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Low-Complexity Memory Access Architectures for Quasi-Cyclic
LDPC Decoders

Ming-Der SHIEH†a), Member, Shih-Hao FANG†, Shing-Chung TANG††, and Der-Wei YANG†, Nonmembers

SUMMARY Partially parallel decoding architectures are widely used
in the design of low-density parity-check (LDPC) decoders, especially for
quasi-cyclic (QC) LDPC codes. To comply with the code structure of
parity-check matrices of QC-LDPC codes, many small memory blocks
are conventionally employed in this architecture. The total memory area
usually dominates the area requirement of LDPC decoders. This paper
proposes a low-complexity memory access architecture that merges small
memory blocks into memory groups to relax the effect of peripherals in
small memory blocks. A simple but efficient algorithm is also presented
to handle the additional delay elements introduced in the memory merg-
ing method. Experiment results on a rate-1/2 parity-check matrix defined
in the IEEE 802.16e standard show that the LDPC decoder designed using
the proposed memory access architecture has the lowest area complexity
among related studies. Compared to a design with the same specifica-
tions, the decoder implemented using the proposed architecture requires
33% fewer gates and is more power-efficient. The proposed new memory
access architecture is thus suitable for the design of low-complexity LDPC
decoders.
key words: error control coding, low-density parity-check (LDPC) codes,
quasi-cyclic (QC) LDPC codes, partially parallel architecture, VLSI design

1. Introduction

Low-density parity-check (LDPC) codes, first introduced by
Gallager in 1962 [1], are linear block codes with very sparse
parity check matrices. They can be represented as a bipartite
graph, also called a Tanner graph [2], in which two kinds of
node, variable nodes and check nodes, are used to denote the
codeword bits and the parity bits, respectively. For LDPC
decoder designs, fully parallel architectures [3], [4] and par-
tially parallel architectures [5]–[8] are two common choices
for VLSI implementations. Although the fully parallel ar-
chitecture can obtain higher throughput, it may have com-
plex interconnections between the check-node units (CNUs)
and variable-node units (VNUs). Considering both the hard-
ware cost and decoding throughput, most LDPC decoders
are constructed using partially parallel architectures, which
may use specific optimization techniques. For example,
overlapped message passing algorithms [5], [6] were pro-
posed for quasi-cyclic LDPC (QC-LDPC) codes to increase
the hardware utilization of CNUs and VNUs. Kang [7] pre-
sented techniques to reduce the number of messages to be
exchanged between CNUs and VNUs, thereby reducing the
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interconnection complexity. For practical applications such
as the IEEE 802.16e system, the multi-mode decoder design
for various codeword lengths have been investigated [8]. Re-
cently, the layered decoding algorithm (LDA) [9], [10] has
attracted much attention because of the reduced number of
iterations as compared to conventional sum-product algo-
rithm (SPA). In addition to single-rate designs, LDPC de-
coders for multi-rate applications have also been intensively
studied [11]–[14].

For the partially parallel architecture, internal memory
is required to store the extrinsic messages. To increase the
parallelism of data access, the internal memory is usually
divided into a set of small memory blocks. However, doing
so may increase the required memory space because the pe-
ripherals of small memory blocks occupy a larger portion of
memory area than do those of large memory blocks. This
effect is shown in Fig. 1, whose results were obtained us-
ing the Artisan memory compiler [15]. Based on this obser-
vation, this paper presents an efficient method of selecting
small memory blocks and then combining them into a larger
one to save memory area. An efficient algorithm is used
to deal with the memory access conflicts that result from
memory merging management. For ease of explanation, the
non-overlapped message passing architecture is adopted to
describe the main idea of the proposed architecture. The
same idea can be easily extended to the overlapped message
passing architectures. Experimental results show that the
proposed memory access architecture allows a significant
reduction in the required memory area with a very limited
degradation in the throughput rate. Compared to the related
works, the proposed design has the lowest area complexity
due to a significant reduction in the required memory area.

Fig. 1 Comparison of required memory area using various sizes of mem-
ory blocks assuming a fixed memory size of 16 K bits.
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The rest of this paper is organized as follows. Section 2
presents an overview of LDPC codes and decoders. Then,
the proposed low-complexity memory access architecture
is described in Sect. 3. Section 4 presents a simple mem-
ory merging algorithm for systematically selecting smaller
memory blocks to be combined into a larger one. Section 5
shows the experiment results and performance evaluation
of the proposed design. Finally, conclusions are given in
Sect. 6.

