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SUMMARY In this paper, a study on discrete-time coined quantum
walks on the line is presented. Clear mathematical foundations are still
lacking for this quantum walk model. As a step toward this objective, the
following question is being addressed: Given a graph, what is the proba-
bility that a quantum walk arrives at a given vertex after some number of
steps? This is a very natural question, and for random walks it can be an-
swered by several different combinatorial arguments. For quantum walks
this is a highly non-trivial task. Furthermore, this was only achieved before
for one specific coin operator (Hadamard operator) for walks on the line.
Even considering only walks on lines, generalizing these computations to
a general S U(2) coin operator is a complex task. The main contribution is
a closed-form formula for the amplitudes of the state of the walk (which
includes the question above) for a general symmetric S U(2) operator for
walks on the line. To this end, a coin operator with parameters that alters
the phase of the state of the walk is defined. Then, closed-form solutions
are computed by means of Fourier analysis and asymptotic approximation
methods. We also present some basic properties of the walk which can be
deducted using weak convergence theorems for quantum walks. In particu-
lar, the support of the induced probability distribution of the walk is calcu-
lated. Then, it is shown how changing the parameters in the coin operator
affects the resulting probability distribution.
key words: quantum computation, random walks, quantum walks, asymp-
totic approximation

1. Introduction

The design of quantum algorithms is nowadays one of the
major problems in the quantum computing community. The
strategies for writing classical algorithms as divide and con-
quer, dynamic programming, etc., are not easily adapted to
the quantum paradigm. Strategies for designing quantum al-
gorithms are phase amplification, phase estimation, to name
a few. As an example of the applications of these strate-
gies, Grover’s algorithm uses the amplitude amplification
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technique, and Shor’s algorithm relies in reductions to or-
der finding and phase estimation [1]. Therefore, it becomes
necessary the study of different approaches to improve the
efficiency of the search.

One of the emergent alternatives for the design of al-
gorithms are quantum walks, in direct analogy to random
walks in classical computing. Random walks showed to be a
successful tool for designing algorithms, and the same suc-
cess is expected in the quantum paradigm. Results in this
field showed that quantum walks can outperform its clas-
sical counterpart by exploiting quantum mechanical effects
such as interference and superposition, giving and expo-
nential speedup for certain types of graphs, and polynomial
speedup for some practical applications [2], [3].

There are two types of discrete-time quantum walks,
Quantum Markov Chains and Coined Quantum Walks. This
paper is about the latter, and from now on we will refer to
this model simply as quantum walk when is obvious from
the context.

The field of quantum walks is very recent, and still
lacks a solid mathematical foundation. Markov chain quan-
tum walks already started to build these foundations by es-
tablishing a direct connection to classical Markov chains
using algebraic techniques [4]. However, coined quantum
walks are not having the same luck, and it seems that math-
ematical techniques for random walks simply do not work.

1.1 Related Work

Coined Quantum Walks are defined by the application of
two unitary operators S and C, where C (coin operator)
decides which vertex to move onto, and S (shift operator)
performs the actual movement of the walk given the direc-
tion decided by C. Ambainis [2], Kempe [3] and Konno [5]
give good surveys of this model. There are several studies
of this walk for specific graphs. On the line, Ambainis et
al. [6] and Chandrashekar, Srikanth, and Laflamme [7] show
that the variance of the induced probability distribution has
a quadratic improvement over the classical walk (i.e. for t
steps, V = O(t2) and classically V = O(t)). Konno com-
puted the induced probability distribution using path inte-
grals [8] and via a weak limit theorem [9]. In the hyper-
cube, Kempe [10] shows that the hitting time from one cor-
ner to its opposite is exponentially faster, while Moore and
Russell [11] gives the same speed-up for the mixing time.
For practical applications there are algorithms for hyper-
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cubes and grids. For the hypercube, Shenvi et al. [12] gives
an algorithm for solving SAT with a quadratic improve-
ment, while Potoček et al. [13] gives an improvement of
the same algorithm on the success probability. For grids,
Ambainis et al. [14] show a quadratic speed-up and presents
a general framework for analyzing quantum walks. Also,
Ambainis [15] gives an optimal algorithm for element dis-
tinctness over the Jhonson graph with a quadratic speed-up.

