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PAPER

Global Mapping Analysis: Stochastic Gradient Algorithm in
Multidimensional Scaling

Yoshitatsu MATSUDA†a), Nonmember and Kazunori YAMAGUCHI††b), Member

SUMMARY In order to implement multidimensional scaling (MDS)
efficiently, we propose a new method named “global mapping analysis”
(GMA), which applies stochastic approximation to minimizing MDS crite-
ria. GMA can solve MDS more efficiently in both the linear case (classical
MDS) and non-linear one (e.g., ALSCAL) if only the MDS criteria are
polynomial. GMA separates the polynomial criteria into the local factors
and the global ones. Because the global factors need to be calculated only
once in each iteration, GMA is of linear order in the number of objects.
Numerical experiments on artificial data verify the efficiency of GMA. It
is also shown that GMA can find out various interesting structures from
massive document collections.
key words: multidimensional scaling, stochastic gradient algorithm, text
mining

1. Introduction

Multidimensional scaling (MDS) is one of the well-known
methods in multivariate data analysis, which is widely used
for dimension reduction [1], [2]. It finds a mapping of ob-
jects in a low-dimensional space, which preserves the orig-
inal disparities among all the objects in a high-dimensional
space as “faithfully” as possible. Generally, MDS is carried
out by minimizing a criterion (a cost function) which eval-
uates the “faithfulness.” The criterion is often called stress
(for example, the classical MDS stress [3], the Sammon’s
stress [4], and SSTRESS [5]). Since these criteria are based
on pairwise disparities among all the objects, the computa-
tional cost of MDS increases at least quadratically according
to the number of objects. Such cost is too high for large-
scale problems. Because the classical MDS is equivalent
to a matrix decomposition, there are some efficient algo-
rithms such as power methods. However, because it needs
the disparity matrix in advance, the essential computational
cost increases quadratically. Moreover, it can not utilize
non-linear criteria. Regarding non-linear dimension reduc-
tion, artificial neural network approaches such as the self-
organizing map (SOM) [6], [7] have been known to be ef-
ficient. In the SOM [7], the objects are clustered and the
mapping is formed among the clusters. Though the compu-
tational cost is reduced drastically, it still increases quadrat-
ically. Moreover, the relations among the objects in the
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same clusters are lost. In this paper, we propose a new
stochastic gradient algorithm named “global mapping analy-
sis” (GMA), which solves both the classical linear MDS [8],
[9] and a non-linear MDS known as ALSCAL [5] efficiently.
By using stochastic approximation [10], the computational
cost of each update in the gradient descent is linear to the
number of objects. So, GMA is expected to be efficient if
the number of objects is large. This paper is an extension
of [11] and [12] with elaboration of the algorithm and many
additional results.

This paper is organized as follows. In Sect. 2, GMA is
explained in both linear and non-linear cases. In Sect. 2.1,
the linear GMA is described. In Sect. 2.2, the non-linear
GMA is derived. Their relations to other methods are dis-
cussed in Sect. 2.3. In Sect. 3, experiments on artificial data
verify that GMA is quite efficient. In Sect. 4, GMA and
the SOM [7] are applied to massive document collections
(the articles posted to a Usenet newsgroup and those to the
whole Usenet) and the results are examined. Lastly, Sect. 5
concludes this paper.

2. Global Mapping Analysis

2.1 Linear GMA

Let X = (xik) be a given N × M data matrix in the (M-
dimensional) original space, where N is the number of ob-
jects and xik indicates the k-th coordinate of the i-th object.
Moreover, let Y = (yil) be a mapping of objects in the L-
dimensional (L � M) space. Then, the stress for the clas-
sical MDS [9] (denoted as CSTRESS in this paper) is given
as follows (see [2], [3] and [11]):

CSTRESS =
N∑

i=1

N∑
j=1

(
bi j − b∗i j

)2
, (1)

where

bi j =

L∑
l=1

yily jl, (2)

and

b∗i j =

M∑
k=1

(
xik −meani (xik)