2. Overview of LDPC Codes and Decoders

2.1 Quasi-Cyclic LDPC Codes

QC-LDPC codes, a special subset of LDPC codes, are
widely used because their regular code structures are very
suitable for hardware implementation. The parity-check
matrix H of a (J,K)-regular QC-LDPC code includes J
block rows, K block columns, and J × K circulant matrix
I j,k, where 0 ≤ j ≤ J − 1 and 0 ≤ k ≤ K − 1. Each circu-
lant matrix I j,k is a Z × Z cyclically shifted identity matrix
with an offset or shift value S j,k. A J ×K base matrix Hbase,
which defines all the offset values S j,k, can also be defined,
where 0 ≤ S j,k ≤ Z − 1. After that, a parity-check matrix H
with a dimension of M×N, where M = J×Z and N = K×Z,
can then be defined.

2.2 Decoding Algorithms

The kernel of sum-product algorithm (SPA) updates two
kinds of extrinsic message, L(r ji) and L(qi j), which rep-
resent the check-to-variable message and the variable-to-
check message, respectively. The subscripts i and j above
stand for the i-th variable node and the j-th check node, re-
spectively.

Before decoding is started, L(qi j) is initialized based
on the received symbol yi. Assuming an additive white
Gaussian noise (AWGN) channel with standard deviation
σ, L(qi j) is then initialized as the initial log-likelihood ra-
tio (LLR) L(ci), computed as:

L(ci) = 2yi/σ
2 (1)

During the check-node phase, L(r ji) is updated based on
L(qi j), expressed as:

L(r ji) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∏

i′∈Rj\i

αi′ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ · φ
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

i′∈Rj\i

φ(βi′ j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2)

where φ(x) = − log(tanh(|x|/2)), αi j = sign(L(qi j)), and
βi j = |L(qi j)|. The notation Rj\i denotes the set of variable
nodes connected to the j-th check node excluding the i-th
variable node.

Compared to the operations defined in the check-node
phase, those in the variable-node phase are relatively simple.
L(qi j) and the estimated message L(Qi) can be updated using
L(r ji) and L(ci), expressed as:

L(qi j) = L(ci) +
∑

j′∈Λi\ j

L(r j′i) (3)

and

L(Qi) = L(ci) +
∑
j∈Λi

L(r ji) (4)

whereΛi stands for the set of check nodes connected to the i-
th variable node and Λi\ j contains the nodes in Λi excluding
the check node j. From the computed message L(Qi) in (4),
the i-th estimated codeword bit vi can then be decided based
on:

vi =

{
1, if L(Qi) < 0
0, otherwise

(5)

The decoding process terminates if the computed codeword
v = [v0, v1, . . . , vN−1] satisfies the condition vHT = 0 or the
maximum number of iterations has been reached. Other-
wise, the process goes back to the check-node phase and the
next iteration is started.

2.3 Partially Parallel Architecture for QC-LDPC Decod-
ing

From the H matrix for QC-LDPC, the corresponding par-
tially parallel architecture of QC-LDPC decoding, as pre-
sented in [5], is illustrated in Fig. 2. It consists of J CNUs
and K VNUs together with J × K memory blocks Mj,k,
0 ≤ j ≤ J − 1 and 0 ≤ k ≤ K − 1, used to store the
extrinsic messages. Each CNU/VNU reads data from pre-
defined memory blocks and then stores the updated mes-
sages to the same addresses of the memory blocks. It is
assumed that the intrinsic messages L(ck) and the decoded
codeword are stored in K memory blocks MCk and K mem-
ory blocks MQk, respectively.

