_AVP_VALUE){

addResultCode(resultCode,ansmsg);
send(ansmsg);

addEAPReissuedPayload(ansmsg,rmsg);

addFailedAVP(ansmsg,failedAVP);

Fig.5 DiamEAP state machine.

back-end authenticator selects the plugin associated to the
approved authentication method. Once selected, the plu-
gin initiates a new session for this authentication request
and builds the first request to start exchanging authentica-
tion information. All plugins should provide the necessary
functions and objects for initiating an authentication session,
build request, checking answer and performing the EAP
method algorithms. Moreover, additional optional functions
and objects are available for the EAP methods that require
them such as for generating the keying materials. The plugin
session is closed after a success or a rejected authentication.

4.4 Examples of EAP Method Plugins

It is primordial to provide at least one EAP method to Di-
amEAP in order to test and validate the authentication part
and the functionalities of the different components, as well
as to provide a full solution for assessing DiamEAP and its
authentication and authorization functionalities. Hence, we
opted to design and implement two EAP method plugins:
EAP-MDS5 and EAP-TLS. EAP-MDS is a password based
EAP method that offers a minimal security and only one way
authentication. It was important to start with designing a ba-
sic authentication plugin such as EAP-MDS5 to validate the
dynamically pluggable mechanism for loading and invoking

BEN AYED and TERAOKA: A MULTI-DOMAIN ACCESS CONTROL INFRASTRUCTURE BASED ON DIAMETER AND EAP

Unregistered

[_p Unload plugin)

~ .
\ / Reset the configuration N

\ Unregister | Liberate the parameters)

Enabled N\

/'.i\

Configured \
Initiate global parameters pu
\\Conﬂgure the plugin y (Session closed 3

$ * Liberate session parameters/data

\Close authentication session)
Idle ‘ - ~

;ngm,saeaed

Session Initiated \“

Close_Session
e N
Keys generated |
Generate Keying materials |
NG _/

[Keys_exist == TRUE]

Initiate session parameters/data
 Initialize authentication session)

Session_ready
e ~

Request Built

[SUCCESS || REJECT]
-

Build the authentication
\ request
\

S/ /
RequesLMessagef

S A
Processing

, \ ~]
(Message_Checked (~ Response Checked |
Extract Response fields and AVPs & 1 check integrity
Perform authentication N
| Verify response fields)

Q\fgomhms

Response_Message

IMessage_Checked

Fig.6 DiamEAP plugin states.

k EAP Back-End Authenticator JJ

t\amEAP Server
{ {)

Generate Keying
Materials

Check Answer EAP-TLS plugin

Delete

TLS Session Authenticate | | Init EAP-TLS-plugin | | Init TLS-session Build Request

*
! |

v
o ——
- fp{ TiS-Recelve | §

~

gnutls deinit Initialize library

gnutls PRF function i Gnutls library

Fig.7 EAP-TLS plugin.

the authentication mechanism. Then, we decided to provide
the EAP-TLS authentication method which is considered as
one of the most secure authentication methods. In addition,
it is supported by mainly most of the operating systems and
network authentication devices. Further EAP method plu-
gins are under design and/or validation such as EAP-TTLS
(PAP/CHAP/MS-CHAP and /MS-CHAP2).

The structure of the EAP-TLS plugin and exchanges
with external components are designed as shown in Fig. 7.
Basically, the EAP-TLS authentication method is based on
the handshake phase of TLS for authenticating users. Af-
ter a success authentication, it generates the keying materi-
als for establishing the secure channel. The plugin provides
all functions and objects required by a plugin for loading,
configuring and making use of the associated EAP method.
As EAP-TLS method may be required by other plugins, we
separated the TLS component part from the EAP-TLS plu-
gin and included it to the CryptLib library accessible by all
DiamEAP components and plugins. The EAP-TLS plugin

509

focuses particularly on the EAP-TLS layer including check-
ing the message content, building the answer messages and
making authentication decision based on the TLS data. In
addition, it generates the keying materials and communi-
cates the required information to the EAP layer. The TLS
component, making use of the GNUTLS library, establishes
the TLS session and manages the TLS exchanged data dur-
ing the handshake.

5. DiamEAP Implementation and Authorization Poli-
cies

5.1 DiamEAP and the EAP Plugins

DiamEAP is implemented as an extension for freeDiameter.
It is written in C programming language. The DiamEAP
extension is loaded and initialized by the freeDiameter dae-
mon. During initialization, DiamEAP advertises the sup-
port of Diameter EAP Application and registers a callback
for handling Diameter-EAP messages. Besides, it specifies,
using the mechanism of “dynamic linking”, the registered
functions and objects for invoking plugins. All messages
are parsed by DiamEAP for checking AVPs’ validity and
storing attributes required by the authentication or the au-
thorization processes. These attributes are maintained in a
DiamEAP session until either success, reject or expiration
of the authentication.

