
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012
565

PAPER

Analyzing Stack Flows to Compare Java Programs∗

Hyun-il LIM†a), Member and Taisook HAN††, Nonmember

SUMMARY This paper presents a method for comparing and detect-
ing clones of Java programs by analyzing program stack flows. A stack
flow denotes an operational behavior of a program by describing individ-
ual instructions and stack movements for performing specific operations.
We analyze stack flows by simulating the operand stack movements dur-
ing execution of a Java program. Two programs for detection of clones of
Java programs are compared by matching similar pairs of stack flows in the
programs. Experiments were performed on the proposed method and com-
pared with the earlier approaches of comparing Java programs, the Tamada,
k-gram, and stack pattern based methods. Their performance was evaluated
with real-world Java programs in several categories collected from the In-
ternet. The experimental results show that the proposed method is more
effective than earlier methods of comparing and detecting clones of Java
programs.
key words: software clone detection, software copyright protection, Java
bytecode analysis

1. Introduction

With the rapid advances in the Internet and computing en-
vironment, the demand for software development is also in-
creasing. Software is the intellectual property of its develop-
ers and is protected by copyright law and regulations. In the
case of open source software, many programs are distributed
with the source code, and subscribers are allowed to mod-
ify or redistribute the program code under certain types of
software licenses, such as the GNU General Public License
(GPL), Open Software License (OSL), and BSD License.
However, it has been reported that many software develop-
ers and companies do not follow such license policies [1].
Moreover, these cases may lead to legal disputes.

To reduce and cope with software license violations,
it is necessary to protect against illegal tampering and to
identify the originality of the software. However, this is not
easy, because problematic software may be distributed with-
out source code, and binary executables are not suitable for
a direct comparison with other software. Moreover, the soft-

Manuscript received March 23, 2011.
Manuscript revised August 11, 2011.
†The author is with the Division of Computer Engineering,

Kyungnam University, Korea.
††The author is with the Department of Computer Science,

KAIST, Korea.
∗This work was partially supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea government
(MEST) (No. 2010-0000258). This research was partially sup-
ported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (No. 2010-0024658).

a) E-mail: hilimcs@gmail.com
DOI: 10.1587/transinf.E95.D.565

ware may be obfuscated or modified to hide a license violoa-
tion. Hence, in several lawsuits involving GPL violations,
evidence has been shown of manual reverse-engineering,
which is tedious and time-consuming. Therefore, develop-
ment of efficient technology that identifies the originality of
software is necessary.

This paper presents a method to compare and detect
cloned Java programs by comparing analyzed stack flows of
Java programs. A stack flow can be represented by a mini-
mal sequence of bytecodes that performs some tasks in the
common context of the operand stack. Stack flows are ana-
lyzed by simulating operand stack movements. They denote
the behavior of a Java program by representing individual
instructions and stack movements to perform specific oper-
ations; thus, a comparison of such stack flows gives a guide-
line for deciding whether one program is a copied version
of the other.

The proposed method is evaluated with respect to two
criteria. The first criterion is discrimination between dif-
ferent Java programs, and it requires a program comparison
method to differentiate independent programs clearly. The
second criterion is detection of cloned programs between
modified versions of a single program. Experiments are
conducted to test the proposed method in relation to these
criteria, and its performance is evaluated by analyzing false-
positive rates, false-negative rates, and transformation vari-
ations. Additionally, the method is compared with three
previous approaches, namely, the Tamada birthmark [2], [3],
the k-gram based birthmark [4], [5], and the stack pattern
birthmark [6]. The experimental results demonstrate that the
proposed method is more effective than the previous meth-
ods in terms of the above criteria.

In this research, we propose a new approach to com-
pare and detect cloned Java programs. This research makes
the following contributions:

1. We analyze the stack flows of a Java program through
analysis of operand stack movements.

2. We propose and implement a Java program comparison
to detect cloned Java programs.

3. We evaluate and compare the performance of the pro-
posed method with earlier existing approaches in real-
world Java applications.

4. Our work contributes to reducing the effort of manual
reverse engineering in detecting cloned Java programs.

The remainder of this paper is organized as follows.
Section 2 reviews existing approaches to software compari-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

566
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

son methods. Section 3 describes the proposed method for
detecting cloned Java programs by analyzing the stack flows
of Java programs. Section 4 presents experimental data and
evaluates the proposed method. Section 5 discusses issues
to be resolved regarding the proposed method and future
works. Finally, Sect. 6 concludes the paper.

2. Related Work

Baker and Manber [7] proposed a method to deduce simi-
larities in Java bytecodes by applying text similarity mea-
sures, such as Siff [8], parameterized pattern matching [9],
and diff. Tamada et al. [2], [3] first suggested a practical
application of static software birthmarks and presented a
method to compare the birthmarks for Java class files. Their
technique consists of four individual birthmarks: constant
values in field variables, sequence of method calls, inheri-
tance structure, and used classes. These four birthmarks can
be used individually, but they are more reliable when com-
bined. Myles et al. [4], [5] proposed the k-gram based birth-
mark, which is based on instruction sequences. Lim et al. [6]
proposed the stack pattern based birthmark, which uses se-
quences of contiguous opcodes partitioned on the basis of
the operand stack depth. This method is susceptible to pro-
gram modifications that change the control flows of the pro-
gram, because it does not follow the control flow of a pro-
gram. Lim et al. [10], [11] presented a method of using the
control flow information of Java programs to reflect the be-
havioral characteristics of programs. In this approach, they
utilized the relation between basic blocks analyzed from
control flow information as a baseline for characterizing the
program. Park et al. [12] proposed the object trace birth-
mark, which is based on object-related instructions in Java
programs. Object instruction traces are extracted from the
control flow graphs of Java programs, and the traces are
compared using the local alignment algorithm [13].

Tamada et al. [14] introduced a dynamic birthmark
based on traces of system calls for Windows programs.
They proposed the use of sequences and frequencies of API
function calls during program execution to compare pro-
grams. Schuler et al. [15], [16] presented similar approaches
in Java applications. To compare programs, they used sets
of API call sequences during program execution. Myles
et al. [5], [17] proposed the whole program path (WPP)
birthmark. A WPP is obtained from a dynamic trace of
a program by using instrumentation, and the trace is com-
pressed into a directed acyclic graph using the SEQUITUR
algorithm. Such graph structures are used as birthmarks, and
compared by using graph distance for a maximal common
subgraph.

Brown et al. [18] presented a fingerprint genera-
tor/detector (FiGD) for Java programs. FiGD generates
a fingerprint by extracting characteristic n-grams from an
archived jar file, and detects copied programs by comparing
the fingerprint with n-grams of suspicious programs.

Sæbjørnsen et al. [19] presented a method for clone
detection in binary executables. This method detects bi-

nary code clones from the distances between feature vec-
tors, which are summarized from instructions contained in
corresponding code regions. Because the feature vectors
should be able to present sufficient characteristics of target
programs, this method is well suited for programs in a CISC
architecture. In comparing two programs, the persistence
of instructions of code regions in an original program deter-
mines the reliability of this method. However, code regions
do not present associations between instructions; they are
just constructed by separating a program into several pieces
of code with a specific window size. Therefore, this method
is susceptible to program modifications, such as the intro-
duction of bogus instructions or code reordering, which may
affect the boundary of code regions in a program.