) (
x jk −meani (xik)

)
. (3)

Here, meani (xik) =
∑N

i=1 xik

N . By applying xik := xik −
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meani (xik), CSTRESS is simplified into

CSTRESS =
N∑

i=1

N∑
j=1

⎛⎜⎜⎜⎜⎜⎝ L∑
l=1

yily jl −
M∑

k=1

xik x jk

⎞⎟⎟⎟⎟⎟⎠
2

. (4)

Usually, the singular value decomposition (SVD) of the
matrix B∗ =

(
b∗i j

)
is used for minimizing CSTRESS [2].

Though there are some efficient techniques for SVD such
as the power iteration [13], the cost of calculating B∗ is
O
(
N2
)
. In the following, an efficient algorithm minimiz-

ing CSTRESS is derived by using stochastic approximation.
First, the simple gradient with respect to each yil is given as

∂CSTRESS
∂yil

=
4
M

M∑
k=1

N∑
j=1

⎛⎜⎜⎜⎜⎜⎝ L∑
m=1

yimy jm − Mxik x jk

⎞⎟⎟⎟⎟⎟⎠ y jl. (5)

Now, we interpret the operator
∑

k

M as the expectation op-
erator over k if k is given as a random integer which is
distributed uniformly from 1 to M. Therefore, stochas-
tic approximation [10] is applicable to the optimization of
CSTRESS. Consequently, CSTRESS is minimized by re-
peating the following update equation:

yil := yil

− c (T )
N∑

j=1

⎛⎜⎜⎜⎜⎜⎝ L∑
m=1

yimy jm − Mxipx jp

⎞⎟⎟⎟⎟⎟⎠ y jl, (6)

where T means the time step, c (T ) is the stepsize which has
to satisfy limT→∞ c (T ) = 0 and

∑∞
T=1 c (T ) = ∞, and p is a

random integer between 1 and M which is renewed at each
time step T . Lastly, the update equation of GMA is given as

yil := yil − c (T )

⎛⎜⎜⎜⎜⎜⎝ L∑
m=1

yimαlm − Mxipβlp

⎞⎟⎟⎟⎟⎟⎠ , (7)

where

αlm =

N∑
i=1

yilyim and βlp =

N∑
i=1

xipyil. (8)

Equation (7) is the update equation in the standard algorithm
of GMA, where Eq. (7) is preceded by the calculation of
Eq. (8). Note that αlm and βlp (which are called “global fac-
tors” in this paper) are “separated” from the calculation of
Eq. (7). In other words, the global factors can be calculated
independently of Eq. (7). The computational cost of all αlm

and βlp is O
(
NL2
)
. Then, the cost for the update of Y is

O
(
NL2
)

because that for each yil by Eq. (7) is only O (L).

Consequently, the total cost at each time step is O
(
NL2
)
.

This “separation” technique is crucial to the efficiency of
GMA. Note that this “separation” is not applicable to the
usual gradient descent where B∗ is calculated in advance.

Y is given randomly at the initial step, which satisfies∑L
l=1 yil = 0 for each i and

∑N
i=1
∑M

k=1 x2
ik =
∑N

i=1
∑L

l=1 y2
il. The

appropriate determination of the stepsize c (T ) is an impor-
tant problem. In this paper, the following heuristic is used:

c (T ) = 0.5 × 50
T + 50

cinit (9)

where cinit is given as

cinit =

√√√√√√ M
∑N

i=1
∑L

l=1

(
yil −

∑L
m=1 yim

L

)2
∑M

p=1
∑N

i=1
∑L

l=1 (∂C (i, l, p))2
(10)

where ∂C (i, l, p) is the estimation of the gradient of
CSTRESS w.r.t. yil for p in Eq. (7):

∂C (i, l, p) =
L∑

m=1

yimαlm − Mxipβlp. (11)