Quantum walks on the line is probably the most studied
quantum walk model. Interest on this matter started in com-
puter science with Ambainis, Bach, Nayak, Vishwanath, and
Watrous [6], where notions of hitting and mixing times were
introduced. In the same piece of work, they computed a
closed-form formula for the induced probability distribution
of a Hadamard walk (i.e. a quantum walk with a Hadamard
operator as coin). Furthermore, their formula gives a com-
plete characterization of the amplitudes in the state of the
walk in the asymptotic limit.

It is known that the dynamics of the walk is controlled
by the coin operator [3]. Thus, depending on the application,
a good choice of the coin could make a great difference. This
motivated the study of quantum walks on the line moved by
a general S U(2) operator, which has four independent vari-
ables. However if we consider only the resulting probabil-
ity distribution, one variable is enough; i.e. any probability
distribution resulting from a quantum walk on the line can
be simulated by a general rotation around the z axis with
parameter θ. Nayak and Vishwanath [16] gave an intuitive
description of the probability distribution based on the sta-
tionary phase method without giving an explicit formula for
it, and without considering the amplitudes of the state of
the walk. Chandrashekar, Srikanth, and Laflamme [7] stud-
ied generalized walks using a S U(2) coin operation. They
present an approximate formula for the amplitudes of the
state of the walk. However, their results were based in nu-
merical experiments rather than a complete analytically de-
ducted formula. Grimmet, Janson, and Scudo [17] showed a
ballistic spreading of the walk and they gave an expression
for the limit distribution using weak convergence theorems.

1.2 Contributions

As a step toward finding mathematical foundations of quan-
tum walks, in this paper the following question is being
addressed: Given a graph, what is the probability that a
quantum walk arrives at a given vertex after some number
steps? This is a very natural question, and for random walks
it can be answered by several different combinatorial argu-
ments [18].

The main contribution of this paper is a closed-form
formula† for the question above for a general symmetric
S U(2) operator for walks on the line (Theorem 3). Further-
more, the formula characterizes the amplitudes of the state
of the walk in the asymptotic limit. In comparison to the pre-
vious works mentioned before (Nayak and Vishwanath [16],
Chandrashekar et al. [7]), the closed-form formulas derived
in this paper were analytically computed for the amplitudes

Table 1 Known results for different coins for walks on the line.

Coin Amplitudes of the state Probability distribution

Hadamard closed-form [16] closed-form [8], [16]
S U(2) numerical results [7] numerical results [7], closed-

form [16]
Symmetric
S U(2)

closed-form [this work] closed-form [this work]

U(2) explicit formula (not closed-
form) [8], [9]

explicit formula (not closed-
form) [9]

