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3D Mesh Segmentation Based on Markov Random Fields and
Graph Cuts∗

Zhenfeng SHI†,††a), Dan LE†b), Liyang YU†c), Nonmembers, and Xiamu NIU†d), Member

SUMMARY 3D Mesh segmentation has become an important research
field in computer graphics during the past few decades. Many geometry
based and semantic oriented approaches for 3D mesh segmentation has
been presented. However, only a few algorithms based on Markov Ran-
dom Field (MRF) has been presented for 3D object segmentation. In this
letter, we present a definition of mesh segmentation according to the label-
ing problem. Inspired by the capability of MRF combining the geomet-
ric information and the topology information of a 3D mesh, we propose a
novel 3D mesh segmentation model based on MRF and Graph Cuts. Ex-
perimental results show that our MRF-based schema achieves an effective
segmentation.
key words: mesh segmentation, markov random field, graph cuts, SDF

1. Introduction

With the development of hardware and computer graphics,
3D Mesh segmentation has attracted many research works.
Segmenting a complex 3D mesh into simpler sub-parts has
become an important issue and challenging research. Ap-
proaches for 3D mesh segmentation can be distinguished
into geometry based and semantic oriented [1]. In the for-
mer, the goal is to identify parts of the object that are ho-
mogeneous with respect to a criterion based on geomet-
ric properties. They usually identify homogeneous patches
by using clustering techniques, such as region growing, it-
erative clustering or hierarchical clustering [2]. Geometry
based approaches segment the 3D mesh into patches of ho-
mogeneous geometric properties and are typically used as
pre-process for other geometry processing tasks. Curvature
information is exploited by many works in this category.
The actual principal curvatures and directions [3] are used
to improve the segmentation results. In the latter, the goal
is to identify parts of the object that are meaningful under
some semantic or perceptive criteria. Many of these seman-
tic oriented approaches introduce a bias which is assumed to
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help the segmentation algorithm to provide significant seg-
mentations. Some examples of bias are feature points [4]
and shape diameter function (SDF) [5].

Many research topics in digital image processing, such
as image segmentation, image restoration, and image de-
noising, can be defined as a labeling problem. Any labeling
problem can be regarded as a random field and each initial
element is associated with a random variable [6]. There is
a equivalence relation between labeling problem and ran-
dom field. Therefore, solving a random field can be the
same as solving a labeling problem. Markov Random Field
(MRF) can be used to state and analysis the spatial or tem-
poral properties of physical phenomenon. It provides a con-
venient and consistent way of modeling context-dependent
entities and correlated features. A lot of approaches in 3D
mesh segmentation have been made in the last few years. To
our knowledge, only a few research works have used MRF
model for 3D mesh processing: surface deformation [7],
mesh smoothing [8]. However, only a few papers investi-
gate random field model for mesh segmentation. Lavoué
used MRF model to cluster the vertices with the roughness
feature first, and then used the region growing method to
segment the mesh [9]. Zouhar addressed the problem of 3D
mesh segmentation for categories of objects and modeled
the label distribution using Conditional Random Field to en-
sure semantic consistency in segmentation [10].

Inspired by their previous works, according to the
MRF′s theory, 3D mesh segmentation can be implemented
with a labeling problem equivalent to MRF. We can in-
troduce some priori information into the MRF, such as the
features of segmentation boundary in 3D mesh. In this pa-
per, we regard a mesh segmentation problem as a labeling
problem whose solution is a set of labels assigned to faces,
vertices or edges of the mesh according to the correlated
features (e.g. SDF [5] etc) and the connectivity of the mesh.
The SDF of faces is used as the correlated feature in our
schema. To find the optimal label configuration, we propose
a new mesh segmentation model based on MRF theory and
Graph cuts algorithm. Experimental results show that our
proposed schema is very effective in 3D mesh segmentation
and over segmentation is also avoided.