The computational cost of cinit by Eqs. (10) and (11) is
O
(
NML2

)
. cinit roughly matches the “total quantity” of the

updates for Y (which are proportional to ∂C (i, l, p)) to that
of Y itself at each time step. If Y diverges to infinity, cinit

is halved and the learning process is restarted. Thus, cinit is
set to a suitable value which achieves both fast convergence
and global adjustments. Because c (T ) in Eq. (9) satisfies
the necessary conditions for stochastic approximation, Y is
guaranteed to converge to a local optimum. In addition, be-
cause c (T ) keeps a relatively large value at least for the first
50 time steps, Y is expected to be close to the global opti-
mum.

2.2 Non-linear GMA

As shown in Sect. 2.1, the crucial point in GMA is the “sep-
aration” technique in the update equation. This separation
technique is always available if the pairwise disparities in
the MDS stress are estimated by some polynomial functions.
In this section, the separation technique is applied to one of
the well-known MDS named ALSCAL [5].

In ALSCAL, the following stress (named SSTRESS) is
given as

SSTRESS =
N∑

i=1

N∑
j=1

(
disty (i, j) − distx (i, j)

)2
(12)

where disty (i, j) =
∑L

l=1

(
yil − y jl

)2
and distx (i, j) =∑M

k=1

(
xik − x jk

)2
. Then, the gradient w.r.t. yil is given as

∂SSTRESS
∂yil

= 4
L∑

l=1

N∑
j=1

(
yil − y jl

)2 (
yil − y jl

)

− 4
M∑

k=1

N∑
j=1

(
xik − x jk

)2 (
yil − y jl

)
. (13)

In the same way as in Sect. 2.1, the following update equa-
tion is derived:
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yil := yil

− c (T )
L∑

m=1

(
Nyily

2
im − 2yilyimγm + yilαmm

)

+ c (T )
L∑

m=1

(
y2

imγl − 2yimαlm + δlm
)

+ c (T ) M
(
Nx2

ipyil − 2xipyilεp + yilζp

)
− c (T ) M

(
x2

ipγl − 2xipβlp + ηlp

)
, (14)

where p, T , c (T ), αlm, and βlp are given in Sect. 2.1,

γl =

N∑
i=1

yil, δlm =

N∑
i=1

yily
2
im, εp =

N∑
i=1

xip, (15)

ζp =

N∑
i=1

x2
ip, and ηlp =

N∑
i=1

x2
ipyil. (16)

By calculating the global factors α-η in advance, the total
cost for the update of Y at each time step is only O

(
NL2
)
.

To avoid converging to local minima, the result of the
linear GMA (Sect. 2.1) is used as Y (0) of the non-linear
GMA. Regarding the stepsize, Eq. (9) is used by replacing
∂C (i, l, p) of Eq. (10) with ∂S (i, l, p):

∂S (i, l, p)

= −
L∑

m=1

(
Nyily

2
im − 2yilyimγm + yilαmm

)

+

L∑
m=1

(
y2

imγl − 2yimαlm + δlm
)

+ M
(
Nx2

ipyil − 2xipyilεp + yilζp

)
− M
(
x2

ipγl − 2xipβlp + ηlp

)
. (17)

2.3 Relation to Other Methods

Other MDS methods: Though many other algorithms
have been proposed in MDS [2], almost all of them
need the calculation of the N ×N disparity matrix. The
most significant advantage of GMA is that it does not
have to calculate the matrix. Its update cost at each
step is linear to N. Therefore, GMA can solve dimen-
sion reduction problems of quite large N, which are
intractable in the other methods.

