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SUMMARY Soft errors caused by energetic particle strikes in on-chip
cache memories have become a critical challenge for microprocessor de-
sign. Architectural vulnerability factor (AVF), which is defined as the
probability that a transient fault in the structure would result in a visible
error in the final output of a program, has been widely employed for ac-
curate soft error rate estimation. Recent studies have found that designing
soft error protection techniques with the awareness of AVF is greatly help-
ful to achieve a tradeoff between performance and reliability for several
structures (i.e., issue queue, reorder buffer). Considering large on-chip L2
cache, redundancy-based protection techniques (such as ECC) have been
widely employed for L2 cache data integrity with high costs. Protecting
caches without accurate knowledge of the vulnerability characteristics may
lead to the over-protection, thus incurring high overheads. Therefore, de-
signing AVF-aware protection techniques would be attractive for designers
to achieve a cost-efficient protection for caches, especially at early design
stage. In this paper, we propose an improved AVF estimation framework
for conducing comprehensive characterization of dynamic behavior and
predictability of L2 cache vulnerability. We propose to employ Bayesian
Additive Regression Trees (BART) method to accurately model the vari-
ation of L2 cache AVF and to quantitatively explain the important effects
of several key performance metrics on L2 cache AVF. Then we employ
bump hunting technique to extract some simple selecting rules based on
several key performance metrics for a simplified and fast estimation of L2
cache AVF. Using the simplified L2 cache AVF estimator, we develop an
AVF-aware ECC technique as an example to demonstrate the cost-efficient
advantages of the AVF prediction based dynamic fault tolerant techniques.
Experimental results show that compared with traditional full ECC tech-
nique, AVF-aware ECC technique reduces the L2 cache access latency by
16.5% and saves power consumption by 11.4% for SPEC2K benchmarks
averagely.
key words: architectural vulnerability factor (AVF), AVF modeling and
prediction, AVF-aware protection, cost-efficient, L2 cache

1. Introduction

Cache has been a major design point for microprocessors,
and cache data integrity has been an important design con-
cern for microprocessors [1]–[6]. Errors in cache can easily
propagate through the system and lead to data integrity is-
sues [5], [6]. Soft errors, cause by external radiation events,
are the largest contributors to the vulnerability of cache, and
the situation is expected to worsen with aggressive technol-
ogy scaling [7]–[9]. Moreover, researches have found that
soft error rates of cache are projected to increase linearly
with cache sizes [10], [11]. A larger cache provides im-
proved performance, but comes at the expense of increased
vulnerability to soft errors. Inside a processor, since L2
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cache is the largest component and its size is become larger,
L2 cache is the most vulnerable on-chip component and suf-
fers from increasing vulnerability to soft errors.

Redundancy-based techniques, such as parity and Error
Correction Codes (ECC), are the most commonly used fault
tolerant techniques for cache. And ECC has been widely
used to protect L2 cache in modern commercial micropro-
cessors [12]–[18]. Although ECC maintains a desired reli-
ability goal for L2 cache, it incurs significant area, perfor-
mance and power costs. Researches have found that ECC
has incurred the “one process generation penalty” (approxi-
mately 2X scaling in area, speed and power) [19]. Protecting
L2 cache in a cost-effective way is increasingly attractive for
designers.

A variety of techniques have been proposed to reduce
the costs of ECC [20]–[24]. However, all these techniques
assumed that the probability a soft error would result in an
erroneous program outcome (i.e., AVF [9]) is 100%, and
therefore provide full ECC protection throughout the entire
execution lifetime of programs. However, this level of full
ECC protection may be not necessary at all execution points,
since AVF of several structures has been demonstrated to
vary significantly during the lifetime of programs, and many
execution points exhibit extremely low level of vulnerabil-
ity [25], [26]. For this reason, protecting structures without
accurate knowledge of their dynamic vulnerability charac-
teristics may lead to the over-protection and incur significant
costs. Hence, it is necessary to develop novel cost-effective
fault tolerant techniques with the awareness of vulnerability
characteristics.

Recently, researchers have investigated the dynamic
AVF behavior of several important structures, and have cre-
ated AVF predictors based on several key performance met-
rics. Furthermore, they have incorporated the AVF pre-
dictors into the dynamic fault tolerant system design, so
as to meet the reliability goal with minimum performance
penalty [26]–[28]. To our knowledge, they only focused on
a few given micro-architecture structures, e.g., issue queue
(IQ), reorder buffer (ROB) and register file, not including
caches.

The focus of this work is on developing fast and ac-
curate AVF prediction for delay and energy efficient L2
cache design. Firstly, we develop an improved cache AVF
estimation framework for better quantitative measurement
of cache vulnerability to soft errors. Then we character-
ize the dynamic AVF behavior of L2 cache and investi-
gate the correlations between the L2 cache AVF and several
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key performance metrics. Furthermore, by using Bayesian
Additive Regression Trees (BART) method [29] and bump
hunting technique [30], we develop an accurate and fast L2
cache AVF prediction mechanism across different execution
phases of SPEC2K benchmarks. This facilitates the imple-
mentation of the AVF-aware dynamic fault tolerant tech-
nique which is based on accurate L2 cache AVF prediction.