2. Definition of Mesh Segmentation

A labeling problem is specified in term of a set of sites and a
set of labels. A site often represents a point or a region in the
Euclidean space such as a vertex, an edge, or a face of the
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mesh, and a label set can be categorized as being continuous
or discrete. We use the discrete case of a label set for mesh
segmentation in this paper.

Let a tuple M = {V, E,T } be a 3D mesh M with ver-
tices V = {vi|vi ∈ R3, 1 ≤ i ≤ n}, edges E = {ei j =

(i, j)|vi, v j ∈ V, i � j}, and faces which are usually triangles
T = {ti j = (i, j, k)|vi, v j, vk ∈ V, i � j, j � k, k � i} [2]. Sup-
posed that S = {1, 2, 3, · · · ,m} index a discrete set of sites,
in which 1, 2, 3, · · · ,m are indices, L = {1, 2, · · · ,K} be a set
of K labels. Then mesh segmentation can be regarded as the
process to assign a label fi ∈ L to the site i ∈ S . The set
f = { f1, f2, · · · , fm} is called a labeling or a configuration (in
random field theory) of the sites indexed S in terms of the
labels in L, and the set F = L×L×· · ·×L is called configura-
tion space which is the set of all possible configurations. A
configuration f inF segments the mesh model into different
components. Specially, in some cases two of these compo-
nents might be assigned the same label, but are disjoint in
spatial.

Because each site (either a vertex, edge or face) is as-
signed a unique label in mesh segmentation, the assigned
process fi = f (i) can be regarded as a mapping from S to
L, i.e. f : S → L, and f (S ) is a configuration in F. In this
paper, the mesh segmentation is defined as follows:
Definition 1: Let M = {V, E,T } be a 3D mesh model, S =
{1, 2, 3, · · · ,m} be the set of the either indices of vertices,
edges or faces, and L = {1, 2, · · · ,K} be the set of labels.
A segmentation of M is a configuration in F obtained by
f : S → L.

To evaluate the configurations f ∈ F, we define an en-
ergy function of f as E( f ) : F → R. Then we deem a mesh
segmentation problem as an optimal problem in the follow-
ing manner:
Definition 2: Given a 3D mesh model M = {V, E,T }, a set of
sites S = {1, 2, 3, · · · ,m} and a set of labels L = {1, 2, · · · ,K},
then mesh segmentation can be viewed as the optimization
problem finding out a configuration f ∈ F to minimize (or
maximize) the energy function E( f ).

3. MRF-Based Segmentation Model

3.1 Algorithm Overview

As the sites of a 3D mesh model are spatial dependent, if
only the feature information is considered, the segmenta-
tion induced by the configuration may be noisy and over-
segmentation. Previous research shows that the edge with
a concave dihedral angle across it is a better candidate for
the boundary between two components. Therefore, we must
take into account some geometric constraints in our mesh
segmentation model, including feature and spatial depen-
dency, smoothness of the boundaries between components.

Here, we summarize the procedure of the algorithm as
Fig. 1 in order to more comprehensively understand it, and
we focus on the situation of S = T .

Fig. 1 Workflow of our proposed shcema.

3.2 Higher-Level Distribution

To express the spatial dependencies between sites in S of
the mesh M, we build the dual graph G of M by representing
each site in S by a node in G and defining the edges in G by
adjacency relation in M of the sites of S like in [2].

Then we define the neighborhood system on the graph
G: the neighborhood of site (i.e. node) i of is Ni =

{ j|i, j is connected by an edge in G}, and the spatial de-
pendencies between sites can be express as follow: site i is
depend on site j in spatial if site j is a neighbor of site i.
This neighborhood system defines a set of cliques, in which
a clique is a fully connected sub graph.