In order to communicate and exchange data between
the different components including DiamEAP, EAP and
EAP plugins, DiamEAP server defines data structure inter-
faces. These interfaces vary from component to other and
may contain EAP method plugin data for maintaining au-
thentication information.

As we mentioned above, the EAP-TLS plugin is de-
signed to be separated in two parts: the TLS functionalities
and the plugin for handling the EAP-TLS packets.

The TLS authentication method functions and data
structures are defined in the Cryptlib. These TLS functions
make use of the GNUTLS library API, a portable ANSI
C based library implementing the TLS protocol and offer
a framework for authentication and public key infrastruc-
ture [28]. Since TLS data is included in an EAP packet, we
implemented the gnutls transport set push and pull functions
to handle the received TLS data and prepare the answer TLS
data to be sent.

The EAP-TLS plugin defines the data structures for
maintaining the authentication state and parameters. It also
provides the functions and objects invokable externally for
loading the plugin and performing the authentication mech-
anisms and algorithms for authenticating users.

5.2 Authorization Service

As mentioned in Sect.2.2, Diameter EAP Application is
mainly focusing on the authentication of the user and pro-
viding the user session parameters for accessing the ser-
vice. Besides, this Diameter application may accommodate

510

Diameter-EAP-Request
Message Parser

U Policy Database

Request Attributes Request Policies and Rules
from Received for user / user group
Attributes

Attributes Fetch Policy Fetch

Request Attributes l l Policies and Rules

Attribute Attribute

Attribute

L. . Operator
Data Decision Engine

Data
Authorizedl

Authorization

Authorization Attributes Build Rejected

Answer Authorization
Attributes

Attribute

Attribute
Data

DiamEAP Decision

Fig.8 Authorization Decision Making Process.

a success authentication with the appropriate authorization
attributes for the service requested.

The authorization service in DiamEAP consists of a
decision-making service to determine whether users have
the permitted authority to access services and which priv-
ileged are to be granted. The access control authorization is
implemented by a simple mechanism able to enforce multi-
ple policies through the introduction of new operators for a
flexible authorization. The authorization decision is made
based on 1) a set of fine-grained policies, rules and pre-
configured parameters defined by the administrator 2) and
the user proposed attributes provided with the authorization
request (Fig. 8).

The access control policies are based on authoriza-
tion rules that defines the conditions to meet before being
granted access, e.g. “The user identified by A is authorized
to Access Network/Service B where rule C applies.”

This authorization service provides a simple security
model for the formal representation of access control poli-
cies and rules. Although it is simple, it allows flexible con-
figuration of rules and conditions.

6. Evaluations and Tests

In this section, we evaluate the basic performances of Di-
amEAP and its components, then we present the results of
the test operation of the DiamEAP server conducted in a real
environment. Firstly, we describe our experiment test-bed
and the evaluation parameters configured for both the free-
Diameter and the DiamEAP server. Then, we present and
discuss the results of the experiments. In the second part
of this section, we describe and present the result graph of
the test operation conducted during the WIDE camp of the
WIDE project, where DiamEAP was established and con-
figured as the main authentication server.

6.1 Evaluation of the Basic Performance

In order to evaluate the basic performance of DiamEAP un-

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.2 FEBRUARY 2012

der an environment similar to the real authentication envi-
ronment, we developed a DiamEAP client: a freeDiameter
extension working as the client side for the DiamEAP server
in order to generate and send Diameter-EAP-Request of an
authentication request. This DiamEAP client also includes a
client side of the EAP-TLS plugins for handling EAP-TLS
authentication packets and returns the corresponded EAP-
TLS answers. Both the DiamEAP client and the EAP-TLS
plugin are fully implemented and compatible with EAP and
EAP-TLS standards. The DiamEAP client is implemented
only for the evaluation purpose.