Oja’s PCA network rule: PCA (principal component
analysis) is almost equivalent to the classical MDS with
the squared Euclidean distance metric [14]. Conse-
quently, the linear GMA can be easily extended to PCA

by xik := xik −meank (xik) where meank (xik) =
∑M

k=1 xik

M .
The data matrix X is centered along each column for
MDS (by meani (xik)) and along each row for PCA (by
meank (xik)). Moreover, it can be proven that the lin-
ear GMA (Eq. (7)) is equivalent to Oja’s symmetrical
PCA network rule [15], [16] in the following. The av-
erage of Eq. (7) over p is given as follows by the matrix

notation:

Y := Y + c (T )
(
B∗Y − YYtY

)
. (18)

Because B∗ is positive semi-definite, symmetric, and
regular (by taking inevitable small noise into account),
there exists B∗−

1
2 . Therefore, by letting Z be B∗−

1
2 Y,

Eq. (18) is rewritten as

Z := Z + c (T )
(
B∗Z − ZZt B∗Z

)
, (19)

which is completely equivalent to Oja’s symmetrical
PCA network rule. This equivalence has been proven
in [17] in a different context where they derived the cost
function of Oja’s rule. So, the linear GMA inherits the
properties of Oja’s rule. For example, GMA always
converges to the global optimum like Oja’s rule does
under some weak conditions. The one difference be-
tween GMA and Oja’s rule is that GMA solves MDS
directly, while Oja’s rule does it through PCA. The
more significant difference is that GMA is applicable
to non-linear cases. In Sect. 3, it is shown that GMA
can find out better results in dimension reduction by a
non-linear model than only by the linear one.

GIPSCAL: There has been another similar approach to the
proposed method, which is named GIPSCAL [18]. In
order to minimize a general criterion which can man-
age even an asymmetric disparity matrix, GIPSCAL
derives dynamical differential equations by applying
gradient descent to the criterion. Then, stepwise update
equations are derived in the similar way as in GMA.
Though GIPSCAL can efficiently utilize arbitrary (of-
ten asymmetric) disparity matrices, it needs to calcu-
late all the elements of the disparity matrix in advance
and its cost at each time step is of quadratic order as
in many other MDS methods. On the other hand, be-
cause GMA can separate the criterion by “stochastic”
gradient descent, the cost is of linear order. The effi-
ciency is the most significant advantage of GMA over
GIPSCAL.

Stochastic gradient methods in MDS: In the previous
works of the authors [19], [20], the computational cost
of MDS is reduced by using stochastic approximation
in the same way as in this paper. The algorithm in [19]

includes an additional term of
∑

i, j log
(∑

k

(
yik − y jk

)2)
in the stress (named “LOGSTRESS”), so it has to em-
ploy the tree method for the optimization (additional
computation). In the algorithm named “the stochas-
tic MDS network” in [20], the mapping of the objects
in the low-dimensional space is constrained to a dis-
crete grid structure. Though this model is suitable for
the SOM-like algorithms [6], [21], it needs additional
computation. On the other hand, the computational
cost of GMA at each time step is only O

(
NL2
)
. In

addition, GMA can directly solve the two well-known
MDS models (the classical MDS and ALSCAL).
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3. Experiments on Artificial Data

Here, experimental results on artificial data are shown. Each
column of X is given according to an N-dimensional Gaus-
sian distribution satisfying

cov (i, j) �
⎧⎪⎪⎨⎪⎪⎩

1.0, when i = j,
0.2, when i mod 4 = j mod 4,
0.0, otherwise,

(20)

where cov (i, j) means the covariance between the i-th and
j-th components. In this distribution, the N components are
equally divided into four weak clusters. M = 10000 samples
were generated by this distribution. So, X is an N × 10000
matrix. The number of dimensions in the low-dimensional
space L was set to 2. The linear GMA (Sect. 2.1) and the
non-linear one (Sect. 2.2) were applied to find out the opti-
mal mapping in the L-dimensional space. The update of Y
in each GMA algorithm was repeated for 100000 time steps.
For comparison, SVD was carried out by the ARPACK
package using the efficient Lanczos method [13]. More-
over, ALSCAL with the Newton-Raphson method was also
used for optimizing SSTRESS [5]. The initial Y is given
randomly for linear GMA and ALSCAL. Non-linear GMA
uses the result of linear GMA as the initial Y. Therefore, the
computation time of non-linear GMA includes the time of
linear GMA for the initialization. All the computations were
carried out by an Intel Xeon 2.66 GHz quad-core processor
with 16 GB memory through matlab codings. In order to es-
timate the formed two-dimensional map of the components,
the following estimator S was used:

S =
disty[between]

disty[within]
. (21)

where disty[between] is the averaged square Euclidean dis-
tance between two components belonging to different clus-
ters in Eq. (20) and disty[within] is the averaged distance
among all the components within the same clusters. Larger
S means that the clusters are extracted more distinctly in the
map. S is defined in the similar way as in the Fisher’s es-
timator in linear discriminant analysis. Because non-linear
optimization often converges to a quite inferior local mini-
mum, the medians over ten runs were employed in all the
experiments in order to evaluate the results without the ef-
fects of a few quite inferior results.

Figure 1 shows the transitions of S (a) and computa-
tion time (b) along the number of components N for lin-
ear GMA (thin solid curve), non-linear GMA (thick solid),
SVD with the Lanczos method (dashed), and ALSCAL with
the Newton-Raphson method (dotted). N was from 100 to
30000. The results in ALSCAL beyond N = 1000 and those
in SVD beyond N = 10000 could not be calculated be-
cause they exhausted the memory (described later). First,
Fig. 1 (a) shows the performance of each method in this
problem. Though there were some fluctuations, it shows that
the best method was non-linear GMA for large N. Though

(a) estimator S .

(b) computation time.

Fig. 1 Transitions of (a) the estimator S and (b) the computation time
along the number of components N: Linear GMA (thin solid curve), non-
linear GMA (thick solid), SVD using the Lanczos method (dashed), and
ALSCAL using the Newton-Raphson method (dotted) were applied to the
artificial data. All the results were the medians over ten runs.

ALSCAL was superior to non-linear GMA, it was not avail-
able when N was large. So, those results verify the effective-
ness of GMA for quite high-dimensional problems. Second,
Fig. 1 (b) shows that SVD was more efficient than GMA if
SVD was available. However, regarding the order of the
time complexity (corresponding to the slope of each curve in
the log-log plot), the order of GMA was clearly smaller than
SVD. Therefore, it is expected that GMA is more efficient
than SVD if N is much larger. Regarding the space com-
plexity, GMA was much more efficient than ALSCAL and
SVD. As described in the above, ALSCAL and SVD were
not available when N was quite large. It was because they
exhausted the 16 GB memory. Though it is difficult to esti-
mate accurately the used memory size, the relatively com-
plicated matrix manipulations in ALSCAL and SVD need
huge memory generally. On the other hand, GMA needs rel-
atively small memory for the data matrix X and the mapping
Y only. So, those results also verify the efficiency and the
applicability of GMA in quite high-dimensional problems.

In order to investigate the relation between the number
of iterations in GMA and the accuracy of the results, Fig. 2
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Fig. 2 Learning curve by non-linear GMA: It shows the transition of the
estimator S by non-linear GMA along the number of iterations for the arti-
ficial data (N = 10000). It also shows the estimator by SVD as the dashed
baseline. All the results were the medians over ten runs.

shows the learning curve of the estimator S by non-linear
GMA. Though there were some fluctuations, it shows that
non-linear GMA outperformed SVD roughly after 50000 it-
erations.

4. Analysis of Massive Document Collections

Here, the linear and non-linear GMA methods and the
SOM [7] are applied to massive document collections (a
set of about 80000 articles (posted to a Usenet newsgroup)
and another of about 1500000 ones (posted to the whole
Usenet)). In those cases, SVD and ALSCAL are not appli-
cable because a quite large distance matrix such as 80000 ×
80000 exhausts the memory. On the other hand, GMA and
the SOM is applicable because they utilize stochastic gradi-
ent algorithms where the direct calculation of the distance
matrix is not necessary.