Since the parity-check matrix of QC-LDPC codes is
divided into a set of circulant matrices in which each col-
umn/row contains only one nonzero element, a straightfor-
ward addressing scheme is to map the nonzero elements in
each submatrix I j,k to the memory locations [11]. That is,
the extrinsic message corresponding to the i-th row is stored
in the i-th location of Mj,k. In this way, the mapping rela-
tionship between the memory address and the row/column

Fig. 2 Partially parallel decoding architecture for the H matrix.
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index can be easily obtained. Let A(Mj,k) denote an address
in memory block Mj,k. The notation RI(A(Mj,k)) is used
to represent the row index of I j,k corresponding to A(Mj,k)
in the check-node phase. Similarly, CI(A(Mj,k)) represents
the column index of I j,k corresponding to A(Mj,k) in the
variable-node phase. Given the offset value S j,k and the di-
mension Z of the square matrix I j,k, the following equations
can be derived:

RI(A(Mj,k)) = A(Mj,k) (6)

and

CI(A(Mj,k)) = (A(Mj,k) + S j,k) mod Z. (7)

Although the address generation unit (AGU) can be easily
derived using (6) and (7), the hardware utilization of this ar-
chitecture is only 50% if the two decoding phases are not
overlapped. As stated in [5], the minimum waiting time
between the two phases can be reduced by properly select-
ing the row starting index (RSI) and the column starting in-
dex (CSI) to obtain overlapped decoding phases, thereby in-
creasing hardware utilization.

3. Proposed Partially Parallel Architecture with Com-
bined Memory Blocks

As can be observed in Fig. 1, the total memory area required
in LDPC decoders can be greatly reduced by merging the
small memory blocks into larger ones. However, directly
merging memory blocks may create memory access con-
flicts because each entry of the merged memory block now
consists of multiple data, but these data may not be pro-
cessed by CNUs/VNUs at the same time. Therefore, ad-
ditional storage elements are needed to buffer the retrieved
data. However, this results in extra hardware overhead,
which may offset the benefits obtained from merging mem-
ory blocks. Note that a reduction in throughput rate may
result from additional memory access, as described later. A
similar problem occurs when the updated messages are writ-
ten back to the merged memory blocks.

In this work, an efficient memory merging scheme
is proposed. The resulting hardware requirement of QC-
LDPC decoders, implemented using the partially parallel
architecture, can be significantly reduced with very limited
throughput degradation. The basic idea of the proposed
scheme is to ensure that the retrieved data from the merged
memory structure is processed immediately or with mini-
mum delay by properly selecting memory blocks to be com-
bined. For ease of explanation, a direct method, denoted as
the block row merging scheme, is first presented to illustrate
the main idea of our development. Then, a fast and efficient
memory block selection (MBS) algorithm is proposed for
selecting candidate blocks to be merged so that the number
of extra buffers required from applying the direct method
can be greatly reduced.

3.1 Block Row Merging Scheme

Assume that the J × K memory blocks shown in Fig. 2 are

Fig. 3 (a) jth block row of a parity-check matrix, and (b) memory ar-
rangement based on the block row merging scheme.

used to store the extrinsic messages and that each Mj,k is
associated with a circulant matrix I j,k. A straightforward
merging scheme is to combine all the distinct blocks in a
block row, as depicted in Fig. 3 (a) for the j-th block row.
Such an arrangement is referred to as the block row merg-
ing scheme in this work. Let Gi denote the i-th memory
group produced by merging a set of small memory blocks.
Applying the block row merging scheme, exactly J mem-
ory groups are obtained, with each group Gi consisting of
all Mi,k for 0 ≤ k ≤ K − 1. Using the mapping relationship
between the physical memory addresses and the nonzero el-
ements of I j,k, the corresponding memory arrangement is
illustrated in Fig. 3 (b), in which K extrinsic messages in a
row share the same memory address. Therefore, all K mes-
sages are accessed at the same time.

According to the check-node operations, one can see
that the K messages accessed from the same row can be im-
mediately processed by a CNU. In contrast, in the variable-
node phase, because all the required messages in a column
of H are stored in different memory groups that may not be
accessed at the same time, buffer units are needed during the
operation of VNUs.

The number of required buffers is determined by the
life time of messages when they are read from the memory
and then consumed in later time stages. A longer life time
implies a large number of additional buffers, which in turn
decreases the throughput rate in the variable-node phase.
As a result, selecting appropriate starting addresses for the
memory groups in the variable-node phase is very crucial
for reducing the overhead in the buffer requirement and the
degradation in throughput performance. How to choose a
set of starting addresses for the memory groups to solve the
problems in the variable-node phase is discussed in the next
subsection.