In summary, the main contributions of this paper are as
follows:

1. We propose a novel fine-grained lifetime analy-
sis and post-committed analysis combined method to im-
prove the accuracy of cache AVF estimation. We integrate
the method into a general simulator and develop an im-
proved AVF estimation framework, SS-SERA (Soft Error
Reliability Analysis based on SimpleScalar). By using the
AVFs computed by SS-SERA, we perform a rigorous char-
acterization of dynamic behavior and predictability of L2
cache AVF across different execution phases of SPEC2K
programs. Our analysis results suggest that it is inadequate
to use simple predictive models based on several perfor-
mance metrics for accurate L2 cache AVF prediction.

2. We propose to use BART method for accurate L2
cache AVF prediction across different execution phases of
SEPC2K programs with different train/test splits. Our re-
sults show that BART not only makes an accurate AVF pre-
diction, but also quantifies the dependence of AVF on var-
ious performance metrics. In addition, we conduct a com-
prehensive comparison between BART and other compet-
itive predictive methods (i.e., the linear regression model
and boosted regression trees (BRT)) to quantitatively vali-
date the superiority and robustness of BART in L2 cache
AVF prediction across different test/train splits and different
model sizes.

3. We further employ bump hunting technique to ob-
tain a simplified and fast estimation of L2 cache AVF, thus
enabling a feasible online L2 cache vulnerability monitor
to identify the execution intervals of high vulnerability. To
further confirm the utility of the AVF predictor, we present
an AVF-aware ECC technique that provides ECC protection
only for the points of high L2 cache AVF. Experimental
results show that compared with traditional full ECC tech-
nique, AVF-aware ECC technique achieves an average re-
duction of L2 cache access latency and power consumption
by 16.5% and 11.4% for SPEC2K programs respectively.

Throughout this paper, we assume L2 cache adopts a
write-back policy. This is because for bandwidth reasons,
write-through policy is not a good choice for L2 cache, and
most current L2 caches employs a write-back policy [12]–
[14]. The remainder of this paper is organized as follows.
Section 2 describes the improved cache AVF computing
method and the SS-SERA framework. Section 3 describes
experimental setup and analyzes the dynamic characteris-
tics of L2 cache. Section 4 introduces the BART method
and performs an accurate L2 cache AVF prediction using
BART. Section 5 proposes the simplified and fast L2 cache
AVF estimation and the case study of AVF-aware fault toler-
ant technique. Section 6 discusses the related work. Finally,

we conclude in Sect. 7.

2. The SS-SERA Framework

In order to quantify cache vulnerability accurately, we
propose a novel fine-grained lifetime analysis and post-
committed analysis combined method to improve the ac-
curacy of cache AVF estimation. Then we integrate the
improved AVF computing method into a popular simulator
(i.e., SimpleScalar [31]), and develop an architectural level
soft error reliability analysis framework SS-SERA (Soft Er-
ror Reliability Analysis based on SimpleScalar) for more
general and accurate estimation of cache AVF. In this
section, we describe the improved cache AVF computing
method used in SS-SERA.

2.1 Cache AVF Computation Equation

In SS-SERA, we first assume that all bits are ACE bits, and
then identify the un-ACE bits of structures as many as pos-
sible. This method was also adopted in [9], [32]. For cache
structures, lifetime analysis [33] method is employed to di-
vide a bit’s lifetime into ACE, un-ACE and unknown com-
ponents according to the activities occurring during the life-
time of the bit (i.e., “idle”, “fill”, “read”, “write”, “evict”).
For example, for a write-back data cache, fill-to-read period
of a bit is identified as ACE, because any fault occurred on
the bit during this period would cause erroneous data read.

The granularity at which we maintain the lifetime anal-
ysis can have a big impact on data array’s AVF. Empirically,
we adopt a fine-grained lifetime analysis method and main-
tain the lifetime information on a per-byte basis for cache
data array. Therefore, AVF of a data array is the fraction
of all bytes’ lifetime during which the bytes are in the ACE
state, computed by Eq. (1).

AVF =

∑Nbytes

i=1 ACEi

Nbytes ∗ total exec cycles
(1)

Nbytes is the total number of bytes of a data array. ACEi

represents the total residency cycles of byte i in ACE state.

2.2 Improved Cache AVF Computing Method

In SERA, AVFs of cache data arrays are computed using
Eq. (1). We propose a novel fine-grained lifetime analysis
and post-committed analysis combined method to identify
more un-ACE bytes of cache data arrays.