of the state of the walk (including the induced probabil-
ity distribution) for a symmetric S U(2) operator (Table 1
shows more clearly these differences). Also, in a seminal
work, Konno [8], [9] gave explicit expressions for the ampli-
tudes of a U(2) coin, using a discrete path integral method
in a clever way. However, these expressions were not in
closed-form, as we claim in this work. Furthermore, we
show how to compute the errors in the asymptotic approxi-
mation, something that was missing from previous works in
the literature. To this end, in Sect. 2 a coin operator with pa-
rameters that alters the phase of the state of the walk on the
line is proposed. The coin operator is inspired by the quan-
tum algorithm for SAT proposed by Hogg [20]. In that work,
in order to implement heuristics for quantum algorithms, the
author proposed to add parameters to the unitary operation
of a search algorithm. This way, the situation is similar to
classical algorithms where a tunable set of parameters are
adjusted according to the problem. After defining the coin
operation, we compute the spectrum of the unitary evolu-
tion operator of the walk using Fourier analysis. In Sect. 3,
after having obtained the eigenspectrum of the walk, we ap-
ply the inverse Fourier transform to obtain the state of the
walk in terms of Fourier coefficients. To compute a closed-
form solution in the asymptotic limit from the Fourier co-
efficients, we applied the Euler-Maclaurin formula [21] and
the steepest descent method for asymptotic approximation
of integrals [22]. This method is in fact stronger than the sta-
tionary point method from [16] and [23], where the authors
use it to study the asymptotics of the resulting probability
distribution from coin operators with real eigenvalues. With
the steepest descent method we can compute the amplitudes
of the state of the walk resulting from any complex unitary
operator. In Sect. 4, we compute the error terms for the
approximations made, which can be derived from the em-
ployed methods. Finally, some basic properties of the walk
are examined by means of weak convergence theorems [17].
The support of the induced probability distribution of the
walk is computed, and then we argue how changing the pa-
rameters in the coin operator affects the resulting probability
distribution.

2. Quantum Walks with Phase Parameters

In this section, a coin operation with parameters is proposed.

†A quantity f (n) is in closed-form if we can compute it us-
ing at most a fixed number of “well-known” standard operations,
independent of n [19].
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Then, using Fourier analysis, integral-forms for the ampli-
tudes of the walk on the line are computed. Later in Sect. 3,
it is shown how to solve these integrals and derive a closed-
form in the asymptotic limit.

2.1 Walks on the Line with Phase Parameters

Here we define quantum walks on the line, and introduce the
coin operator used in this research.

Definition 1: Let Hc = span{|←〉 , |→〉} and Hs =

span{|n〉 : n ∈ Z}. The state of the walk |Ψt〉 = ∑
n |ψt(n)〉

at time t is defined over the joint space Hc ⊗ Hs with ba-
sis states {|d, n〉 : |d〉 ∈ Hc, |n〉 ∈ Hs}, where |ψt(n)〉 =∑

d α
d
t (n)|d, n〉 and αd

t (n) is the amplitude at time t in direc-
tion d and position n. Also

∑
d,n |αd

t (n)|2 = 1.

For the analysis of the walk on the line we consider
the projection at time t onto position n as a 2 dimensional
vector, i.e.[

α←t (n)
α→t (n)

]

with α←t (n) and α→t (n) representing the amplitude of the
walker at position n at time t going left and right respec-
tively. The probability of being at position n at time t is thus
given by

Pt(n) = |〈ψt(n)|ψt(n)〉|2 = |α←t (n)|2 + |α→t (n)|2. (1)

Throughout the paper, the initial condition is considered as
|ψ0(0)〉 = [α←0 , α

→
0 ]T and |ψ0(n)〉 = [0, 0]T for n � 0, with

|α←0 |2 + |α→0 |2 = 1.
The quantum walk is defined by the way it moves at

each time step. This is captured by the following definition.

Definition 2: The time evolution of the walk is given by

|Ψt〉 = U |Ψt−1〉 , or equivalently, |Ψt〉 = Ut |Ψ0〉 ,
where U = S (C ⊗ I) is a unitary operator defined on the
Hilbert space of the whole systemHc ⊗Hs, I is the identity
matrix acting onHs, C is the coin operator acting solely on
Hc, and S is the shift operator in charge of performing the
walk.

According to this definition, the walk first choses a di-
rection of movement using C, and then moves with operator
S . In order to move, operator S needs to be conditioned on
the coin space in the following way,

S =
∑

n

|←〉 〈←|⊗|n − 1〉 〈n|+|→〉 〈→|⊗|n + 1〉 〈n| . (2)

Definition 3: The coin operator is defined by C = HT H,
where H is the Hadamard operator† in charge of mixing am-
plitudes among states, and T = eiπτ1 | ←〉〈← |+eiπτ2 | →〉〈→ |
is the diagonal phase adjustments with τ1, τ2 ∈ [0, 1].