6.1.1 Evaluation Environment

In this evaluation, the test-bed architecture consists of three
Diameter peers: one Diameter EAP server and two Diameter
peers acting as NAS servers. All nodes are equipped with an
Intel Core 2 Quad processor 2.66 GHz and 4 GB of memory,
and running a Linux operating system, Ubuntu-Server, with
kernel 2.6.32. We configure the servers with the following
parameters:

e SCTP Transport protocol enabled

e 3 streams per SCTP association

e 200 server threads to handle incoming messages at the
same time

e DiamEAP extension Enabled (for the two freeDiameter
peers)

e NASReq and EAP dictionaries enabled

During the evaluation, the two Diameter peers generate
a variable numbers of authentication requests to transmit 10,
50, 100, 150, 200, 250, 300, 350, 400, 450 or 500 requests
every one second. Each flow of these authentication requests
is conducted separately during a period of 1,000 seconds.
Except the maximum CPU results, all other final results are
averaged. We fixed the server threads to 200 for the three
freeDiameter servers and that for the different flows of re-
quests.

6.1.2 Results

Figure 9 shows the result of the experiment to evaluate the
impact of the number of requests per second on the time
for processing the authentication by freeDiameter and Di-
amEAP including EAP component and plugins. We observe
that the time for processing the authentications increases as
the number of the requests rises. We also note that for the
flow 250 requests/second, the processing time for freeDi-
ameter exceeds more rapidly than that of DiamEAP. This
behavior is due to the server threads parameter of freeDiam-
eter which represents the reserved queues for receiving the
requests. However, the DiamEAP processing time was not
influenced by this parameter and it increases linearly with
the number of requests, reaching an authentication time of
DiamEAP server for 500 requests/second less than 2.4 sec-
onds.

We also examine the average consumption of CPU and

BEN AYED and TERAOKA: A MULTI-DOMAIN ACCESS CONTROL INFRASTRUCTURE BASED ON DIAMETER AND EAP

511
Table1 The processing time in millisecond of the DiamEAP Server, the EAP back-end authenticator
and the EAP-TLS plugin for different authentication requests traffic per second.
Authentication 10 50 100 150 200 250 300 350 400 450 500
Request/Second
DiamEAP Server 0.348 0.389 0.512 0.750 0.981 1.230 1.476 1.749 2.459 2.890 3.467
EAP Back-End 1.148 3.672 5.291 7.347 9.543 11.832 13.503 15.240 17.127 19.432 21.457
Authenticator
EAP-TLS plugin | 18.147 | 171.057 | 376.825 | 631.866 | 923.544 | 1223.150 | 1412.76 | 1630.265 | 1894.192 | 2183.566 | 2342.134
9 Table 2 Lifetime values of the authentication session for the 4 days of
g | 1 the experiment.
. ——freeDiameter daemon Day | Session Lifetime
T . <~ DiamEAP The first day 1 hour
S s | The second day 30 minutes
o The third day 10 minutes
-% 4T The fourth day 10 minutes
£ 3+
&1 due to the complexity of the cryptograph algorithms of the
0 R ‘ ‘ ‘ ‘ ‘ ‘ EAP-TLS plugin.
10 50 100 150 200 250 300 350 400 450 500
Authentication request / second 6.2 Evaluation of Scalability and Stability
Fig.9 FreeDiameter and DiamEAP time processing vs. Authentication

request traffic.

80

70 + >
60 -+
F 50 +
T
3 a0
>
& 30
—e—CPU MAX
20 —>—CPU
10
0 s : - : - - : - -
10 50 100 150 200 250 300 350 400 450 500
Authentication request /second
Fig.10 Average CPU consumption and Maximum CPU consumption vs.

Authentication request traffic.

the maximum of CPU reached by the authentication server,
including freeDiameter, DiamEAP and plugins while in-
creasing the number of requests. Figure 10 shows the re-
sulting CPU loads. We denote an increase of the average
CPU consumption and the maximum CPU reached for flows
< 200 requests/second, followed by a slightly growing av-
erage CPU consumption around the 56% and not exceeding
the limit of 69%.

Next, we explore the processing time of the three layers
of DiamEAP including the DiamEAP server, the EAP proto-
col component and the EAP-TLS plugin. The results reveal
that more than 90% of the processing time of the authenti-
cation requests was during the treatment by the EAP-TLS
plugin (see Table 1). However, the DiamEAP server and the
back-end authenticator components are not exceeding the
threshold of 11ms for 200 requests/second and the 25 ms
for 500 requests/second. We assume that this difference may

We had the opportunity to test the DiamEAP server in a real
environment within a AAA architecture during the WIDE
camp of the WIDE project. In this environment, we built
two network domains and deployed two Diameter EAP
servers, one in each domain. Although, despite the signifi-
cant advantages and improvements of the Diameter protocol
compared to its predecessor the RADIUS protocol, until the
conduction of this test operation, we were unable to find
any access point supporting the Diameter protocol. There-
fore, we opted to make use of the Radius Gateway extension
of the freeDiameter project to build two Diameter transla-
tion agents for translating authentication messages between
the Diameter protocol and the RADIUS protocol. The two
agents were configured to trust the other Diameter peers and
to forward messages to the appropriate authentication server
based on the user identification. Thus, the users were able
to be authenticated and accessing network even when mov-
ing to the visitor domain. We configured the authorization
policies for group of users to define authorization attributes
such as for session parameters.