First of all, since the basic access unit of data cache is
byte, bytes in the same cache line may be in different state.
For example, some bytes in a dirty cache line may be clean.
However, during the eviction of a dirty cache line, all bytes
in the dirty cache line are treated equally to be written back
to the next cache level, this would induce an overestimation
of cache AVF. Considering two bytes in the same cache line
(i.e., A and B), if only A is written into, then the fill-to-evict
period of B becomes ACE due to the inevitable written back
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Fig. 1 Potential ACE condition.

Fig. 2 Eliminating potential ACE.

of the entire cache line to the next cache level, shown as
Fig. 1.

In SERA, we propose a novel fine-grained lifetime
analysis method to identify more un-ACE bytes. In detail,
we add “dirty” bits associated with different portions of a
cache line, and identify the modified bytes according to their
dirty bits values. When a byte is modified, its “dirty” bit is
set to 1. Consequently, we distinguish the eviction of a byte
into “dirty evict” and “evict”. “dirty evict” represents the
eviction of modified bytes, and “evict” denotes the eviction
of clean bytes. If the “dirty” bit of a byte is set to 0, eviction
of the clean byte would not result in a written back event.
Then the above fill-to-evict period of B in Fig. 1 is always
viewed as un-ACE, shown as Fig. 2.

Secondly, since there are un-ACE instructions which
contain un-ACE operands, not every read/write would af-
fect the final program output. We employ post-committed
analysis [9] to identify instructions which generate un-ACE
reads/writes, and then combine lifetime analysis with post-
committed analysis to identify the un-ACE periods of cache
lifetime due to the un-ACE reads/writes. Note: periods be-
tween any activities and write (e.g., read-to-write) are al-
ways un-ACE, so whether writes are ACE or un-ACE could
not affect the accuracy of cache AVF computation. Hence,
we only consider the effects of un-ACE reads in cache AVF
estimation. Figure 3 shows different ACE and un-ACE life-
time divisions due to different orders of un-ACE reads oc-
curring during the cache lifetime.

We can see that since write-to-dirty evict is always
ACE (write is the last write), any reads (no matter ACE or
un-ACE) between this period are ACE, shown as Fig. 3 (a)
and (b). As Fig. 3 (c) and (d) shows, the last ACE read after
write is ACE, and the remaining un-ACE reads/writes to the
next write are un-ACE. The period between the last ACE
read and the last un-ACE read (shown in red color in Fig. 3)
should be identified as ACE. However, using our improved

Fig. 3 Different ACE and un-ACE lifetime divisions due to different or-
ders of un-ACE reads. read’ and write’ are un-ACE read and un-ACE write
respectively.

AVF analysis method, this period is classified as an un-ACE
component.

3. Characterization of Dynamic L2 Cache AVF Behav-
ior

3.1 Experimental Setup

All of the experiments are conducted with SS-SERA. The
baseline configuration of SS-SERA is listed in Table 1.
SPEC2K INT and FP benchmarks compiled for the Alpha
ISA are evaluated, and each of them is run for multiple 100-
Million instruction SimPoints [34]. To simulate a SimPoint,
we should fast forward Numf ast f orward instructions, calcu-
lated using Eq. (2):

Numf ast f orward = (S NS imPoint − 1) ∗ S izeS imPoint (2)

S NS imPoint is the serial number of the SimPoint in a program,
S izeS imPoint is the size of the SimPoint (i.e., 100 M). For ex-
ample, for SimPoint1827, simulation of the SimPoint starts
just after fast forwarding 1826∗100 M instructions from the
start of program.

Each SimPoint is partitioned into 25 intervals of 4
million instructions. We have proposed to employ check-
point mechanism and cooldown technique in SS-SERA to
guarantee the correctness and to improve the accuracy of
cache AVF computation of small intervals. The detail of
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Table 1 Baseline configuration.

Parameters Values
Fetch/Decode/Issue/Commit width 8

Fetch queue size 16
Reorder buffer size 128

Load/store queue size 64
Integer ALUs/multipliers 6/2

FP ALUs/ multipliers 4/2
L1 D-cache 64 KB, 4-way, 32B line-size
L1 I-cache 64 KB, 4-way, 32B line-size

Unified L2 cache 512 KB, 4-way, 64B line-size
ITLB 128 entries, 4-way set-associative
DTLB 256 entries, 4-way set-associative

TLB miss-latency 30 cycles
Main memory latency 200 cycles

Fig. 4 Profile of time-varying L2 cache AVF and several performance
metrics.

our schemes for estimating cache AVFs of small intervals
is discussed in another paper. For L2 cache AVF esti-
mation of small intervals, we have reduced the unknown
components of L2 cache AVF computation to be less than
1% using appropriate cooldown period sizes. Besides, for
SPEC2K benchmarks, the unknown components are shown
to be mostly un-ACE, with little increase for AVF [33]. We
believe L2 cache AVF computation with unknown compo-
nent less than 1% is accurate enough to represent the vul-
nerability of L2 cache.