Krinke [20] presented a method for calculating the
structural similarity of programs by means of a program
dependence graph (PDG), which describes a program as a
graph representation attributed with control and data depen-
dence relations. In comparing two programs, this method
finds the maximal similar k-limited path induced subgraph
from PDGs of the two programs. This method relies on the
persistence of data and control dependence relations in an
original program. Because modifications, such as insertion
of bogus instructions or control flows, may affect data or
control dependence relations, they may cause several false
positives or false negatives in the detection of code clones.
Moreover, it is not practical to apply in a large collection of
binary code because this method is based on comparisons of
graph structures.

Malware detection [21], [22] which detects malicious
behaviors from binary programs is also related to binary
code analysis. This method is not used for detecting arbi-
trary similar binary code; rather, it finds predefined mali-
cious behaviors or signatures of binary code. Thus, it is
customized to efficiently detect known malicious behaviors
from a large collection of binary programs.

3. Analyzing Stack Flows of Java Programs

3.1 Analyzing Stack Statuses

Because the Java bytecodes use the operand stack as a
workspace, the context of a Java program can be separated
by simulating the operand stack of the JVM. From the spec-
ification of the Java bytecode [23], stack statuses of a Java
program can be determined by static analysis, as presented
in [6]. The stack statuses of each bytecode in a class file,
pre-status and post-status, are defined as follows:

Definition 1 (Pre-status and post-status): Let P be a Java
program. For a bytecode x contained in P, the operand stack
depth just before execution of the bytecode x is called the
pre-status of x. The operand stack depth just after execution
of the bytecode x is called the post-status of x.

Because every bytecode is related to operand stack op-
eration, the operand stack depth continuously varies during

LIM and HAN: ANALYZING STACK FLOWS TO COMPARE JAVA PROGRAMS
567

program execution. The pre-status and post-status of a byte-
code represent the operand stack depth in the corresponding
context of a program. Therefore, identical bytecodes in Java
programs may have different stack statuses according to the
context of programs.

3.2 Analyzing Stack Flows

A stack flow means a sequence of bytecodes that construct
a series of stack movements during the execution of a Java
program; thus, a stack flow denotes a specific task in the
common context of a Java program.

Definition 2 (Stack flow): For a Java program P, op(P, i)
denotes the i-th bytecode in P. pre(P, i) and post(P, i)
denote the pre-status and the post-status of the i-th byte-
code in P, respectively. The sequence of pairs of
bytecodes and their corresponding post-statuses, a =

〈(op(P, i), post(P, i)), · · · , (op(P, j), post(P, j))〉, is called a
stack flow of P iff;

1. 〈op(P, i), · · · , op(P, j)〉† is a contiguous feasible se-
quence of bytecodes of program P at runtime.

2. Both pre(P, i) and post(P, j) are 0.
3. The post-statuses of all bytecodes in a other than the

last bytecode op(P, j) are higher than 0.

In Definition 2, a stack flow represents a minimal se-
quence of Java bytecodes decomposed via operand stack
statuses. Then, a stack flow set is a set of all the stack flows
analyzed from a Java program. Stack flows may reflect tex-
tual sequences of a program; however, if control flows are
forwarded by branch instructions to nonadjacent addresses,
stack flows containing the branch instructions also should
follow their control flows.

A control flow graph [24], [25] is a graph representing a
program structure in which nodes and edges describe the ba-
sic blocks and the possible control flows, respectively. Ev-
ery basic block contains a sequence of several bytecodes,
and each bytecode has its own pre-status and post-status.
Figure 1 (a) illustrates different types of basic blocks accord-
ing to the movements of bytecode statuses. The rectangles
represent basic blocks and the graph line on the basic blocks
represent the variations of bytecode statuses during execu-
tion of the basic blocks. A basic block is called a simple
block if both the pre-status of the first bytecode and the post-
status of the last bytecode are 0. A basic block is called an
opening block if the pre-status of at least one bytecode is 0
and the post-status of the last bytecode is not 0. The par-
tial stack flow that initiates but does not yet finish a series
of stack movement is called the head of the opening block.
A basic block is called a closing block if the pre-status of
the first bytecode is not 0, and the post-status of at least one
bytecode is 0. The partial stack flow that corresponds to
a closing stack movement is called the tail of the closing
block. A basic block is called a connecting block if no sta-
tuses of the bytecodes in the basic block reach 0. The partial
stack flow that forms the entire connecting block is called

(a) Various types of basic blocks.

(b) Various types of stack flows.

Fig. 1 Example of basic blocks and stack flows.

the body of the connecting block.
Figure 1 (b) illustrates different types of stack flows. A

stack flow is called simple if it is contained within only one
basic block, and it is called composite if it spans two or more
basic blocks. Thus, a composite stack flow consists of the
head of one opening block, zero or more bodies of connect-
ing blocks, and the tail of one closing block, as shown in
Fig. 1 (b).

With the stack statuses of bytecodes in a Java program,
stack flows can be analyzed by traversing the control flow
graph of the program without making repetitive traces. Al-
gorithms 1 and 2 are used to analyze the stack flows of a
Java program. For each basic block, simple stack flows are
analyzed by sequentially traversing statuses of bytecodes in
a basic block. Subsequently, if the basic block is an open-
ing block, then the opening block and its directly reachable
blocks are analyzed to find composite stack flows. To com-
plete a composite stack flow, the control flow is traversed
with the current partial stack flow until it reaches a closing
block. A composite stack flow is constructed by concatenat-
ing the current partial stack flow with the tail of a closing
block. While traversing the control flow, its current trace
is maintained to prevent the flow from entering an infinite
loop.

Stack flows in a Java program represent operational
procedures which show its behavioral characteristics. Be-

†General Java programs do not contain loops in a stack flow,
but control flow obfuscation may cause loops in the instructions
sequence of a stack flow. If a loop structure is contained in a stack
flow, each loop is explored at most once.

568
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Input: Control flow graph G and the statuses of bytecodes of an
input Java program.

Output: A stack flow set of the input program.
begin

Let {B1, · · · , Bn} be basic blocks of G;
for i← 1 to n do /* Analyzing simple stack flow.
*/

Call AddSimpleFlow(Bi);
if Bi is opening block then /* Beginning of

composite stack flow. */
foreach basic block Bj directly reachable from Bi

do
nextSF← head (Bi);
nextTrace← concat (null, i);
Call AddCompositeFlow (nextSF, Bj,
nextTrace)) for finding composite stack
flows;

Algorithm 1: Algorithm for analyzing stack flows
of a Java program.

cause stack flows may reflect the procedures of source code,
similar stack flows in two programs indicate that the two
programs are also similar, which is strong evidence that one
of the two programs is a copy.

3.3 Lowering Stack Statuses

The stack flows of a Java program are constructed by ana-
lyzing the stack statuses of bytecodes. In the process of per-
forming specific tasks during program execution, the move-
ments of statuses are strong enough to endure program mod-
ifications, such as obfuscation or optimization. However,
program modification may change stack flows by raising
statuses by reordering or pushing auxiliary objects before
a sequence of original stack flows and popping the objects
after finishing the sequence.

For example, a piece of code, which initializes two field
variables, can be compiled into bytecode by a Java compiler
as follows:

0: (iconst_1, 1)

1: (istore_1, 0)

2: (iconst_2, 1)

3: (istore_2, 0)

. . .