The operation was conducted during the 4 days of
the event, even during night. The 200 attendees of the
WIDE camp were able to access network after being au-
thenticated via the EAP-TLS authentication mechanism us-
ing their valid digital certificates without system crash or er-
rors. All users had a valid digital certificate and were able to
access the Internet through EAP-TLS authentication mech-
anism via different client devices.

In order to visualize the stability of DiamEAP and the
EAP-TLS plugin, we increase the number of requests re-
ceived by DiamEAP server and its plugins. Therefore, we
varied the session lifetime parameter for all success authen-
tication according to Table 2. As shown by Fig. 11, we no-
ticed that DiamEAP was able to handle authentication re-
quests exceeding 400 authentication request/second with-
out observing any errors or malfunction from the DiamEAP

512

700 |
600
500 +
400 +
300 | /-

200

Number of Authentication Requests

]

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.2 FEBRUARY 2012

14:00 T

16:00 =
18:00
20:00 ==—=x=
200 b
0:00

2:00 :__

400 ===
6:00

8:00 |=
10:00 =
12,00 =—x—
14:00 f
16:00

18:00

20:00

Atk
Autt

10:00
12:00 |=———
14:00

16:00 F

18:00 |=———1
20:00

22:00 :

i ———
2:00

400 == |

10:00

12:00 b

v
F3

Session Lifetime:

1 hour 30 min

Fig.11

10 min 10 min

Test operation of DiamEAP Server: Number of the authentication requests per hour during

the 4 days of the experiment. The lifetime of the authentication session varies from 1 hour for the first
day, 30 minutes for the second day to 10 minutes for the third and the fourth days.

server or the EAP-TLS plugin. Even with reducing the ses-
sion timeout, which increases the number of requests for
re-authentication, DiamEAP was enough stable that clients
did not noticed any discontinuity of network connection.

7. Conclusion

With features improvements in terms of mobility, security
and flexibility, Future Internet will enable a multitude of
new services and applications for a multi-domain environ-
ment. For the Future Internet services, AAA functions are
important for protecting remote access to resources and ser-
vices. In this paper, we proposed an open-source Diame-
ter EAP Server for building a multi-domain access control
infrastructure within a AAA environment. DiamEAP pro-
vides a new state machine for the Diameter EAP applica-
tion for the interaction with other layers. It provides a plug-
gable architecture design to support any EAP method plu-
gin. EAP-TLS plugin is also provided for practical opera-
tion. DiamEAP provides a fine-grained authorization ser-
vice in addition to the authentication service. Performance
evaluation showed a large variation in the processing time
among freeDiameter, DiamEAP server and the DiamEAP
method plugins. We had the opportunity to test and vali-
date our implementation of DiamEAP and to experience it
in a real multi-domain environment. Results showed that
DiamEAP was enough stable and scalable with handling
more than 6 hundreds of authentication requests without any
crashes or errors. With DiamEAP we intend to build a foun-
dation of AAA services in the Future Internet.

References

[1] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote au-
thentication dial In user service (RADIUS),” RFC 2865, June 2000.

(2]
(3]
[4]
[3]
(6]
(7]
[8]

[
[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]
[22]

P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “Di-
ameter base protocol,” RFC 3588, Sept. 2003.

The 3rd Generation Partnership Project. http://www.3gpp.org/

The 3rd Generation Partnership Project 2. http://www.3gpp2.com/
The MultiService Forum. http://www.msforum.org/

WiMAX Forum. http://www.wimaxforum.org/

DiamEAP. http://diameap.yagami.freediameter.net/

S. Ben Ayed and F. Teraoka, “DiamEAP: an open-source diameter
EAP application and its evaluation,” Proc. 16th Asia-Pacific Con-
ference on Communication (APCC 2010), pp.515-520, Oct.-Nov.
2010.

The WIDE Project. http://www.wide.ad.jp/

P. Eronen, T. Hiller, and G. Zorn, “Diameter extensible authentica-
tion protocol (EAP) Application,” RFC 4072, Aug. 2005.
freeDiameter. http://www.freediameter.net/

P. Calhoun, T. Johansson, C. Perkins, T. Hiller, and P.J. McCann,
“Diameter mobile IPv4 application,” RFC 4004, Aug. 2005.