3.2 Time-Varying Behavior of L2 Cache

Figure 4 shows the profile of runtime L2 cache AVF and
several key performance metrics across several SimPoints of
two benchmarks (i.e., mesa and swim). Other SimPoints and
benchmarks exhibit similar time-varying behavior and their

Table 2 Variance of L2 cache AVF.

benchmarks WCoV benchmarks WCoV
gzip graphic 0.14 vortex one 0.19

gzip log 0.16 vortex two 0.33
gzip program 0.29 vortex three 0.09
gzip random 0.19 crafty 0.09
gzip source 0.29 ammp 0.79
vpr route 0.21 applu 0.88
gcc 166 0.16 apsi 0.62
gcc 200 0.28 art 110 0.09
gcc expr 0.23 art 470 0.17

gcc integrate 0.3 equake 0.72
gcc scilab 0.33 facerec 0.23

mcf 0.46 fma3d 0.72
parser 0.47 galgel 0.33

perlbmk diffmail 0.17 lucas 0.02
perlbmk makerand 0.23 mgrid 0.15

perlbmk perfect 0.036 sixtrack 0.32
perlbmk splitmail 0.41 swim 0.23

gap 0.2 wupwise 0.60
mesa 0.64

results are omitted for brevity. Each 100M-sized SimPoints
contains 25 points of plots which represent the L2 cache
AVF and performance information of 4M-sized intervals.

3.2.1 L2 Cache AVF Variation

Firstly, experiment results show that L2 cache AVF exhibits
different varying characteristics across different execution
phases of the same program. Take mesa for example, L2
cache AVF of SimPoint491 varies in a much larger range
(3.55%-80.11%) than SimPoint541 (6.01%-7.87%).

Secondly, we can see that L2 cache AVF also ex-
hibits different degrees of variations across different exe-
cution phases of different programs. For instance, varia-
tion of L2 cache AVF is large for SimPoint151 of swim
(36.18%-52.26%), but is much small for SimPoint1827 of
mesa (5.69%-7.47%).

Table 2 lists the variance of L2 cache AVF for SEPC2K
programs. Variance of L2 cache AVF is represented by
Weighted Coefficient of Variation (WCoV). Coefficient of
Variation (CoV) is the standard deviation divided by the
mean. Since each SimPoint of a program has an associ-
ated weight, WCoV of a program is the sum of the weighted
CoV of each SimPoint, computed as Eq. (3). Lower WCoV
indicates that execution points of a program exhibit more
similar AVF behavior.

WCoVprogram“x′′ =
∑

si∈program“x′′
CoVsi ∗ weightsi (3)

Here, CoVsi = sdsi/meansi . si represents one of the rep-
resentative SimPoints of program “x”. sdsi is the standard
deviation of L2 cache AVF for si, and meansi is the average
L2 cache AVF of si.

3.2.2 Correlations between L2 Cache AVF and Perfor-
mance Metrics

Although L2 cache AVF exhibits significant variation dur-
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ing program execution lifetime, there still exist fuzzy corre-
lations between L2 cache AVF and several important perfor-
mance metrics.

As the most frequently used metric for time-varying
performance and vulnerability predictions [25], [26], [35],
IPC exhibits a fuzzy relationship with L2 cache AVF. Fig-
ure 4 shows that IPC has either positive or negative effects
on L2 cache AVF for different SimPoints. The curves of
IPC bear a resemblance to the profile of L2 cache AVF on
SimPoint541/1827 of mesa and SimPoint151/202 of swim,
whereas change in an opposite direction to the L2 cache
AVF profile on SimPoint491 of mesa and SimPoint57 of
mesa. We can see that residence time of the ACE bytes and
total execution cycles of a program in Eq. (1) are both af-
fected by IPC, indicating that IPC definitely has significant
influence on L2 cache AVF. Whether IPC shows positive or
negative effects on L2 cache AVF, it further depends on the
memory access characteristics of programs.

Except for IPC, the profile of misses DL1 accords with
the profile of L2 cache AVF for mesa, but is not completely
identical with the profile of L2 cache AVF for swim. We
also notice that the curves of miss rate DL2 change in an
opposite direction to the L2 cache AVF on SimPoint151/202
of swim, yet bear a weak similarity to the profile of L2
cache AVF on SimPoint57 of swim. For mesa, the profile
of miss rate DL2 changes irregularly.

In summary, we conclude that it is inadequate to use
only two or three performance metrics to track L2 cache
AVF accurately, thus motivating us to characterize L2 cache
AVF behavior within a larger space of performance metrics.
Consequently, it is necessary to employ a powerful predic-
tive method to model the variations of L2 cache AVF and to
predict L2 cache AVF accurately.

4. L2 Cache AVF Prediction

Several predictive modeling approaches have been devel-
oped in the past few years [29], [36]–[39]. Sum-of-trees
based predictive method, which is an ensemble technique,
fits a large number of tree models and combines them for
prediction. Compared to other models, such as a single re-
gression tree model, the sum-of-trees model is more flex-
ible and adaptive. Random forests [38], boosting regres-
sion trees (BRT) [39], and Bayesian additive regression trees
(BART) [29] are typical sum-of-trees based methods, which
use different patterns of tree models fitting.