This code sequence initializes the first and the second field
variables with 1 and 2, respectively. Suppose that we trans-
form the program using some obfuscators, such as Smoke-
screen. This modification may reorder the program as fol-
lows:

0: (iconst_2, 1)

1: (iconst_1, 2)

2: (istore_1, 1)

3: (istore_2, 0)

. . .

The two code sequences perform the same operations, but

AddSimpleFlow(B)
Input: Basic block B.
Output: Simple stack flows in the input basic block B.
begin

Let (bc1, · · · , bcn) be a sequence of bytecodes in B;
if pre(bc1) = 0 then /* Beginning of stack flow.

*/

flag← true;
else

flag← false;

index← 1 ; /* Current index of stack flow. */

for i = 1 to n do
if flag = true then

StackFlow [index]← (bci, post(bci));
index← index + 1;

if post(bci) = 0 then
if flag = false then /* Beginning of stack

flow. */

flag← true;
else /* End of stack flow. */

Add StackFlow to the stack flow set;
index← 1;

AddCompositeFlow(currentSF, B, trace)
Input: Current partial stack flow currentSF.
Input: Next traversing basic block B.
Input: Current trace of basic blocks trace.
Output: Composite stack flows in current context.
begin

if B is connecting block then
foreach Basic block Bk directly reachable from B do

if Bk makes cycle in trace then /* Skip

cycle. */

continue;
else /* Forward to the next basic block.
*/

nextSF← concat (currentSF, body (B));
nextTrace← concat (trace,k);
Call AddCompositeFlow(nextSF, Bk,
nextTrace);

else if B is closing block then /* End of composite

stack flow. */

StackFlow← concat (currentSF, tail (B));
Add StackFlow to the stack flow set;

Algorithm 2: Algorithm for analyzing simple and
composite stack flows.

their stack appearances are different.
In summary, a sequence of several stack flows may be

transformed to one longer stack flow as shown in Fig. 2.
This modification makes the program more difficult to de-
compile or analyze, and it makes the granularity of stack
flows inconsistent. To compare stack flows successfully, it
is preferable to make their granularity consistent. To ad-
dress this situation, we lower statuses in such a way that
stack flows can be normalized. Figure 2 shows the effect of
raising and lowering stack flows.

A stack flow is lowered if the following conditions are
satisfied:

• The bytecode length of the stack flow is longer than

LIM and HAN: ANALYZING STACK FLOWS TO COMPARE JAVA PROGRAMS
569

Fig. 2 Raising and lowering stack flows.

some threshold value α.
• Stack movements fluctuate on the basis of a specific

base status that can be a base position for lowering.
• The status of the raising instruction is in accordance

with that of its counterpart.

If these conditions are satisfied, a raising instruction
to push objects and its counterpart are paired as an extra
stack flow. Then, the statuses of remaining instructions are
lowered by the base status.

Lowering statuses has several advantages.

• Lowering stack statuses can balance the granularity of
stack flows. Comparing stack flows is more effective
when the number and size of stack flows are at uni-
form levels. A large stack flow that is raised from sev-
eral stack flows is not a basic structure to represent a
unit operation; rather, the combined structure repre-
sents several operations in a larger one.

• The body of a raised stack flow may be a sequence of
conditional branches, such as iflt or ifge. In this
case, the lengths of stack flows increase, and the num-
ber of stack flows increases exponentially, that is, the
number of possible paths across the branch instruc-
tions. This complication causes a serious increase in
the comparison time. Lowering stack statuses relieves
time overhead by dividing a large combined structure
into several uniform structures.

3.4 Matching stack flows

It is necessary to examine all stack flows to ascertain the
similarity between two programs. The first step, when com-
paring two Java programs, is to determine a match among
stack flows in each program. This matching summarizes the
similarity between stack flows of two programs. Stack flows
originating from the same source of an identical program
may be different because compilation and optimization en-
vironments may generate different binary code. Therefore,
in comparing stack flows, partial matching should be con-
sidered so that the matching can tolerate such subtle distinc-
tion.

In comparing stack flows, the semi-global alignment
algorithm [26] was applied. To align two instruction se-
quences, the following operations are necessary:

• Matches for matching elements,
• Mismatches to align different elements in both se-

quences, and
• Gaps to align one mismatched element in one of the

sequences.

The procedure for comparing stack flows is accom-
plished by dynamic programming as shown in Fig. 3. Let
a = 〈(x1, s1), · · · , (xm, sm)〉 be a stack flow in an original pro-
gram, and let b = 〈(y1, t1), · · · , (yn, tn)〉 be a stack flow in a
target program. Beginning at the top left cell, the score up
to position (i, j), c[i, j], is calculated as

c[i, j]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0,
c[i − 1, j − 1] + w(xi) if i > 0 and

(xi=y j and si=t j),

max

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

c[i − 1, j − 1] + σ
c[i − 1, j] + gap
c[i, j − 1] + gap

otherwise,

where w(xi) denotes the matching weight of the bytecode xi,
σ denotes the mismatching penalty for one mismatched pair
of elements in both sequences, and gap denotes the penalty
for skipping a mismatched element in one of the sequences.
The matching weight of a bytecode is applied with w = 1,
and the penalty values are applied with σ = −1 and gap =
−1.

After the score for each cell is calculated, the resulting
value of semi-global alignment is obtained by finding the
maximum value among values in the bottom row as follows:

Semi-Global(a, b) = max
j

(c[m, j]).

By penalizing for mismatches and gaps, this alignment can
distinguish unrelated stack flows with high sensitivity. In
addition, it is appropriate for comparing original stack flows
with modified ones that may be augmented with some ad-
ditional elements, because this method does not consider
penalties caused by heading and tailing mismatches of one
sequence.

Figure 3 shows an example of matching two stack
flows. Figure 3 (a) shows two stack flows a and b. For some
method f and variable x, the stack flows a and b correspond
to expressions x × f (x − 1) and f (x − 2) + f (x − 1), respec-
tively. This table shows sequences of bytecodes, the statuses
of the bytecodes, and the stack appearance after execution
of the bytecode. Figure 3 (b) shows the procedure to align
two stack flows using semi-global alignment. The traces in
the grid provide a method to compute a resulting value to
align two stack flows by placing the score at the position of
each cell. In Fig. 3 (b), the maximum score among values in
the bottom row is the resulting score for aligning two stack
flows a and b. From the calculation, the matching score of
aligning the two stack flows is 3.

3.5 Comparing Java Programs

In comparing two Java programs, the overall similarity can
be calculated by finding similar pairs from each stack flow

570
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Stack Flow a Stack Flow b

Bytecode pre-s. post-s. Stack Bytecode pre-s. post-s. Stack

iload 0 0 1 [•] iload 0 0 1 [•]
iload 0 1 2 [••] iconst 2 1 2 [••]
iconst 1 2 3 [•••] isub 2 1 [•]
isub 3 2 [••] invokestatic 1 1 [•]

invokestatic 2 2 [••] iload 0 1 2 [••]
imul 2 1 [•] iconst 1 2 3 [•••]

ireturn 1 0 [] isub 3 2 [••]
invokestatic 2 2 [••]

iadd 2 1 [•]
ireturn 1 0 []

(a) Sample stack flows and the statuses of bytecodes.