The higher-level distribution determines the prior infor-
mation of a configuration of the random field on the spatial
dependencies between sites through the distribution of the
configuration P( f ). According to the Hamersley-Clifford
theorem [11], P( f ) is a Gibbs distribution:

P( f ) =
1
Z

exp(−U( f )) (1)

where U( f ) =
∑

c∈C Vc( f ) is a energy function defined as the
sum of energy potentials function over all possible cliques
C, Vc( f ) is the energy potential function for the configura-
tion f define on spatial dependencies in the clique c, and
Z =

∑
f e−U( f ) is a normalization constant.

In our case, we use potts model to define the energy
potential functions V(i, j)( f ) on 2-site cliques (i.e. edges in
the graph G):

V(i, j)( f ) =

{
1, i f fi � f j

0, else
(2)

where {i, j} is an edge in the graph G. And define the energy
potential functions on other cliques equal to constant zero.

When the set of sites S = T , we can inject the prior
information about smoothness of boundaries by defining a
cost function for all edges in the mesh M (or a weight func-
tion for all edges in the graph G). Since the edge with a
concave dihedral angle is better for a boundary, given an
edge {i, j}, and θ{i, j}, the angle between the normal vectors
of the two faces which are adjacent to the edge {i, j}, we can
define the cost function to be: Cost(i, j) = ln(αθ{i, j}

π
), where

α = 1 for the concave dihedral angle, and α equal to a small
positive constant for the convex dihedral angle.

Then we can modify the energy potential functions
V(i, j)( f ) as:

V(i, j)( f ) =

{
Cost(i, j), i f fi � f j

0, else
(3)
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Now, we can get the prior information of configura-

tions: P( f ) = 1
Z exp

(
−β ∗ ∑

(i, j)∈C
V(i, j)( f )

)
, where β is an in-

teraction coefficient controlling the weight of the prior in-
formation.

3.3 Lower-Level Distribution

To assign K labels to the set of sites S based on the cor-
related feature values, we fit K Gaussian to the histogram
of feature values using Gaussian mixture model. First, we
denote the random variable whose realization is the fea-
ture value of site i of the mesh as xi, denote the family of
these random variables on S as X = {x1,x2, · · · ,xN}, and de-
note the joint event {x1 = x1, x2 = x2, · · · , xN = xN} as
x = {x1, x2, · · · , xN}. Then according to the GMM, we can
express the density p(xi) as follow:

p(xi) =
K∑

k=1

πkN(xi|μk, σk) (4)

where, μk is the mean value, σk is the standard deviation and
πk is the weight of the k-th Gaussian, K is the number of
labels, and N(xi|μk, σk) is the probability of xi conditioned
on label k:

N(xi|μk, σk) =
1√

2πσk

exp

⎛⎜⎜⎜⎜⎝− (xi − μk)2

2σ2
k

⎞⎟⎟⎟⎟⎠ (5)

And the likelihood function for the sites set S is

N∏
i=1

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

πkN(xi|μk, σk)

⎞⎟⎟⎟⎟⎟⎠ (6)

The probability of that assigned a label to a site can
be described as follow: p(xi| fi) obey a normal distribution
N(μ, σ), and each label k ∈ L = {1, 2, · · · ,K} is represented
by its mean value μk and standard deviation σk:

N(μk, σk) =
1√

2πσk

exp

⎛⎜⎜⎜⎜⎝− (x − μk)2

2σ2
k

⎞⎟⎟⎟⎟⎠ (7)

We use EM (Expectation-Maximization) algorithm to
estimate the weights π = {π1, · · · ,πK}, the mean values μ =
{μ1, · · · μK}, and the standard deviations σ = {σ1, · · ·σK} by
maximizing the log of likelihood function 6

ln p(X|μσ) =
N∑

i=1

ln

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

πkN(xi|μk, σk)

⎞⎟⎟⎟⎟⎟⎠ (8)

Then we can get the density of X conditioned on the
configuration f :

p(X| f ) =
N∏

i=1

p(xi| fi) =
N∏

i=1

N(xi|μk, σk) (9)

3.4 Energy Function

In conclusion, given the feature values of all sites, our goal
is to find the most probable configuration f ∗ such that the
posterior probability P( f ∗|x) is max. As the feature val-
ues of all sites is given, p(x) is a constant. According to
the Bayesian rule: p( f |x) = p( f )p(x| f )

p(x) , we can express f ∗

as : f ∗ = arg max
f

(p( f )p(x| f )). Then, we denote U( f |x)

as follow: U( f |x) = βU( f ) + U(x| f ), where, U(x| f ) =

− N∑
i=1

(
ln

(√
2πσ fi

)
+

(xi−μ fi )
2

2σ2
fi

)
.