In our study, we propose to use BART method for ac-
curate L2 cache AVF prediction. Furthermore, the basic fea-
tures of BART, including model-free variable selection and
partial dependence functions, are used to achieve a better in-
terpretation and visualization of BART model. We use these
features of BART to better understand the relationships be-
tween L2 cache AVF and various performance metrics.

4.1 BART Predictive Model

BART consists of three essential parts: the sum-of-trees

model, the regulation prior and the backfitting MCMC
(Markov Chain Monte Carlo) algorithm. As a representa-
tive sum-of-trees based predictive method, each of the trees
in BART explains a small part of the overall model. A reg-
ulation prior shrinks each tree to be small and simple, pre-
venting the effect of individual tree from being overly influ-
ential. Besides, BART uses Bayesian backfitting MCMC al-
gorithm to iteratively sample from the posterior distribution,
in order to achieve a convergent fitting quickly. The induced
samples obtained during the backfitting procedure can pro-
vide a variety of inferential quantities of interest, such as
partial dependence functions and variable selection. We ex-
plain the construction of BART model and its basic features
in this section.

4.1.1 Fitting of BART Model

Considering a fundamental predictive problem in which
an dependent variable Y needs to be predicted from a p-
dimensional vector of input variables X = (x1, xp):

Y = f (X) + ε, ε ∼ N(0, σ2) (4)

For BART, f (X) in Eq. (4) is approximated by a sum-
mation of regression trees, computed by Eq. (5):

f (X) = β0 +

m∑
j=1

g j(X) (5)

g j denotes a regression tree for BART, and m is the number
of trees.

Let T denote a regression tree with a set of interior and
terminal nodes. Each interior node is associated with a bi-
nary decision rule. Suppose the number of terminal nodes is
B, and each terminal node of T is associated with a parame-
ter value μb(b = 1, . . . , B). Each input variable X = (x1, , xp)
is associated with one of the B terminal nodes of regression
tree T , and assigned with the μb value of the terminal node.

Thus, g j in Eq. (5) can be presented as g j(X; T j,Mj),
and BART predictive model can be transformed into:

f (X) = β0 +

m∑
j=1

g j(X; T j,Mj) + ε, ε ∼ N(0, σ2) (6)

Here, Mj = {μ j1, μ j2, . . . , μ jB}.
The flexibility and adaptability of the BART model are

determined by the number of trees and the complexity of
each individual tree jointly. Therefore, a regulation prior
is imposed on the parameters of BART model, i.e., β0, μb,
the variance σ2 of Gaussian noise ε, and m. The prior is
specified conservatively in order to keep the individual tree
effects from being overly influential. As a result, the size of
each tree is small, and trees are turned into “weak learners”.

To facilitate the use of BART, the prior is specified
by several interpretable hyperparameters (i.e.,(υ, q, k,m)).
These hyperparameters can either be regulated via cross-
validation, or be set to the defaults (3, 0.90, 2, 200). In
our study, BART-default is employed.
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Furthermore, to fit the sum-of-trees model, BART
uses the Bayesian backfitting MCMC to iteratively samples
from the posterior distribution P({T j, μ j}mj=1, β0, σ|y). Using
MCMC, a sequence of draws of ((T1, μ1), . . . , (Tm, μm)) is
generated to converge to the posterior distribution. At each
iteration, both the tree structures and associated parameters
are updated. Iterations are repeated until satisfactory con-
vergence is obtained.

Based on the sum-of-trees model, regulation prior and
MCMC algorithm, the final BART model is constructed and
fitted suitably. Given an input value X′(x1, . . . , xp), BART
predict the response value Y ′ by an average of draws of all
sampled trees.

4.1.2 Partial Dependence Function

Partial dependence function [39] reveals the marginal effect
of a subset of variables on the response. Divide the p-
dimensional variable X(x1, . . . , xp) into two parts: xs (vari-
ables of interest) and xc (complement of xs), the partial func-
tion dependence is defined as:

f (xs) =
1
n

n∑
i=1

f (xs, xic) (7)

xic is the ith observation value of xc, and n is the total number
of observations.