3.2 Starting Address Determination

With the block row merging scheme, one can start the
check-node phase from any address of the memory groups
and each CNU accesses only one memory group. With-
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out loss of generality, CNUs are assumed to access mem-
ory groups consecutively from the 0th address; therefore,
the RSI for each block row is also zero based on (6). Dur-
ing the variable-node phase, the required messages for each
VNU are distributed in different memory groups, and the ad-
dresses of the memory groups corresponding to these mes-
sages may be different. This situation can be seen from (7).
Similar to the check-node phase, each memory group in the
variable-node phase is also accessed consecutively from a
specific address, but its starting address is decided accord-
ing to the given CSIs of original memory blocks. A simple
but effective method of selecting a proper starting address
for each memory group, derived by applying the block row
merging scheme is describe below. A low-complexity mem-
ory access architecture with buffers for message alignment
is thus obtained.

For ease of explanation, it is assumed that a set of CSIs
has been obtained using existing techniques, such as those in
[5], [6]. Let SAv(Mj,k) denote the starting address of mem-
ory block Mj,k in accordance with the given CSIs in the
variable-node phase. Note that the value of SAv(Mj,k) can
be computed according to the CSI and (7). From the com-
puted SAv(Mj,k), a J × K matrix Ω is constructed with its
elements defined as:

(Ω) j,k = SAv(Mj,k) (8)

where (Ω) j,k denotes the element at the j-th row and the k-
th column of Ω. The matrix Ω thus provides all the start-
ing addresses of memory blocks. This information can be
used to compute the distance between each pair of related
starting addresses and to estimate the life times of retrieved
messages. Therefore, the life times can be minimized by
selecting proper starting addresses for the merged memory
blocks. This in turn minimizes the number of additional
buffers. Specifically, let SAv(G j) be the starting address of
memory group G j in the variable-node phase. As mentioned
above, a good starting address SAv(G j) can be calculated as:

SAv(G j) = arg min
a

[max
b

((b − a) mod Z)] (9)

where a, b ∈ Φ j andΦ j = {SAv(Mj,k) | Mj,k ∈ S(G j)}. S(G j)
is the set of memory blocks Mj,k included in memory group
G j. That is, the argument a which produces a minimum dis-
tance between a and the other starting addresses of memory
blocks in the same group is selected as the starting address
of the memory group. The SAv(G j) determined from (9)
leads to a minimum number of redundant memory access in
the variable-node phase.

To estimate the total number of additional buffers,
the relative block delay dR(Mj,k) between SAv(Mj,k) and
SAv(G j) is first computed. It is expressed as:

dR(Mj,k) = (SAv(Mj,k) − SAv(G j)) mod Z (10)

where Mj,k ∈ S(G j). In addition, the maximum relative
block delay of all dR(Mj,k) corresponding to G j is defined
as:

dR(G j) = max
Mj,k∈S(G j)

(dR(Mj,k)) (11)

From the selected SAv(G j), the value of dR(G j) can be inter-
preted as the minimum number of delay elements required
for memory group G j to line up the messages that can be
directly retrieved from the original non-merging memory
structure. For clarity, a J × K matrix Γ is also constructed
with its elements defined as:

(Γ) j,k = dR(Mj,k) (12)

where (Γ) j,k denotes the element at the j-th row and the k-th
column of Γ.

As an example, consider the 2 × 3 base matrix Hbase

of a QC-LDPC code with block size Z = 13, as shown in
Fig. 4 (a). Using the block row merging scheme, two mem-
ory groups, G0 and G1, are constructed as given in Fig. 4 (b).
If the CSIs of the first to the last block columns are {10, 0, 0},
the Ω matrix can be derived using (7) and expressed as:

Ω =

[
9 11 9
5 3 6

]
(13)

From (9), the starting addresses of memory groups are ob-
tained as SAv(G0) = 9 and SAv(G1) = 3. With the derived
SAv(G0), SAv(G1), and Ω matrix, the Γ matrix is computed
using (10) and (12) as:

Γ =

[
0 2 0
2 0 3

]
(14)

Therefore, the maximum block delays dR(G0) and dR(G1)
defined in (11) are equal to 2 and 3, respectively.