J. Korhonen, J. Bournelle, H. Tschofenig, C. Perkins, and K.
Chowdhury, “Diameter mobile IPv6: Support for network access
server to diameter server Interaction,” RFC 5447, Feb. 2009.

P. Calhoun, G. Zorn, D. Spence, and D. Mitton, “Diameter network
access server application,” RFC 4005, Aug. 2005.

M. Garcia-Martin, M. Belinchon, M. Pallares-Lopez, C. Canales-
Valenzuela, and K. Tammi, “Diameter session initiation protocol
(SIP) application,” RFC 4740, Nov. 2006.

B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and E.H. Levkowetz,
“Extensible authentication protocol (EAP),” RFC 3748, June 2004.
D. Simon, B. Aboba, and R. Hurst, “The EAP-TLS authentication
protocol,” RFC 5216, March 2008.

P. Funk and S. Blake-Wilson, “Extensible authentication protocol
tunneled transport layer security authenticated protocol Version 0,”
RFC 5281, Aug. 2008.

F. Bersani and H. Tschofenig, “The EAP-PSK protocol: A pre-
shared key extensible authentication protocol (EAP) method,” RFC
4764, Jan. 2007.

T. Dierks and E. Rescorla, “The transport layer security (TLS) pro-
tocol version 1.2,” RFC 5246, Aug. 2008.

eduroam (education roaming). http://www.eduroam.org/

G. Loépez, 1. Canovas, A.F. Gémez-Skarmeta, and M. Sanchez, “A
proposal for extending the eduroam infrastructure with authorization

BEN AYED and TERAOKA: A MULTI-DOMAIN ACCESS CONTROL INFRASTRUCTURE BASED ON DIAMETER AND EAP

mechanisms,” Comput. Stand. Interfaces, vol.30, pp.418-423, Aug.
2008.

[23] M.S. Cuenca, G. Lépez, O.C. Reverte, and A.F. Gémez-Skarmeta,
“A proposal for extending the eduroam infrastructure with autho-
rization mechanisms,” Security in Information Systems, Proc. 5th
International Workshop on Security in Information Systems, WOSIS
2007, In conjunction with ICEIS 2007, Funchal, Madeira, Portugal,
June 2007, ed. M.LY. del Valle and E. Fernandez-Medina, pp.23-32,
INSTICC Press, 2007.

[24] Shibboleth. http://shibboleth.internet2.edu/

[25] Security Assertion Markup Language (SAML) OASIS Standard.
http://saml.xml.org/

[26] “Standard for local and metropolitan area networks: port-based net-
work access control,” IEEE 802.1X-2010, Feb. 2010. Institute of
Electrical and Electronics Engineers.

[27] J. Vollbrecht, P. Eronen, N. Petroni, and Y. Ohba, “State machines
for extensible authentication protocol (EAP) peer and authenticator,”
RFC 4137, Aug. 2005.

[28] GNUTLS Library. http://www.gnu.org/software/gnutls/

Souheil Ben Ayed received Eng. degree
- the Department of Computer Science, INSAT
- and MSc degree in Telecommunication from
Carthage University of Tunisia, in 2005 and
2008, respectively. From October 2009 to the
present, he has been working toward the PhD
degree in computer science at Keio University,
Japan. His work is focused on the access con-
trol on multi-domain distributed environments a
part of a WIDE Project-AAA working group to
build a “Universal AAA Infrastructure”. From
2005 to 2006, he has worked as an engineer at Actielec-ARDIA, at Fujitsu
Siemens Tunisia on 2007 then moved to Audaxis in 2008 until 2009. His
research interests lie in the areas of computer network, network security,
distributed systems and network mobility.

Fumio Teraoka received a master degree in
electrical engineering and a Ph.D. in computer
science from Keio University in 1984 and 1993,
respectively. He joined Canon Inc. in 1984 and
then moved to Sony Computer Science Labs.,
Inc. (Sony CSL) in 1988. Since April 2001, he
is a professor of Faculty of Science and Tech-
nology, Keio University. He received the Taka-
hashi Award of JSSST (Japan Society for Soft-
ware Science and Technology) and the Motooka
Award in 1991 and 1993, respectively. He also
received the Best Paper Award in 2000 from IPSJ (Information Processing
Society Japan). His research interest covers computer network, operating
system, and distributed system. He contributed to the activity of the Mo-
bile working group of IETF by developing Virtual IP (VIP). He was a board
member of the WIDE Project from 1991 to 2010. He was a board member
of IPSJ from 2000 to 2002. He was a board member of JSSST from 2005
to 2009. He is a member of ACM, IEEE, JSSST, and IPSJ.

513