In BART, the backfitting MCMC algorithm generates a
sequence of draws of functions f ∗1 , . . . , f ∗K , which is regarded
as an approximate of the “true” predictive function f (X).
For each draw, f (xs) in Eq. (7) is computed using Eq. (8):

f ∗k (xs) =
1
n

n∑
i=1

f ∗k (xs, xic), k ∈ {1, . . . ,K} (8)

Then, the average of f ∗1 (xs), . . . , f ∗K(xs) yields an esti-
mate of f (xs), computed as Eq. (9):

f (xs) =
1
K

K∑
k=1

f ∗k (xs) (9)

4.1.3 Predictor Variable Selection

By observing the variable usage frequency in a sequence of
draws of functions f ∗1 , . . . , f ∗K , BART can also be used to
select the most influential variables for explaining the vari-
ation of response variable Y . Considering the ith compo-
nent of X, the number of times that the variable is selected
for splitting (denoted as zik) is obtained from each func-
tion f ∗k . Then weighting zik by the number of input data
points present in the node, we can get the weighted usage
frequency of the variable in each sampled function f ∗k (de-
noted as z∗ik). Finally, the average weighted usage frequency
of the variable is computed using Eq. (10):

vi =
1
K

K∑
k=1

z∗ik (10)

The variable with larger vi indicates better prediction
for the response variable. Such variable selection approach
is model-free because it is not based on the usual assumption
of an encompassing parametric model [29].

4.2 BART-Based L2 Cache AVF Prediction Results

In this section, we perform a robust and accurate L2 cache
AVF prediction using BART method, and we quantify the
influences of various performance metrics on L2 cache
AVF using two basic features of BART (i.e., partial depen-
dence functions, and model-free variable selection). Then
we make a comparison between BART and other compet-
ing methods (i.e., linear regression method and BRT), thus
demonstrating the robustness and accuracy of BART in L2
cache AVF prediction.

4.2.1 Robust and Accurate Prediction of L2 Cache AVF

Our data set contains the performance metrics and L2 cache
AVF for 7200 intervals of 288 SimPoints of SPEC2K bench-
marks. In order to validate the robustness and accuracy of
BART in L2 cache AVF prediction, we firstly create 18 in-
dependent train/test splits by randomly selecting 5/6 of the
data set as a train set and the remaining 1/6 as a test set.
Thus, the train set contains the data of 6000 intervals of
240 SimPoints, and the test set contains the data of 1200
intervals of 48 SimPoints. Then we train the BART model
on the train set, and apply the model to predict L2 cache
AVF for the test set and obtain the predictive RMSE of
the 18 train/test splits respectively. RMSE is computed us-
ing Eq. (11). We consider relative RMSE (RRMSE), which
is RMSE divided by the minimum RMSE, to facilitate the
comparisons among different train/test splits.

RMS E =

√√
1
n

n∑
i=1

(y − ŷ)2 (11)

n is the number of intervals in test set, y and ŷ are the true
and the predictive response variables of each interval respec-
tively.

Figure 5 shows that RRMSE ranges in (1, 1.49), in-
dicating that all the RMSE values are close to each other,
further revealing the robustness of BART with different
train/test splits.

Fig. 5 RRMSE values of 18 train/test splits.
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Fig. 6 Partial dependence.

Fig. 7 Usage percentage of variables.

We choose the train/test split of the minimum RMSE
for the following illustrations of BART features, so as to
understand the dependence of various performance metrics
on L2 cache AVF.

Partial dependence function (explained in Sect. 4.1.2)
can be used to obtain the marginal effects of a subset of
variables on the response variable. We show the partial de-
pendence plots for five influential variables in Fig. 6 (a), and
their importance to L2 cache AVF is testified by the nonzero
marginal effects of them. By comparison, Fig. 6 (b) shows
the insignificant effects of other five variables on L2 cache
AVF, which is reflected by the zero marginal effects of them.

Besides, BART can be used to select the most in-
fluential variables for explaining the variation of response
variable (i.e., model-free variable selection described in
Sect. 4.1.3). Figure 7 shows the average weighted usage fre-
quency (i.e., vi in Eq. (10)) for all the predictor variables. We
can identify top 10 variables which show strong influences
on L2 cache AVF.

Although BART works well for L2 cache AVF predic-
tion, variables used in BART fitting are overmuch. To facil-
itate the use of L2 cache AVF predictor, the predictor must
be a low-dimensional function. In other words, the number
of variables used to fit BART model should be controlled.
Therefore, BART model is refitted using the 10 most influ-
ential variables based on the best train/test split above. Fig-
ure 8 shows the refitted BART inferences.

Figure 8 shows the sequence of σ draws over the itera-
tions. The draws ofσ nicely wander around the valueσ = 2,

Fig. 8 Refitted BART inferences.

Fig. 9 Cumulative density function for the absolute error values on the
test set.

Fig. 10 Measured and predicted L2 cache AVF profiles on the test set.

implying that BART model is fitted well. Figure 8 also plots
posterior mean estimate ˆf (x) against the true response value
y. Vertical lines indicate that the 90% posterior intervals for
the response value. We can see that most values correlate
well with the true response values, and the intervals tend to
cover the true response values.

Besides, we show the overall cumulative density func-
tion for the absolute error values on the test set using the
refitted BART model in Fig. 9. We find that 90% of data
points are predicted with absolute errors less than 7.1.