4.1 Analysis of Articles Posted to a Group

4.1.1 Experimental Conditions

Raw data. 84817 articles posted to a Usenet newsgroup
“comp.os” from Jan. 2001 to Feb. 2001 were used.

Extractions. Each article was decomposed into a set of
words. Only the alphabetical words were extracted,
and all the words were converted to their stems by
WordNet [22]. In addition, the articles which consist
of less than 5 words or more than 1000 words were re-
moved. Consequently, 77280 distinct word stems and
84006 articles were extracted (namely, N = 84006).

Word selection. In order to select important words, the
words which are included in more than 5000 articles
and those which occur in less than 500 articles were re-
moved. Then, only 1529 words were selected (Namely,
M = 1529).

Data Matrix. The i-th row of X corresponds to the i-th ar-
ticle, where xik = 1 if the i-th article includes the k-th

Table 1 Computation Time on Massive Document Collections: This ta-
ble shows the computation time (seconds) for the following three methods:
linear GMA, non-linear GMA, and the SOM. Because non-linear GMA
used the result of linear GMA as the initial Y, it includes the additional
time.

linear GMA non-linear GMA SOM
121 343 3590

word, and xik = 0 otherwise.
GMA. L was set to 2. The linear and non-linear GMA

methods were applied to X. They were carried out for
10000 time steps, which was empirically enough for
the convergence. Non-linear GMA uses the result of
linear GMA as the initial Y. The final Y was rotated by
the usual PCA.

SOM. Because the SOM is not applicable if M is large
(M = 1529), M was reduced to 500 by the random
mapping method as in [7]. The reduced data matrix X̃
is given by X̃ = XR. R is given as a 1529×500 random
matrix, where only five randomly-selected components
were set to 1 and the others were 0 in each row. It
is easy to show that the square Euclidean distance be-
tween any two rows of X̃ approximates that of X. Each
row of X̃ was used as a training vector. A rectangular
map of 100×100 units was used. The reference vectors
of the units were trained by the simple SOM algorithm
of SOM PAK [23]. The training was terminated after
10000 steps during the first (ordering) phase. During
the second (fine-tuning) phase, it was carried out for
100000 steps. Almost all the parameters and the pre-
processing methods were based on [7].

Computation. All the computations were carried out by an
Intel Xeon 2.66 GHz quad-core processor with 16 GB
memory.

4.1.2 Results

Computation time. Table 1 shows the computation time
taken by the linear and non-linear GMA methods and
the SOM. These results show that GMA is much faster
than the original SOM algorithm. It verifies the effi-
ciency of GMA in these practical applications.

Formed Mapping. The formed mappings are shown in
Fig. 3. Linear GMA (Fig. 3 (a)) found two (right and
left) clusters quite clearly. Through close inspection, it
was discovered that the right small cluster corresponds
to the articles posted by a single author. In addition,
Fig. 4 (a) shows that the vertical axis of Fig. 3 (a) cor-
responds to the number of words in an article. It is
worth noting that the axis is common to the two clus-
ters. In other words, the number of words (the ver-
tical axis) and the distinction between the two clus-
ters (the horizontal axis) were extracted independently.
Regarding non-linear GMA (Fig. 3 (b)), the right and
left clusters in Fig. 3 (a) correspond to the large cir-
cle around the center and the upper small one, respec-
tively. Figure 4 (b) shows that the horizontal axis of
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(a) linear GMA.

(b) non-linear GMA.

(c) SOM.

Fig. 3 Mappings for “comp.os”: In (a) and (b) (mappings formed by
GMA), the first and second axes of Y (which is rotated by the usual PCA)
correspond to the horizontal and vertical ones. An article is represented by
a dot. In (c) (a mapping formed by the SOM), the squares (�) and circles
(•) correspond to the right and left clusters in (a). Here, the 100 × 100
SOM units were divided equally into 20 × 20 blocks. Each block (of 5 × 5
units) includes the articles nearest to a unit in the block. Then, the cluster
of each block was determined by a majority vote from the articles which
are included in the block. If there exists no article, the block is represented
by a blank. In addition, the darkness of each block represents the average
number of words over the included articles. In other words, a darker block
includes longer articles.