(il
oa
d
0,

1)

(ic
on
st
2,

2)

(is
ub

, 1)

(in
vo
ke
st
at
ic

, 1)

(il
oa
d
0,

2)

(ic
on
st
1,

3)

(is
ub

, 2)

(in
vo
ke
st
at
ic

, 2)

(ia
dd

, 1)

(ir
et
ur
n,

0)

0 0 0 0 0 0 0 0 0 0 0
(iload 0, 1) −1 1 0 −1 −1 −1 −1 −1 −1 −1 −1
(iload 0, 2) −2 0 −1 −2 −2 0 −1 −2 −2 −2 −2

(iconst 1, 3) −3 −1 −1 −2 −3 −1 1 0 −1 −2 −3
(isub, 2) −4 −2 −2 −2 −3 −2 0 2 1 0 −1

(invokestatic, 2) −5 −3 −3 −3 −3 −3 −1 1 3 2 1
(imul, 1) −6 −4 −4 −4 −4 −4 −2 0 2 2 1

(ireturn, 0) −7 −5 −5 −5 −5 −5 −3 −1 1 1 3

(b) Semi-global alignment: calculating matching score between two stack flows.

Fig. 3 Sample stack flows and matching algorithm.

set. This is accomplished by searching for matched pairs
in a manner that maximizes the sum of matching scores.
This problem can be considered as an extension of the stable
marriage problem (SMP) [27], [28], which is the problem of
finding a stable matching between elements in two sets. In
this application, the SMP is extended in such a way that
preferences to elements in the other set are represented not
by ordering numbers but by matching scores to the elements.
The preferences (matching scores) are mutually identical
between pairs, and the problem can be solved in a greedy
manner, which can find a stable matching in O(n3) by se-
lecting pairs in descending order of their matching scores.
These results give min(n,m) pairs of matched stack flows,
and this stable matching is termed the matching set between
two programs. Intuitively, the matching set represents a set
of the most similar pairs of stack flows among all pairs be-
tween the two programs. Thus, the set is expected to collect
the pairs of stack flows that have an identical origin.

For Java programs P and Q, let S F(P) and S F(Q) be
the stack flow sets of P and Q, respectively. The similarity
between P and Q is then calculated as

S imilarity(P,Q) =

∑
(a,b)∈M(S F(P),S F(Q)) score(a, b)

min(
∑

b∈S F(P) |b|,
∑

b∈S F(Q) |b|)
,

where M(S F(P), S F(Q)) denotes a matching set between
two programs, |b| denotes the number of bytecodes in the
stack flow b, and score(a, b) denotes the matching score be-
tween a and b. The similarity is the sum of the matching
scores of all matched pairs. The sum is then divided by

the minimum of the total number of bytecodes in the stack
flows to normalize the similarity. Because software may be
modified by introducing bogus instructions or control flows,
the minimum of two values is applied so that the similarity
can reflect a containment relationship between the two pro-
grams. If two stack flow sets are fully matched, the match-
ing score between two programs becomes equal to this de-
nominator. Hence, the resulting similarity ranges between 0
and 1 in proportion to the degree of similarity. This measure
represents the ratio of fractions of an original program that
are contained in those of a target program. If an author be-
lieves that his modules were reused in others, it is a simple
matter to compare the stack flows of the original modules
with the modules of suspicious programs to confirm the fact.

4. Experimental Results

4.1 Preliminaries

In this section, the proposed method is evaluated with re-
spect to two criteria: (1) discrimination between indepen-
dent programs and (2) detection of modified programs. The
proposed method was implemented in C on MS Windows
XP and then evaluated on a PC system on an Intel Core i7
920 (2.66 GHz) processor with 12 GB RAM.

To evaluate the performance of the proposed method,
we established an experimental environment for bench-
mark programs. For the purpose, we chose several
Java programs in various categories from the website

LIM and HAN: ANALYZING STACK FLOWS TO COMPARE JAVA PROGRAMS
571

Table 1 Specification of benchmark programs.

(a) Benchmark category and evaluated programs.

Category Programs

(1) Source Control jCVS, JSVN, SourceJammer, StatCvs, StatSvn, SuperVersion

(2) Database Axion, Metanotion BlockFile, db4o, Hypersonic SQL, Berkeley DB, JODB, Mckoi SQL DB, NeoDatis
ODB, TinySQL

(3) Code Utility ObjectWeb ASM, BCEL, BeautyJ, Classycle, Clirr, GroboCodeCoverage, Javassist, Jdepend

(4) Obfuscator Jarg, JavaGuard, JODE, ProGuard, yGuard

(5) SQL Client DBBrowser, DBSA, Datastream Pro, GUAM, Henplus, MyJSQLView, SQL Admin, SQLeonardo, SQL-
Shell, ViennaSQL,

(6) Parser HTML Parser, NekoHTML, Apache Betwixt, JOX, NekoPull, Skaringa, Woodstox, XOM, XP Parser,
Xstream

(7) Parser Generator Beaver, Chaperon, Grammatica, JavaCC, Jparsec, Runcc

(8) Etc ArgParser, BlueJ, C-JDBC, Elvyx, Jedit, Jspider, jTDS, Web-Harvest, WebSPHINX

(b) The status of stack flows according to category.

of class files Avg. # Total # # of SFs/class # of bytecodes/SF

Category Total Eval. bytecodes SFs Avg. Min. Max. Avg. Min. Max.

(1) Source Control 3633 367 1069.0 79364 216.2 12 927 4.45 2 1028
(2) Database 4064 392 1187.6 99950 254.9 27 1039 4.17 2 130
(3) Code Utility 2561 190 1106.2 41389 217.8 28 1006 4.84 2 85
(4) Obfuscator 1554 136 1282.5 32669 240.2 27 743 4.68 2 252
(5) SQL Client 1821 161 1020.7 32193 199.9 70 849 4.62 2 71
(6) Parser 1345 122 1146.4 26033 213.3 24 779 4.36 2 393
(7) Parser Generator 814 71 1011.7 13144 185.1 27 720 4.48 2 33
(8) Etc 2656 256 1217.7 61995 242.1 23 940 4.48 2 120

Tot. 18448 1695 1138.8 386737 228.2 12 1039 4.45 2 1028

http://Java-Source.net. Each category is determined
by the functionality of programs, and each category con-
tains several benchmark programs. Table 1 (a) shows the
categories and the programs in these categories that were
used as benchmark program sets. The 63 Java benchmark
programs are grouped into eight categories. For effective
measurement and comparison of the performance of several
approaches, it is important to organize the benchmark pro-
grams so as to evaluate the capability of code clone detec-
tion. A Java program archive consists of many Java class
files, which have various roles in a package. Therefore, we
tried to concentrate on the main execution modules of each
program, which may be the target of code clone. To lo-
cate the main modules of Java programs, we investigated
the bytecode distribution from 144,198 class files collected
from the Internet. Figure 4 shows the numbers of cumulative
class files and the cumulative ratio of bytecodes according to
bytecode numbers in each class file. The gray region of the
distribution graph shows the area of the benchmark set. As
this distribution shows, 90% of the class files contain only
500 bytecodes or fewer, and these class files are excluded
from evaluation because they are estimated to be too small
to be core modules. On the contrary, excessively large files
are inadequate to evaluate performance by direct compari-
son with small files. Therefore, we chose the class files with
the range of bytecode numbers between 500 and 5000. This
range corresponds to only 10% of the total class files, while

Fig. 4 Distribution graph of Java class files according to the number of
bytecodes.