Now the posterior probability is p( f |x)∞ exp(−U( f |x)).
Then we define the energy function E( f ) as E( f ) =
U( f |x) = βU( f ) + U(x| f ), and f ∗ as f ∗ = arg min

f
(E( f )).

According to [13], we can use graph cuts algorithm to min-
imize E( f ).

4. Experimental Results and Analysis

4.1 Run Time Analysis of our Segmentation

In order to demonstrate the efficiency of our algorithm for
3D mesh segmentation based on MRF and graph cuts, we
conduct experiments to segment different 3D meshes with
different numbers of faces and for different numbers of la-
bels, according to their SDF [5]. Table 1 detail the process-
ing times for the different 3D meshes which are presented
in Fig. 2, the first row are original 3D mesh models, and the
second row are the result of our 3D mesh segmentation al-
gorithm do with these models.

4.2 Comparison with K-Means Based Segmentation

We have also compared our 3D mesh segmentation algo-

Table 1 Processing time of our Segmentation algorithm based on MRF.

Name Faces Num Cluster Num Time EM(s) Time GC(s)
cow 5804 3 0.1 0.05

dinopet 8996 5 0.21 0.20
camel 19536 4 0.45 0.34

armadillo 52000 5 6.03 1.13

Fig. 2 Original 3D mesh model and the result of our algorithm with pa-
rameters: (a) β = 7.0; (b) β = 8.0; (c) β = 15.0; (d) β = 10.0.
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Fig. 3 Compare with K-Means algorithm.

Fig. 4 Comparison with HFP segmentation algorithm.

rithm based on MRF with the algorithm based on K-Means.
Figure 3 illustrates the clustering of the dinopet model (4 K
vertices) according to its SDF, into 3 clusters. The noise
introduced by the K-Means classification has been almost
entirely removed by using our 3D mesh segmentation algo-
rithm based on MRF.

4.3 Comparison with HFP Segmentation

To further illustrate the effectiveness of our schema, we
compare it with the algorithm: Hierarchical mesh segmen-
tation based on Fitting Primitives (HFP) [15]. The HFP al-
gorithm implemented by the author are directly used to ob-
tain the segmentation results and compare with our schema
in this paper. Here, we configure three fitting primitives
with plane, cylinder and sphere together. Obviously, for
the two objects dinopet and horse, HFP-based segmentation
can not provide better geometric and semantic segmenta-
tion. Different from HFP, as shown in Fig. 4, our schema
(MRF) with different interactive control parameters β pro-
vides more convenient and different perceptual and geomet-
ric results. We can select different parameters β to achieve
different segmentation results. From the overall segmenta-
tion effect, our segmentation can present a better semantic
and geometric results than HFP. Therefore, MRF based seg-
mentation can give better segmentation results than HFP al-
gorithm.

5. Conclusions and Future Research

This paper presents a definition of mesh segmentation and
a new 3D mesh segmentation algorithm based on Markov
Random Fields. The algorithm makes it possible to com-
bine both attribute values and spatial constraints in the la-
beling. In a global optimization process, two levels Gibbs

Random Field are used to model the geometric information
and the topology information of 3D mesh. Experiment re-
sults demonstrate the efficiency and effectiveness of our al-
gorithm. We can also select different attribution of faces,
edges or vertices to test our MRF-based segmentation model
in the future.
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