Moreover, in order to visualize the results of BART-
based L2 cache AVF prediction better, we compare the mea-
sured and predicted L2 cache AVF profiles on the test set,
shown in Fig. 10. We can see that the refitted BART pre-
dictive model faithfully detects the time-varying behavior
of actually measured L2 cache AVF, and predicts L2 cache
AVF with high fidelity.
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Fig. 11 R2 of different models on 18 train/test splits.

4.2.2 Comparison of L2 Cache AVF Predictive Methods

We conduct a comparison between BART and other com-
peting methods, including the linear regression method and
BRT which have been employed for architectural vulnera-
bility prediction of several microarchitectures [26], [27]. We
use Multiple R-Squared (denoted as R2) which is the square
of correlation coefficient to explain the predictive results. R2

is no more than 1, computed by Eq. (12). Larger R2 repre-
sents a better predictive fit, indicating that the corresponding
performance metric correlates well with L2 cache AVF.

R2 =

∑n
i=1(yi − ȳ)2 −∑n

i=1(yi − ŷ)2∑n
i=1(yi − ȳ)2

(12)

In our study, yi is the response value (i.e. L2 cache AVF)
of each interval, ȳ is the average L2 cache AVF of all the
intervals in a program, and ŷ is the predicted L2 cache AVF
of each interval.

Firstly, we compare the three predictive models across
different test/train splits. Figure 11 shows R2 of different
models on 18 different train/test splits. Each train/test split
corresponds to three items, each of which represents R2 on
train set and test set respectively. From left to right, the three
items indicate R2 of the simple linear, BRT and BART mod-
els. On average, R2 of the simple linear, BRT and BART
models on the train set is 53.5%, 84.9%, and 99%, and R2 of
the three models on the test set is 43.3%, 76.9%, and 86.4%
respectively. BART achieves higher R2 than the simple lin-
ear and BRT models on both train set and test set. Note:
R2 of the simple linear model could sometimes be minus,
indicating that simple linear model is unstable for L2 cache
AVF prediction.

Secondly, using the best train/test split obtained in
Sect. 4.2.1, we compare these three predictive models over
different model sizes, shown in Fig. 12. Normally, R2

of three models on the train set and test set increase
monotonously when the model size is no more than 4. When
the model size continues to increase, R2 of three models on
both the train set and test set gradually achieves a stable
value. Compared with the simple linear and BRT models,
BART obtains the best R2 on both train set and test set.

Thus, the above comparisons demonstrate the ro-
bustness and superiority of BART model across different
test/train splits and different model sizes.

Fig. 12 R2 of different models over different model sizes.

5. Online L2 Cache AVF Estimation

In this section, we create a simplified and fast L2 cache AVF
predictor. Then we integrate the AVF predictor into ECC
schemes and develop an AVF-aware ECC technique. We
analyze the costs of the AVF-aware ECC technique, thus
demonstrating the prospect of AVF prediction based dy-
namic fault tolerant techniques.

5.1 Simplified and Fast L2 Cache AVF Predictor

In order to integrate the AVF prediction into AVF-aware dy-
namic fault tolerant management schemes, we consider re-
ducing the complexity of L2 cache AVF prediction to get
an effective online AVF estimator. Although BART method
is proved to perform well for L2 cache AVF prediction, the
dimensionality of the predictive function is high, even the
refitted BART function which relies on only 10 variables is
not suitable for online AVF prediction. So we further em-
ploy bump hunting technique [30] to obtain the simplified
L2 cache AVF predictor. The goal of bump hunting is to par-
tition the feature space into box-shaped regions and to seek
boxes with a high average of the response variable. And
bump hunting technique has been successfully used for fast
estimation of AVF of IQ and ROB [27].

In our study, we set the high AVF threshold at 40%.
That is to say, if L2 cache AVF is no less than 40%, L2 cache
is regarded to exhibit high vulnerability during this inter-
val. Note: in practice, setting of high AVF threshold would
be customized to special reliability/power/performance de-
mands of processor design. In this paper, we try to explain
the feasibility of creating a simplified and fast online cache
AVF predictor, so we just set the high AVF threshold at
40%. We apply bump hunting technique to our data set,
and then extract five simple selecting rules on several key
performance metrics to identify intervals of high L2 cache
AVF (as shown in Fig. 13)

We apply the selecting rules on our test set, and the re-
sult is illustrated in Fig. 14. As Fig. 14 shows, intervals of
high L2 cache AVF could be effectively identified using the
above selecting rules, thus proving that the simple selecting
rules work well for fast and accurate L2 cache AVF estima-
tion.
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Fig. 13 Selecting rules.

Fig. 14 Fast estimation of L2 cache AVF on the test set.

5.2 An Example of Predictor Usage

In order to explain the usage of the online AVF predictor
and to demonstrate the utility of AVF prediction based dy-
namic fault tolerant mechanisms, we integrate the simplified
L2 cache AVF predictor into the ECC technique. Then we
develop an AVF-aware ECC technique which provides ECC
protection only for the execution points of high L2 cache
AVF.