the range covers 50% of the total bytecodes in each package.
Table 1 (b) shows the statistical characteristics col-

lected from benchmark programs in each category. The ta-
ble shows the total number of class files and evaluated stack
flows from the class files with their statistical characteristics.
There were 1695 class files chosen out of 18448 class files

572
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Table 2 Experimental results for evaluating discrimination capability.

of Tamada k-gram Stack Pattern SF-based

Cat. Cmp. Avg. Max. Pos. (%) Avg. Max. Pos. (%) Avg. Max. Pos. (%) Avg. Max. Pos. (%) Time a

(1) 48008 0.19 1.00 54 (0.1) 0.27 1.00 113 (0.3) 0.21 1.00 123 (0.3) 0.29 1.00 129 (0.3) 0.43 (7.58)
(2) 63208 0.21 1.00 1 (0.0) 0.28 0.97 1 (0.0) 0.22 1.00 2 (0.0) 0.30 1.00 6 (0.0) 0.53 (8.27)
(3) 14500 0.11 1.00 42 (0.3) 0.27 1.00 52 (0.4) 0.23 1.00 84 (0.6) 0.29 1.00 84 (0.6) 0.43 (7.13)
(4) 6939 0.17 0.75 0 (0.0) 0.24 0.90 2 (0.0) 0.20 0.97 1 (0.0) 0.26 0.97 1 (0.0) 0.54 (5.06)
(5) 10916 0.17 0.56 0 (0.0) 0.31 0.52 0 (0.0) 0.26 0.69 0 (0.0) 0.31 0.67 0 (0.0) 0.38 (5.41)
(6) 6082 0.16 0.71 0 (0.0) 0.24 0.53 0 (0.0) 0.19 0.56 0 (0.0) 0.31 0.93 22 (0.4) 0.42 (5.25)
(7) 1997 0.28 0.67 0 (0.0) 0.24 0.48 0 (0.0) 0.19 0.61 0 (0.0) 0.26 0.81 2 (0.1) 0.30 (2.33)
(8) 26487 0.19 0.67 0 (0.0) 0.26 0.54 0 (0.0) 0.22 0.79 0 (0.0) 0.29 0.82 1 (0.0) 0.51 (6.08)

Tot. 178137 0.19 1.00 97 (0.1) 0.27 1.00 168 (0.1) 0.22 1.00 210 (0.1) 0.29 1.00 245 (0.1) 0.48 (8.27)

aAverage (and maximum) time measured in seconds.

from 8 categories. The average number of bytecodes for the
evaluated class files was 1138.8, and the numbers ranged
between 1011.7 and 1282.5 depending on the category. The
table also shows the specifications of evaluated stack flows
for benchmark programs in each category.

4.2 Discrimination between Independent Programs

In this section, we evaluate the proposed method in terms
of discrimination between independent programs. This cri-
terion requires a software comparison method to distinguish
independently developed programs. The Java programs de-
scribed in Table 1 (a) are used as a benchmark program set,
and individual class files contained in the programs are used
as target modules. For this experiment, target modules are
compared with modules in other programs within the same
category. In this experiment, we evaluate whether the pro-
posed method can distinguish different modules although
programs in same category have similar functionality. To
measure discrimination capability, the threshold value ε for
determining code clones was set as ε = 0.2, which was
determined to maximize precision and recall in the detec-
tion of common modules in Java programs [12]. To evaluate
and compare performance of the proposed method, Stigmata
2.0† was used for the Tamada birthmark [2], [3] and the k-
gram birthmark [4], [5]. We also compared the performance
of the stack pattern birthmark [6].

Table 2 summarizes the results of this experiment. This
table shows the total number of comparisons between Java
class files within a given category and the average and max-
imum similarity values between pairs. The heading “Pos.”
indicates the numbers and ratios of pairs detected as clones
(positive results) by the four approaches. The heading
“Time” indicates the average and maximum times taken to
compare a pair of programs for the proposed method. In
the results, average similarity values make no difference,
but a false-positive rate is much more important for eval-
uating the credibility of a software comparison method. The
proposed method had much more positive results than the
other approaches. In our investigation of the positive re-
sults, we found several reasons for this. In the Source Con-
trol category, the positive results came from comparisons

between StatCvs and StatSvn. StatSvn is based on StatCvs,
so it inherits most of its modules from StatCvs. StatSvn and
StatCvs also share JFreeChart to generate charts as a com-
mon library. Thus, the positive results were not false posi-
tives, but they were common modules used in the two pro-
grams. In the results, the proposed method detected more
pairs of common modules than the other approaches. In
the Database category, Axion and Mckoi SQL DB share
SimpleCharStream.class as a common module, so the
k-gram birthmark, the stack pattern birthmark, and the pro-
posed method had one positive result. However, the stack
pattern birthmark and the proposed method had 1 and 5
false positives in this category, respectively. In the Code
Utility category, Clirr and GroboCodeCoverage contained
BCEL as a common library, so comparisons between Clirr,
GroboCodeCoverage, and BCEL showed many positive re-
sults, which were not false results. The difference between
the number of positive results was due to version differences
of the embedded BCEL library. The proposed method found
more pairs of common modules than the Tamada birthmark
or the k-gram birthmark. In the Obfuscator category, Java-
Guard and yGuard shared KeywordNameMaker.class as
a common module, so the k-gram birthmark, stack pattern
birthmark, and the proposed method each had one positive
result. An additional positive result for the k-gram birth-
mark is considered to be a false positive. In the remaining
categories, the proposed method showed 25 false positives,
corresponding to 0.05% of all comparisons.

We investigated to find the main reason for the pairs of
false positives with the proposed method. The false positive
results between different programs are due to program mod-
ules, which are composed of only frequent patterns of stack
flows in general Java programs. Typical examples are vari-
able initialization, object initialization, and method invoca-
tion, which do not contain apparent characteristics, such as
control flows of jump and loop, or arithmetic operations.

When comparing the results of the four approaches, the
average similarities made no apparent difference. The false-
positive rate of the proposed method was slightly higher
than other approaches, but the false-positive rate was a neg-

†Java birthmark toolkit, http://stigmata.sourceforge.jp/

LIM and HAN: ANALYZING STACK FLOWS TO COMPARE JAVA PROGRAMS
573

ligible value. In cases where common modules are con-
tained, however, the proposed method found more pairs of
modules than the other approaches.

4.3 Detection of Modified Programs

In this section, the proposed method is evaluated in terms
of detection of modified programs. Its performance is com-
pared with the Tamada birthmark [2], [3], the k-gram based
birthmark [4], [5], and the stack pattern birthmark [6]. The
Java programs listed in Table 1 (a) were used as benchmark
programs, and three transformation methods were applied to
evaluate the detection of modified programs. Jarg† is a Java
bytecode optimizer which optimizes a program by renaming
or eliminating the unnecessary parts of the program. Smoke-
screen†† and Zelix KlassMaster (ZKM)††† are Java program
obfuscators that transform an original Java program into an
equivalent program that is more difficult to decompile or
analyze. Smokescreen and ZKM perform several transfor-
mations, including control flow modification, renaming, and
string encryption.