3.3 Proposed Memory Access Architecture

The low-complexity memory access architecture obtained
using the proposed block row merging scheme for the 2 × 3
base matrix in Fig. 4 (a) is depicted in Fig. 5. Note that the
intrinsic memory which stores L(ci) is not shown in Fig. 5
for simplicity. In addition to the two memory groups, the
decoder consists of two types of processing unit, CNUs and
VNUs, and first-in first-out (FIFO) buffers associated with
VNUs for message alignment, described later. Each mes-
sage can be accessed from the assigned entry by passing
through the data distributor and being written back in groups
via the data combiner. Note that since the operations in the
check-node phases are not affected by the proposed block
row merging scheme, this study only focuses on the modifi-
cations in the variable-node phase. For clarity, the contents
of memory groups G0 and G1 in the variable-node phase
are detailed in Fig. 6, in which each entry of G0/G1 con-
tains 3 messages and the symbol r j,i denotes the message

Fig. 4 (a) Base matrix of a QC-LDPC code with block size Z = 13 and
(b) memory groups after merging memory blocks in the same row.
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Fig. 5 Low-complexity memory access architecture based on block row
merging scheme for the QC-LDPC code shown in Fig. 4 (a).

Fig. 6 Contents of (a) memory group G0; (b) memory group G1 in the
variable-node phase.

from check node j to variable node i, as defined in Sect. 2.2.
Therefore, the set of r j,i with the same subscript i are mes-
sages to be processed by a VNU at the same time in the
variable-node phase.

In the conventional memory access architecture, the
six highlighted messages in Fig. 6, i.e., r9,10, r18,10, r11,13,
r16,13, r9,26, and r19,26, are accessed at the same time in the
variable-node phase. Using the proposed architecture, the
three messages r9,10, r11,13, and r9,26 are not read from G0 si-
multaneously. Similar observations are true for r18,10, r16,13,
and r19,26 in G1. To solve this problem, additional buffers,
denoted as R FIFO hereafter, are introduced to line up mes-
sages read from the memory groups for VNUs. R FIFO G j
is used to denote the set of read FIFOs allocated for mem-
ory group G j and R FIFO G j k is used to denote the k-th
FIFO (counting from the left side) inside the R FIFO G j.
Specifically, the read buffer R FIFO G 0 (R FIFO G 1) as-
sociated with memory group G0 (G1) is used to rearrange the
retrieved messages in the same order as that retrieved from
conventional non-merged memory access architecture. For
simplicity, R FIFO is used to represent either R FIFO G j
or R FIFO G j k where appropriate.

From (11) and (12), one can easily show that the length
of R FIFO j k associated with each output of the data dis-
tributor is minimized when assigned as dR(G j) − dR(Mj,k).
Assuming the starting addresses SAv(G0) = 9 and SAv(G1) =
3, the length of required R FIFO j k is drawn in Fig. 5. Note

that since the length of R FIFO j is minimized individually
for G j, the times to start reading messages from G0 and G1

are skewed by |dR(G1)−dR(G0)| time delays to synchronize
the messages read from different memory groups. For ex-
ample, the pairs of messages (r9,10, r18,10), (r11,13, r16,13), and
(r9,26, r19,26), read from G0 and G1 at different time slots, ap-
pear at the inputs of VNU0, VNU1, and VNU2, respectively,
simultaneously by using R FIFO and assuming that the ac-
cess times of G1 and G0 start from t and t + 1, respectively.
This process is repeated for consecutive retrievals of the re-
maining messages. Note that messages, such as r9,24 and
r10,25 in G0, retrieved before the highlighted rectangles in
Fig. 6, are written back without modification the first time
they are read from the memory group. That is, they are
read twice before being processed by VNUs, which results
in throughput degradation in the variable-node phase. This
problem can be greatly reduced by employing the enhanced
memory merging algorithm presented in Sect. 4.

Similar to the application of R FIFO, the updated or
bypassed messages have to line up again before being writ-
ten back to memory groups. As a result, additional FIFOs,
denoted as W FIFO, are needed to align the messages for
memory write operations. W FIFO temporarily stores the
messages outputted from VNUs and the aligned messages
are then written back to memory groups through the data
combiner. Because the length of R FIFO G j k is equal
to dR(G j) − dR(Mj,k), the length of W FIFO G j k associ-
ated with each input of the data combiner can be assigned
as dR(Mj,k). In this manner, all the messages read from
G j exactly pass through dR(G j) delay elements before they
are written back to G j. The summation of the lengths of
R FIFO G j k and W FIFO G j k along a path k is thus a
constant, which is equal to dR(G j). This indicates that ex-
tra memory access and throughput degradation can be re-
duced if dR(G j) is minimized for each memory group. Note
that although the values of CSIs affect the required FIFO
length, how to choose good CSIs is not the focus of this
work. The proposed starting address determination method
and low-complexity memory access architecture can be used
in conjunction with existing CSI determination methods. In
summary, the proposed memory access architecture has the
following advantages: (a) it can greatly reduce the required
memory area by merging a set of small memory blocks with
close addressing sequences into a larger one to relax the
overhead of peripherals in the memory access architecture;
(b) it is more power-efficient as compared to conventional
LDPC architectures.