Fig. 3 (b) roughly corresponds to the number of words
in an article as well as linear GMA. Similarly, the SOM
(Fig. 3 (c)) could distinguish the two clusters and could
arrange the articles according to the number of words
in each cluster. But, it failed to find the common axis.
Even though there exists an axis representing the num-

(a) linear GMA. (b) non-linear GMA.

Fig. 4 The relation between the number of words and the axes in GMA
for “comp.os”: (a) The relation between the vertical axis of Fig. 3 (a) and
the number of words of each article, where each dot corresponds to an
article. (b) The relation between the horizontal axis of Fig. 3 (b) and the
number of words.

ber of words in the intrinsic space of the articles, the
SOM distorted it. Note that the effectiveness of apply-
ing GMA to this particular data is not discussed here.
The characteristics of GMA are discussed and clarified
by using this data just as an example.

4.2 Analysis of the Whole Usenet

4.2.1 Experimental Conditions

Raw data. 1518776 articles posted to the whole Usenet
from Jan. 2001 to Feb. 2001 were used.

Extractions. The articles which consist of less than 5
words or more than 1000 words were removed. As a
result, 1317864 word stems and 1396248 articles were
extracted.

Word selection. By removing the words which are in-
cluded in more than 50000 articles and those which
occur in less than 5000 articles, 2419 words were se-
lected.

GMA. Only linear GMA was applied for 10000 time steps.
L was set to 2.

The other settings were the same as those in Sect. 4.1.1.

4.2.2 Results

It took about 45 minutes to carry out linear GMA. The
formed mapping is shown in Fig. 5 (a). Figure 5 (b) shows
that the horizontal axis corresponds to the number of words
of each article in the same way as for “comp.os.” Fig-
ure 5 (a) shows that the articles are classified into three clus-
ters (the main one on the center, the small ones on the upper-
right and the upper-left of the main one.) These results ver-
ify that GMA is useful even for the analysis of quite massive
document collections. The investigation of the “meanings”
of the clusters found by GMA is beyond the scope of this
paper.

5. Conclusion

In this paper, we proposed a new stochastic gradient algo-
rithm (named “global mapping analysis” (GMA)), which
minimizes the classical MDS stress efficiently. Extensions
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(a) Mapping by GMA.

(b) Horizontal axis and the number of words.

Fig. 5 Results of GMA for the Whole Usenet: (a) The mapping formed
by GMA. (b) The relation between the number of words and the horizontal
axis of the mapping. Each dot corresponds to an article.

of GMA (GMA for PCA and GMA for SSTRESS) were also
proposed. It was shown that GMA is equivalent to Oja’s
symmetrical PCA network rule. We showed the validity of
GMA by applying it to artificial data and massive document
collections. Moreover, we are planning to apply GMA to
other real large-scale problems in the fields of data min-
ing and knowledge discovery [24], [25]. In addition, we are
planning to strengthen the theoretical foundations of GMA.
Though the extensions of GMA for PCA and SSTRESS
were proposed in this paper, the applicability of GMA to
other stresses is still unclear. We are planning to construct
the general framework of GMA and answer this applicabil-
ity question. We are also planning to apply GMA to other
related multivariate analysis methods (multiple correspon-
dence analysis, factor analysis, and so on). On the other
hand, because GMA has to separate the MDS stresses, their
forms are limited to polynomial functions. So, GMA can
not utilize many well-known stresses such as the Sammon’s
stress [4]. It also may be an interesting approach to approxi-
mate such non-polynomial stresses by polynomial functions
and apply GMA to them.
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