Evaluation of detection capability is performed by
comparing original class files in a benchmark set with their
own transformed versions. If the similarity values of com-
parisons are sufficiently high, we can confirm the detection
capability of the comparisons. Initially, the original pro-
grams in the benchmark set described in Table 1 (a) were
transformed using Jarg, Smokescreen, or ZKM with the
strongest respective level of modification. The original pro-
grams and their modified versions were then compared by
each method. The approaches were evaluated by measuring
the similarity values and their variations caused by transfor-
mation methods.

Table 3 shows the results of comparisons of the four ap-
proaches with respect to the transformations of Jarg, Smoke-
screen, and ZKM. The table shows the total number of
comparisons, average similarity, and the minimum similar-
ity values for each method according to the category. The
heading “FN” indicates the number of false negatives and ra-
tios while comparing original class files and their own mod-
ified versions.

The heading “TV” represents transformation variation,
which shows the degree of effect caused by transforma-
tion modifications. For a program P and a transformation
method T , the transformation effect caused by T , eT , is
calculated as

eT (P) = S imilarity(P, P) − S imilarity(P, P′),

where P′ denotes a version of P modified by the transforma-
tion T . For a benchmark set S , we calculated the transfor-
mation variation on S as

TVT (S) =
∑

P∈S (eT (P))2

|S | ,

where |S | denotes the cardinality of the set S . By raising
the transformation effects to the second power, the degree of

effect caused by a transformation was reflected in the trans-
formation variation TV . In evaluating detection capability, a
higher TVT (S) indicates that the method is more affected by
the transformation T on the benchmarking set S . Therefore,
if a comparison method has a lower value of TVT than oth-
ers, then the method can be determined to be more effective
in detecting programs modified by T .

With the experiment on optimization by Jarg, the aver-
age similarities made no difference in any of the four ap-
proaches, but minimum similarities of the Tamada birth-
mark were located in lower ranges compared to those of
the other three approaches. The other three approaches
had false-negative rates lower than 1%, and low TV val-
ues ranged between 0.04 and 0.11. Jarg does not modify
the sequence of bytecodes in Java programs, but renames
class files and eliminates the unnecessary parts of programs.
Therefore, the three birthmarks other than Tamada birth-
mark show almost equivalent performance in these exper-
iments. However, the Tamada birthmark showed high false-
negative rates and higher TV values than those of the other
approaches. The renaming optimization of the Jarg transfor-
mation deteriorates the resilience of the Tamada birthmark
because it affects the used classes (UC) and the inheritance
structures (IS) of the birthmark.

In the experiments using Smokescreen and ZKM, the
performance of the methods showed more differences be-
cause the two obfuscators modify class files by means of
several aggressive transformations, such as reordering con-
trol flows, exchanging bytecodes, renaming identifiers, and
encrypting strings. The average similarities of the Tamada
birthmark and the k-gram based birthmark were similar,
and the average similarities of the stack pattern birthmark
were higher than those of the two birthmarks in experiments
with ZKM. The proposed method had the highest similar-
ity values among the four methods. For the false-negative
rates, the proposed method showed 16.4% and 1.6% for
Smokescreen and ZKM, respectively. However, the Tamada
birthmark and k-gram based birthmark missed a consid-
erable number of programs transformed by Smokescreen
and ZKM. The stack pattern birthmark showed better re-
sults than Tamada birthmark or k-gram birthmark in the
experiments with ZKM, but it did not in the experiments
with Smokescreen. The average TV values of the proposed
method for Smokescreen and ZKM were 0.16 and 0.10, re-
spectively, and they were the lowest values among the four
approaches.

In the case of the Tamada birthmark, the UC, IS,
and SMC birthmarks are dependent on the comparison of
the names of classes, methods, or identifiers in programs.
Therefore, if names are modified by some transformation,
the birthmarks are seriously impaired.

The k-gram based birthmark compares k consecutive

†Java archive grinder. http://sourceforge.net/projects/jarg/
††Smokescreen Java obfuscator. http://www.leesw.com/

smokescreen/
†††Zelix KlassMaster. http://www.zelix.com/klassmaster/

index.html

574
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Table 3 Experimental results for evaluating detection capability.

(a) Experimental results: detection of code clones modified by Jarg. Because of transformation failure, the following programs were excluded
in this evaluation: db4o, Berkeley DB, JODB, NeoDatis ODB, DBBrowser, DBSA, SQLShell, Xstream, and Jparsec.

of Tamada k-gram Stack Pattern SF-based

Cat. Cmp. Avg. Min. TV FN (%) Avg. Min. TV FN (%) Avg. Min. TV FN (%) Avg. Min. TV FN (%)

(1) 367 0.86 0.52 0.18 163 (44.4) 0.92 0.91 0.08 0 (0.0) 0.93 0.78 0.08 4 (1.1) 0.96 0.87 0.04 0 (0.0)
(2) 180 0.95 0.67 0.10 19 (10.5) 0.90 0.69 0.11 4 (2.2) 0.93 0.80 0.08 0 (0.0) 0.96 0.82 0.05 0 (0.0)
(3) 190 0.92 0.63 0.12 25 (13.1) 0.92 0.82 0.08 0 (0.0) 0.94 0.76 0.08 2 (1.1) 0.96 0.88 0.05 0 (0.0)
(4) 136 0.95 0.52 0.11 21 (15.4) 0.94 0.84 0.07 0 (0.0) 0.95 0.75 0.07 2 (1.5) 0.97 0.71 0.05 1 (0.7)
(5) 128 0.92 0.63 0.13 25 (19.5) 0.92 0.75 0.09 1 (0.7) 0.93 0.72 0.09 1 (0.8) 0.96 0.88 0.05 0 (0.0)
(6) 114 0.94 0.37 0.14 17 (14.9) 0.92 0.82 0.09 0 (0.0) 0.93 0.83 0.08 0 (0.0) 0.96 0.91 0.04 0 (0.0)
(7) 68 0.95 0.75 0.10 8 (11.7) 0.93 0.81 0.08 0 (0.0) 0.94 0.79 0.07 1 (1.5) 0.97 0.91 0.04 0 (0.0)
(8) 201 0.96 0.59 0.08 13 (6.4) 0.92 0.83 0.08 0 (0.0) 0.94 0.79 0.07 1 (0.5) 0.97 0.89 0.04 0 (0.0)

Tot. 1384 0.92 0.37 0.13 291 (21.0) 0.92 0.69 0.09 5 (0.4) 0.93 0.72 0.08 11 (0.8) 0.96 0.71 0.05 1 (0.1)

(b) Experimental results: detection of code clones modified by Smokescreen. Because of transformation failure, the following programs were excluded in
this evaluation: Berkeley DB.

of Tamada k-gram Stack Pattern SF-based

Cat. Cmp. Avg. Min. TV FN (%) Avg. Min. TV FN (%) Avg. Min. TV FN (%) Avg. Min. TV FN (%)