4. Memory Block Selection Algorithm

As discussed above, the memory access architecture derived
using the proposed block row merging scheme can oper-
ate correctly by utilizing the inserted R FIFO and W FIFO.
However, the required FIFO length may be large for parity-
check matrices with large dimensions. An alternative is
to group memory blocks with a maximum allowable FIFO
length along each path to reduce the degradation in through-
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put performance. A fast and efficient algorithm, called the
MBS algorithm, for systematically selecting memory blocks
to form memory groups is presented below.

Unlike the block row merging scheme, the memory
blocks in a memory group selected by the proposed MBS al-
gorithm may contain circulant matrices from different block
rows and the number of selected blocks in a group is not
restricted to a fixed number. As a result, the maximum rel-
ative block delay of memory group Gi can be greatly de-
creased if the memory blocks to be combined are properly
chosen. This reduces the required FIFO length in the low-
complexity memory access architecture shown in Sect. 3.
The proposed MBS algorithm is summarized as follows.

MBS Algorithm

Input: RSIs, CSIs, L
Initialization: Ω, ω = sort(Ω), i = 0
Memory Block Selection:
(A.1) S 0 = min(ω)
(A.2) Include all Mj,k with SAv(Mj,k) satisfying S 0 ≤

SAv(Mj,k) ≤ S 0 + L in memory group Gi, and store
the selected SAv(Mj,k) in the vector ωi.

(A.3) Remove all selected SAv(Mj,k) in (A.2) from ω.
(A.4) if (ω = φ), |G| = i + 1 and go to Memory Group

Refinement;
else i = i + 1 and go back to (A.1).

Memory Group Refinement:
(B.1) i = 0
(B.2) N0 = N(Gi,Gi+1);

Nd = N(Di,Di+1), where Di = Gi − {Mj,k |
SAv(Mj,k) = max(ωi)}, and Di+1 = Gi+1 ∪ {Mj,k |
SAv(Mj,k) = max(ωi)};
Nu = N(Ui,Ui+1), where Ui = Gi ∪ {Mj,k |
SAv(Mj,k) = min(ωi+1)} and Ui+1 = Gi+1 − {Mj,k |
SAv(Mj,k) = min(ωi+1)}.

(B.3) Nmin = (N0,Nd,Nu)
(B.3.1) if (Nmin = Nd)&(dR(Di+1) ≤ L), move Mj,k

with SAv(Mj,k) = max(ωi) from Gi to Gi+1,
move max(ωi) from ωi to ωi+1, let i = i− 1 if
i � 0, and go back to (B.2);
else go to (B.3.2).

(B.3.2) if (Nmin = Nu)&(dR(Ui) ≤ L), move Mj,k

with SAv(Mj,k) = min(ωi+1) from Gi+1 to Gi,
let i = i − 1 if i � 0, move min(ωi+1) from
ωi+1 to ωi, and go back to (B.2);
else go to (B.3.3).

(B.3.3) if (i � |G| − 2), i = i+ 1 and go back to (B.2);
else go to Output.

Output: Gi and ωi for 0 ≤ i ≤ |G| − 1.

The proposed MBS algorithm consists of two main
steps: memory block selection and memory group refine-
ment. In the former, memory blocks are sorted according to
their computed starting addresses and then the sorted blocks
are partitioned into groups subject to the constraint L, which
is denoted as the maximal allowable FIFO length. In the lat-
ter, the number of required delay elements is reduced by

migrating memory blocks between adjacent groups without
violating the constraint L. The incremental improvement in
the number of delay elements is guided by iteratively evalu-
ating the cost function N(Gi,Gi+1) for every possible move.
The cost function N(Gi,Gi+1) is defined as:

N(Gi,Gi+1) = dR(Gi) × |Gi| + dR(Gi+1) × |Gi+1| (15)

where |Gi| is the number of memory blocks in Gi. The
value of N(Gi,Gi+1) indicates the total number of required
delay elements associated with Gi and Gi+1. Since all the
elements in ωi are less than those in ωi+1 in each itera-
tion, the MBS algorithm has the choice of either moving
the memory block(s) in Gi with max(ωi) down to Gi+1 or
moving those in Gi+1 with min(ωi+1) up to Gi. The values
of Nd = N(Di,Di+1) for downward movement and those of
Nu = N(Ui,Ui+1) for upward movement are then compared
to the N0 = N(Gi,Gi+1) of the current partition to keep the
solution with the lowest cost. For a successful move, the it-
eration traces back one step by reducing the index i by one
because the content of Gi has been altered now. Otherwise,
the iteration proceeds by increasing the index by one until
the final group is reached.

In summary, the MBS algorithm reduces the number
of required delay elements to reduce the FIFO overhead by
allowing merged memory blocks to be selected from dif-
ferent block rows. The pre-defined maximum allowable
FIFO length controls the maximum throughput degradation;
a small L makes degradation negligible in practical applica-
tions of LDPC codes with large dimensions. A larger L leads
to a smaller number of memory groups with an increase in
the number of FIFOs and throughput degradation. There is
a tradeoff among the area reduction from merging memory
blocks, the increase in FIFO overhead, and the throughput
degradation. A proper value of L can be chosen based on
the requirements of target LDPC decoder.

5. Experiment Results and Comparisons

A LDPC decoder design for IEEE 802.16e systems with
a code rate-1/2 parity-check matrix and a maximum block
size of Z = 96 was coded in Verilog hardware descrip-
tion language and synthesized using Synopsys tools. The
LDPC decoder consists of 19 modes with a code length
ranging from 576 to 2304. The key settings of the pro-
posed LDPC decoder design are: (i) the RSIs are as-
sumed to be zero for all the block rows and the CSIs
are given as {70, 75, 28, 95, 2, 0, 34, 87, 91, 24, 88, 1, 26, 4,
53, 7, 50, 63, 59, 52, 49, 46, 41, 25} for block columns count-
ing from the left side, (ii) the maximum allowable FIFO
length L is set to 4 in the MBS algorithm to group mem-
ory blocks, (iii) the min-sum algorithm is employed with
8 quantization bits for comparison with results in, (iv) the
data path contains 12 conventional CNUs and 24 VNUs
with bypass mode. Note that since the selection of CSIs
is not the main focus of this work and the prototype de-
sign adopts non-overlapped message passing architecture,
the CSIs were randomly generated for simplicity. Using the
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Table 1 Comparison of LDPC decoders.

Table 2 Area comparison of storage units.

MBS algorithm with L = 4, the derived memory architecture
consists of 16 memory groups with each group including 1
to 8 memory blocks, and the total number of extra delay
elements for message alignment is 248.

The example design, which is implemented in TSMC
0.13 μm CMOS technology, can operate at 100 MHz and has
a core area of 1.89 mm2. The post-layout simulation indi-
cates that the power consumption is 61.3 mW when oper-
ated at 100 MHz and that the throughput is 135 Mb/s. The
total area requirement expressed in terms of gate count is
280 k, including the memory groups and logic circuit. The
proposed decoder design has the smallest core size among
related studies. Moreover, the number of required memory
address generators and their interconnections is also reduced
in the proposed memory access architecture.

A comparison of the proposed LDPC decoder design
with related designs is shown in Table 1. Although the spec-
ifications of the designs in Table 1 are very different, the
proposed design has the lowest area complexity when im-
plemented in the same specification due to a significant re-
duction in required memory area. In particular, when com-
pared with the design in [8], which has similar specifications
as ours, the decoder implemented using the proposed low-
complexity memory access architecture can achieve about
33% reduction in gate count. As shown in Table 2, the im-
provement in the extrinsic and intrinsic memory areas over
the conventional design [8] is about 53.46% and 42.87%, re-
spectively. Taking in account the additional FIFOs of size
99,200 μm2, the overall improvement in storage units over
the conventional design becomes 37.44%. Note that since
the intrinsic memory is only used for VNUs, the problem

arises in merging extrinsic memory blocks does not exist
in the merged intrinsic memory. Thus we can merge all
the intrinsic memory blocks without introducing additional
FIFOs. Moreover, from the normalized power efficiency
(NPE) defined in [16]:

NPE =
Throughput Rate

Power Consumption
×

(
Technology

0.13 μm

)2

one can show that the proposed design is almost twice as
efficient as that in [8]. NPE evaluates the throughput rate
a LDPC decoder can obtain per unit of power consump-
tion. As a result, the proposed merged memory access ar-
chitecture also leads to a power-efficient solution. The work
[13] focuses on designing a high-throughput multi-rate QC-
LDPC decoder by adopting dual-path and fully-overlapped
techniques to improve its throughput rate. The design in
[13] thus has higher throughput rates than the proposed one
because it can deal with the nonzero matrices from two rows
at the same time. This implies that the high throughput rate
is achieved at the price of more hardware requirements. On
the contrary, the proposed design, which tries to merge small
memory blocks into large ones, is targeted at designing a
low-complexity LDPC decoder based on the proposed mem-
ory merging technique. As a result, the area complexity of
our design is smaller than that of [13].

Since additional FIFOs are inserted in our design, the
VNU takes (Z + 2L) instead of Z cycles to complete the op-
erations in the variable-node phase. For Z = 96 and L = 4,
this results in about 2L/(2Z) = 4% degradation in the over-
all throughput performance as compared to the conventional
design assuming that the same number of computational cy-
cles are needed in both the check-node and variable-node
phases. The reason why the throughput rate of [3] is much
higher than ours is that a fully parallel architecture is con-
sidered in their design. Similarly, the partially parallel ar-
chitecture with overlapped check-node and variable-node
phases in [7] incorporates more processing elements than
ours does to increase its throughput rate. Note that since
the main focus of this work is on exploring the benefit ob-
tained from merging memory blocks, the prototype design
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adopts the non-overlapped message passing scheme for ease
of explanation. Note that the proposed method can be eas-
ily extended to the overlapped message passing design also.
Recently, several LDPC decoding architectures suitable for
multi-rate applications have been presented in [11]–[14].
The proposed method can also be applied to support all 114
modes in such an application to further reduce the hardware
requirement.

To determine the effect of L on the number of required
delay elements and the partition of memory groups, the area
consumptions of both FIFOs and memory groups, reported
from the Artisan memory compiler, was plotted as a func-
tion of L for comparison. Figure 7 plots the synthesized re-
sults of FIFO area, extrinsic memory area, intrinsic memory
area, and their summation using the same design parame-
ters as those described above. The figure reveals that the
required FIFO area increases almost linearly with the value
of L. This is due to the memory groups generated from the
MBS algorithm using large L possibly resulting in a large
value of relative block delay defined in (11), thereby leading
to higher FIFO requirements. The trend of required mem-
ory area is similar to that in Fig. 1 because more memory
blocks are included in each memory group for large L. As
a result, the advantage of merging memory blocks is offset
by the additional FIFOs for large values of L. Note that the
intrinsic memory area is independent of L since the original
intrinsic memory can be merged directly without the aid of
the MBS algorithm. The MBS algorithm only deals with
merging proper extrinsic memory blocks to minimize the
total FIFO requirement. From Fig. 7, a feasible choice of
L for minimizing the area requirement of the present LDPC
decoder design ranges from 3 to 6. These values of L are
usually much smaller than the block size of the parity-check
matrices of QC-LDPC codes in practical applications so that
the degradation in throughput performance can be negligible
using the proposed method. For the special case when L is
equal to zero, each memory group contains only one kind of
SAv(Mj,k) after the MBS algorithm is applied; thus, no addi-
tional FIFOs are required in the proposed architecture. This
implies that no throughput degradation exists when L = 0.

Fig. 7 Areas of required FIFO and memory groups for the code rate-1/2
parity check matrix defined in IEEE 802.16e systems with a block size of
Z = 96.

6. Conclusion

A low-complexity memory access architecture was pre-
sented for the design and implementation of QC-LDPC
decoders. In the proposed architecture, smaller memory
blocks are merged into memory groups to reduce the impact
of peripherals inside the memory. The conflict of multiple
message accesses that results from merging memory blocks
is successfully resolved by adding buffers to synchronize
the retrieved messages. An efficient memory block selec-
tion algorithm was also proposed to minimize the required
buffer size. Experiment results show that the QC-LDPC de-
coder designed using the proposed memory access architec-
ture significantly reduces the area requirement and also pro-
vides greater power efficiency than that achieved in related
studies.
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