In our experiment, cache is initially simulated with
ECC disabled. Every two million cycles, we get the in-
stantaneous L2 cache AVF value using our simplified AVF
predictor (shown in Fig. 13). If L2 cache AVF is above the
threshold (i.e., 40%), ECC protection is enabled for the fol-
lowing simulation intervals. Once ECC protection is en-
abled, we need a criterion to disable it. In this study, we
disable ECC after ten million cycles.

We use CACTI [40] which is modified for more detail
modeling of ECC technique to determine the latency and
power of L2 cache with/without ECC protection. Using
these latency and power values, we simulate the SPEC2K
benchmarks in SS-SERA. We evaluate the access latency
and power consumption of L2 cache for different schemes
(i.e., traditional full-ECC, AVF-aware ECC, no ECC), and
the results are shown in Fig. 15 and Fig. 16. We normalize
the access latency and power consumption values to that of
unprotected L2 cache.

We can see that for most of the SPEC2K programs, ac-
cess latency and power consumption of full ECC protected
L2 cache are reduced significantly using AVF-aware ECC
technique. Besides, we can see that for gcc, mcf, art and

Fig. 15 Normalized access latency.

Fig. 16 Normalized power.

swim programs, full ECC protected L2 cache exhibit higher
access latency and power consumption, this is because these
four programs generate more L2 cache misses than other
programs [41]. Using AVF-aware ECC technique, access
latency and power consumption of full ECC protected L2
cache can also be reduced observably for these four bench-
marks.

On average, for SPEC2K benchmarks, AVF-aware
ECC technique reduces the access latency by 16.5% and the
power consumption by 11.4% compared with traditional full
ECC protection technique. We can infer that AVF-aware
ECC technique is a good candidate for cost-effective cache
protection.

6. Related Work

Many researches have employed analytical models for cache
vulnerability computation. Asadi et al. [2] introduced the
concept of critical time (CT) and critical word (CW) for ac-
curate estimation of cache reliability and presented a soft er-
ror modeling method that captured different types of soft er-
rors. They used the same estimating method to measure vul-
nerability of different cache memories [3], [42]. Zhang [4]
analyzed the different access patterns of cache lines to find
the susceptible time of blocks. Then they used the infor-
mation of blocks’ susceptible time to compute cache vul-
nerability factor. Wang et al. [43] and Yan and Zhang [44]
employed the similar analysis method of Zhang [4] to mea-
sure cache vulnerability to soft errors. Mukherjee et al. [9]
introduced the concept of Architectural Vulnerability Factor
(AVF) for the measurement of soft error rate. And Biswas et
al. [33] proposed lifetime analysis based method to compute
AVF of cache structures.

Furthermore, studies have shown significant AVF vari-
ations of several microarchitectures across different execu-
tion phases of applications [25], [26]. Fu et al. [25] investi-
gated the fuzzy correlations between AVFs and several spe-
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cial performance metrics. Walcott et al. [26] extended their
idea, and explored multivariate statistical relationships be-
tween AVF and a wide variety of performance metrics. Then
they created a linear model of multiple variables to predict
runtime AVF properly. Duan et al. [27] further proposed a
versatile AVF predictor which was calibrated for different
workloads, execution phases and processor configuration,
and developed a fast AVF estimation to identify the intervals
with high AVF for several structures (such as issue queue).

7. Conclusion

In this paper, using our improved cache AVF estimation
framework, we perform a comprehensive study of dynamic
characteristics and predictability of L2 cache AVF. The
study results suggest that it is inadequate to use simple pre-
dictive models based on several performance metrics for ac-
curate AVF prediction. Driven by the results, we propose
to use BART method for accurate L2 cache AVF predic-
tion. Experimental results show that compared with other
predictive methods (i.e., linear regression and BRT), BART
achieves higher R2 than other two methods across different
train/test splits and different model sizes, thus demonstrat-
ing the robustness and accuracy of BART. Then, some sim-
ple selecting rules on several key performance metrics are
extracted by bump hunting technique, thus further reducing
the complexity of L2 cache AVF predictor. We take an AVF-
aware ECC technique as an example to illustrate the usage of
the predictor and to demonstrate the prospect of AVF-aware
soft error protection schemes. Experimental results show
that AVF-aware ECC technique could provide performance
and energy gains without sacrifice much reliability. We can
infer that AVF-aware soft error protection techniques pro-
vide a delay and energy efficient fault tolerant solution for
cache designs.

With dramatic scaling in feature size of VLSI tech-
nology, performance, power consumption and reliability are
all becoming very important criteria for microprocessor de-
signs. Processor designers are increasingly required to more
carefully trade off performance, power and reliability. With
the ability to predict cache AVF fast and accurately at run-
time, comes the opportunity of AVF-aware fault tolerant
technique which provides a cost-efficient soft error protec-
tion for caches.
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