(1) 367 0.76 0.24 0.26 288 (78.4) 0.72 0.48 0.29 350 (95.3) 0.71 0.03 0.33 254 (69.2) 0.86 0.34 0.17 62 (16.8)
(2) 278 0.67 0.33 0.35 250 (89.9) 0.69 0.02 0.33 257 (92.4) 0.74 0.00 0.30 157 (56.5) 0.89 0.46 0.15 35 (12.5)
(3) 190 0.56 0.07 0.46 182 (95.7) 0.70 0.18 0.31 183 (96.3) 0.71 0.00 0.35 126 (66.3) 0.88 0.35 0.15 26 (13.6)
(4) 136 0.58 0.10 0.44 130 (95.5) 0.72 0.12 0.29 124 (91.1) 0.76 0.00 0.31 60 (44.1) 0.88 0.34 0.15 18 (13.2)
(5) 161 0.72 0.50 0.29 154 (95.6) 0.67 0.48 0.34 161 (100) 0.62 0.06 0.42 137 (85.1) 0.82 0.44 0.20 60 (37.2)
(6) 122 0.65 0.33 0.37 112 (91.8) 0.68 0.43 0.32 118 (96.7) 0.80 0.31 0.22 57 (46.7) 0.91 0.45 0.12 7 (5.7)
(7) 71 0.69 0.37 0.33 65 (91.5) 0.67 0.13 0.35 69 (97.1) 0.70 0.00 0.37 41 (57.7) 0.87 0.39 0.17 15 (21.1)
(8) 256 0.70 0.36 0.32 234 (91.4) 0.72 0.13 0.29 231 (90.2) 0.72 0.00 0.05 159 (62.1) 0.87 0.44 0.16 37 (14.4)

Tot. 1581 0.68 0.07 0.35 1415 (89.5) 0.70 0.02 0.31 1493 (94.4) 0.71 0.00 0.33 991 (62.7) 0.87 0.34 0.16 260 (16.4)

(c) Experimental results: detection of code clones modified by Zelix KlassMaster. Because of transformation failure, the following programs were
excluded in this evaluation: StatCvs, StatSvn, Hypersonic SQL, GroboCodeCoverage, ProGuard, NekoHTML, Woodstox, XOM, and WebSPHINX.

of Tamada k-gram Stack Pattern SF-based

Cat. Cmp. Avg. Min. TV FN (%) Avg. Min. TV FN (%) Avg. Min. TV FN (%) Avg. Min. TV FN (%)

(1) 102 0.89 0.33 0.18 14 (13.7) 0.75 0.54 0.27 79 (77.4) 0.91 0.44 0.13 7 (6.9) 0.94 0.79 0.07 1 (0.9)
(2) 324 0.84 0.52 0.19 104 (32.0) 0.80 0.16 0.23 141 (43.5) 0.94 0.04 0.11 11 (3.4) 0.96 0.11 0.08 4 (1.2)
(3) 131 0.50 0.01 0.57 102 (77.8) 0.78 0.28 0.24 80 (61.0) 0.93 0.65 0.10 5 (3.8) 0.94 0.10 0.11 1 (0.7)
(4) 96 0.74 0.01 0.36 45 (46.8) 0.79 0.24 0.23 47 (48.9) 0.94 0.64 0.10 5 (5.2) 0.94 0.21 0.10 2 (2.0)
(5) 161 0.85 0.34 0.19 53 (32.9) 0.71 0.38 0.30 144 (89.4) 0.88 0.51 0.15 20 (12.4) 0.92 0.74 0.09 5 (3.1)
(6) 46 0.78 0.27 0.31 19 (41.3) 0.75 0.57 0.27 34 (73.9) 0.91 0.32 0.14 4 (8.7) 0.93 0.63 0.09 1 (2.1)
(7) 71 0.82 0.60 0.21 27 (38.0) 0.72 0.23 0.31 47 (66.1) 0.92 0.62 0.12 8 (0.11) 0.91 0.11 0.18 3 (4.2)
(8) 229 0.88 0.50 0.16 48 (20.9) 0.76 0.23 0.26 138 (60.2) 0.92 0.66 0.10 11 (4.8) 0.94 0.13 0.09 2 (0.8)

Tot. 1160 0.80 0.01 0.28 412 (35.5) 0.77 0.16 0.26 710 (61.2) 0.92 0.04 0.11 71 (6.1) 0.94 0.10 0.10 19 (1.6)

opcode sequences in programs, and this method mainly de-
pends on opcode sequences in comparing two programs.
Therefore, it is susceptible to control flow obfuscation or
code reordering. So, the k-gram based birthmark showed
high false-negative rates and high TV values in aggressive
modification environments where the order of opcodes is
changed by control flow modification.

The stack pattern birthmark analyzes operand stack be-
haviors as the proposed method; however, it only considers
textually contiguous sequences of opcodes without consid-
ering control flows of programs. Therefore, it is also suscep-
tible to control flow obfuscation or code reordering. In the
experiments, the stack pattern birthmark showed low grades
in the experiments with Smokescreen, which applied control
flow modification or code reordering frequently.

The proposed method showed lower false-negative

rates and TV for Smokescreen and ZKM than the other
three approaches. These results are strong evidence that the
method is more effective in detecting code clones modified
by Smokescreen or ZKM. Because the proposed method
follows the control flows of programs, it can tolerate code
reordering or control flow obfuscation. Because the method
compares opcodes and stack operations, it may be suscepti-
ble to program transformation that changes opcodes or stack
operations directly.

5. Discussion and Future Work

For practical use, it is important to decrease the number of
false negatives. In the experimental evaluation in Sect. 4,
there were several cases of false negatives. For such cases,
we investigated the reasons for low similarities.

LIM and HAN: ANALYZING STACK FLOWS TO COMPARE JAVA PROGRAMS
575

• First, it was noted that obfuscation changed a num-
ber of patterns of bytecode sequences into explana-
tory expressions. For example, the bytecode ldc can
be changed to the sequence of getstatic, iconst n,
aaload or getstatic, bipush, aaload. If the modi-
fication occurs in the middle of a bytecode sequence,
semi-global alignment can fail to align the two se-
quences on account of penalty values for aligning the
mismatched bytecodes. To overcome this defect, it is
necessary to refine the alignment algorithm by match-
ing patterns that can be modified or substituted.

• Second, it was noted that obfuscation changed the
sequence of bytecodes by means of instruction re-
ordering or stack operation reordering. For example,
Smokescreen transforms a sequence of pairs of load
and store instructions into a sequence of store in-
structions after load instructions. As the proposed
method compares sequences of bytecodes, the compar-
ison method may be ineffective if bytecode sequences
have been reordered.

• Third, a Java program package often contains constant
initialization modules, which mainly initialize objects
or field variables. The control flow of bytecodes in
such modules constructs one long sequence of uniform
patterns, which may be lowered to regular patterns of
stack flows. However, control flow obfuscation can
change these long sequences of control flows into irreg-
ular patterns of code sequences by control flow flatten-
ing. In these cases, the proposed method did not match
irregular stack flow patterns in the modified versions.

• Finally, it was noted that the obfuscation inserted sev-
eral bogus instructions with the help of opaque predi-
cates [29], [30], which were always evaluated as either
true or false. These modifications made some se-
quences of bytecodes dissimilar.

These problems occur because the method compares se-
quences of opcodes directly. More customized analysis is
required to overcome these problems. Instead of direct
matching of bytecodes in stack flows, comparing abstract
behaviors of stack flows is likely to improve the detection
capability. For a future work, we plan to analyze the abstract
behaviors of stack flows, and refine the matching scheme so
that it can reflect the meaning of the stack flows. In addi-
tion, we plan to organize data flow relation between stack
flows and characterize a Java program by using flow graphs
of stack flows. By comparing stack flow graphs, code clones
can be identified more effectively.

6. Conclusion

Software is an intellectual property that must be protected
against license violations; however, the incidence of soft-
ware license violations increases every year. To cope with
this incidence, there have been several methods of software
comparison. This paper proposes a method to detect clones
of Java programs by analysis of the stack flows of pro-

grams. A stack flow denotes a minimal sequence of byte-
codes that performs specific tasks in the common context
of the operand stack. Stack flows are presented and for-
mally described by simulating operand stack movements.
The semi-global algorithm was used to align two stack flows
in each program, and the similarity between two programs
was calculated by determining a set of the most similar pairs
of stack flows in the two programs.

To measure the two criteria of discrimination and de-
tection capabilities, the proposed method was evaluated
with respect to false-positive rates, false-negative rates, and
transformation variations. The proposed method was also
compared with the earlier approaches of the Tamada birth-
mark, the k-gram based birthmark, and the stack pattern
birthmark. Experimental results showed that the perfor-
mance of the proposed method was uniform without ap-
parent weaknesses in relation to three different modification
methods, namely, Jarg, Smokescreen, and ZKM. Our re-
sults demonstrate that the proposed method is more effec-
tive in detecting code clones than earlier approaches. Based
on these results, we are convinced that the proposed method
can lessen the time and effort required for manual reverse
engineering in identification of code clones developed in
Java.

References

[1] “The gpl-violations.org project.” http://gpl-violations.org/
[2] H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto, “Design

and evaluation of birthmarks for detecting theft of java programs,”
Proc. IASTED International Conference on Software Engineering
(IASTEDSE2004), pp.569–575, Feb. 2004.

[3] H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto, “Java
birthmark –detecting the software theft,” IEICE Trans. Inf. & Syst.,
vol.E88-D, no.9, pp.2148–2158, Sept. 2005.

[4] G. Myles and C. Collberg, “k-gram based software birthmarks,”
Proc. 2005 ACM Symposium on Applied Computing, pp.314–318,
2005.

[5] G.M. Myles, Software Theft Detection Through Program Identifica-
tion, Ph.D. thesis, Department of Computer Science, The University
of Arizona, 2006.

[6] H. Lim, H. Park, S. Choi, and T. Han, “Detecting theft of java ap-
plications via a static birthmark based on weighted stack patterns,”
IEICE Trans. Inf. & Syst., vol.E91-D, no.9, pp.2323–2332, Sept.
2008.

[7] B.S. Baker and U. Manber, “Deducing similarities in java sources
from bytecodes,” ATEC ’98: Proc. the annual conference on
USENIX Annual Technical Conference, pp.179–190, Berkeley, CA,
USA, 1998.

[8] U. Manber, “Finding similar files in a large file system,” the
USENIX Winter 1994 Technical Conference, pp.1–10, Jan. 1994.

[9] B.S. Baker, “Parameterized pattern matching: Algorithms and ap-
plications,” Journal of Computer and System Sciences, vol.52, no.1,
pp.28–42, Feb. 1996.

[10] H. Lim, H. Park, S. Choi, and T. Han, “A method for detecting the
theft of java programs through analysis of the control flow informa-
tion,” Inf. Softw. Technol., vol.51, no.9, pp.1338–1350, 2009.

[11] H. Lim, H. Park, S. Choi, and T. Han, “A static java birthmark based
on control flow edges,” Computer Software and Applications Con-
ference, Annual International, vol.1, pp.413–420, 2009.

[12] H. Park, H. Lim, S. Choi, and T. Han, “Detecting common mod-
ules in java packages based on static object trace birthmark,” The

576
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Computer Journal, vol.54, no.1, pp.108–124, 2011.
[13] T.F. Smith and M.S. Waterman, “Identification of common molecu-

lar subsequences,” J. Molecular Biology, vol.147, no.1, pp.195–197,
March 1981.

[14] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. ichi
Matsumoto, “Dynamic software birthmarks to detect the theft of
windows applications,” Proc. International Symposium on Future
Software Technology (ISFST 2004), Oct. 2004.

[15] D. Schuler and V. Dallmeier, “Detecting software theft with api call
sequence sets,” Workshop Software Reengineering (WSR 2006),
2006.

[16] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for
java,” ASE ’07: Proc. twenty-second IEEE/ACM international con-
ference on Automated software engineering, pp.274–283, 2007.

[17] G. Myles and C. Collberg, “Detecting software theft via whole pro-
gram path birthmarks,” Information Security, 7th International Con-
ference (ISC 2004), LNCS 3225, pp.404–415, 2004.

[18] C. Brown, D. Barrera, and D. Deugo, “Figd: An open source intel-
lectual property violation detector,” SEKE, pp.536–541, 2009.

[19] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “De-
tecting code clones in binary executables,” Proc. Eighteenth Inter-
national Symposium on Software Testing and Analysis, ISSTA ’09,
pp.117–128, New York, NY, USA, 2009.

[20] J. Krinke, “Identifying similar code with program depen-
dence graphs,” 8th Working Conference on Reverse Engineering
(WCRE’01), pp.301–309, Stuttgart, Germany, Oct. 2001.

[21] M. Christodorescu and S. Jha, “Static analysis of executables to de-
tect malicious patterns,” Proc. 12th USENIX Security Symposium,
pp.169–186, 2003.

[22] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating
malware using control-flow graph matching,” in Detection of Intru-
sions and Malware & Vulnerability Assessment, ed. R. Büschkes
and P. Laskov, LNCS, vol.4064, pp.129–143, Berlin, Germany,
2006.

[23] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, second ed., Addison-Wesley, June 2000.

[24] R. Wilhelm and D. Maurer, Compiler Design, Addison-Wesley,
1995.

[25] J. Zhao, “Analyzing control flow in java bytecode,” Nippon Sofu-
towea Kagakkai Taikai Ronbunshu, vol.16, pp.313–316, 1999.

[26] M. Brudno, S. Malde, A. Poliakov, C.B. Do, O. Couronne, I.
Dubchak, and S. Batzoglou, “Glocal alignment: finding rearrange-
ments during alignment,” Bioinformatics, vol.19, Suppl.1, pp.54–
62, 2003.

[27] D. Gusfield and R.W. Irving, The Stable Marriage Problem: Struc-
ture and Algorithms, The MIT Press, 1989.

[28] D.E. Knuth, Stable Marriage and Its Relation to Other Combina-
torial Problems, An Introduction to the Mathematical Analysis of
Algorithms, American Mathematical Society, 1997.

[29] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” Principles of Program-
ming Languages 1998, POPL’98, San Diego, CA, Jan. 1998.

[30] G. Arboit, “A method for watermarking java programs via opaque
predicates,” The Fifth International Conference on Electronic Com-
merce Research (ICECR-5), 2002.

Hyun-il Lim received his B.S., M.S., and
Ph.D. degrees in computer science from KAIST,
Korea, in 1995, 1997, 2009, respectively. He is
currently a lecturer in the Division of Computer
Science and Engineering, Kyungnam Univer-
sity. His current research interests include soft-
ware security, software protection, watermark-
ing, and program analysis.

Taisook Han received his B.S. degree in
electronic engineering from Seoul National Uni-
versity, Korea in 1976, M.S. degree in computer
science from KAIST, Korea, in 1978, and Ph.D.
degree in computer science from University of
North Carolina at Chapel Hill, USA, in 1990.
He is currently a professor in the Department of
Computer Science, KAIST. His research inter-
ests include programming language theory, se-
cure software, and analysis of embedded sys-
tems.