Let a ≡ eiπτ1 + eiπτ2 and b ≡ eiπτ1 − eiπτ2 . Then, the
resulting operator can be written as

C =
1
2

[
a b
b a

]
,

which have the following effect onHC

| ←〉 −→ (1/2)a| ←〉 + (1/2)b| →〉,
| →〉 −→ (1/2)b| ←〉 + (1/2)a| →〉.
Figure 1 shows the dynamics of a walk using C as coin.

For different values of the phase parameters τ1 and τ2 the
variance of the induced probability distribution changes.

The state of the walk at time t can be related to the state
at time t + 1 according to the following lemma.

Lemma 1:

|ψt+1(n)〉 = M+|ψt(n − 1)〉 + M−|ψt(n + 1)〉 (3)

where

M+ =

[
0 0

(1/2)b (1/2)a

]
and M− =

[
(1/2)a (1/2)b

0 0

]
.

Proof. Let |Ψt〉 = ∑
n α
←
t (n)| ←, n〉 + α→t (n)| →, n〉 be the

state at time t. Also denote the amplitudes after applying
operators C and S as

(C ⊗ I) |Ψt〉 =
∑

n

α←t (n)′| ←, n〉 + α→t (n)′| →, n〉,

S (C ⊗ I)|Ψt〉 =
∑

n

α←t (n)′′| ←, n〉 + α→t (n)′′| →, n〉.

Now let |Ψt+1〉 =
[
α←t+1(n)
α→t+1(n)

]
be the state at time t + 1. The

amplitudes of this state are related to the amplitudes of |Ψt〉
in the following way[

α←t+1(n)
α→t+1(n)

]
=

[
α←t (n)′′
α→t (n)′′

]
=

[
α←t (n + 1)′
α→t (n − 1)′

]
.

The contributions to the amplitudes of state |Ψt+1〉
come from position n+1 for the upper component, and from
n − 1 for the lower component by definition of operator S .
The amplitudes corresponding to the state after applying C
are computed as follows:

C|ψt(n + 1)〉
=

[
(1/2)aα←t (n + 1) + (1/2)bα→t (n + 1)
(1/2)bα←t (n + 1) + (1/2)aα→t (n + 1)

]

=

[
α←t (n + 1)′
α→t (n + 1)′

]
,

and the same for C |ψt(n − 1)〉. Thus

|ψt+1(n)〉 =
[
(1/2)aα←t (n + 1) + (1/2)bα→t (n + 1)
(1/2)bα←t (n − 1) + (1/2)aα→t (n − 1)

]
= M+|ψt(n − 1)〉 + M−|ψt(n + 1)〉,

where

M+ =

[
0 0

(1/2)b (1/2)a

]
and M− =

[
(1/2)a (1/2)b

0 0

]
.

�

†The Hadamard operator is defined as H = 1√
2

[
1 1
1 −1

]
.
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Fig. 1 Quantum walk on the line with different values of phase parameters. The variance of the walk
changes depending on τ1 and τ2. Since the probabilities at odd positions are 0, those points are not
plotted.

2.2 Analysis

One approach to the analysis of quantum processes is the
path integral approach. This method explicitly computes
the amplitude of a certain state as the sum over all possible
paths leading to that state [6], [8]. Solving a path integral is
known to be hard, and we avoid this by following the steps
of [6], [10], [11] known as the Schrödinger approach. Given
the translational invariance of the walk, it has a simple de-
scription in Fourier space [6]. The Fourier transform of the
walk is analyzed and then transformed back to the original
domain.

The quantum Fourier transform [1] of a wave equation
is defined by∣∣∣ψ̃t(k)

〉
=

∑
n

eikn |ψt(n)〉 , (4)

and the corresponding inverse Fourier transform is then

|ψt(n)〉 = 1
2π

∫ π

−π
e−ikn

∣∣∣ψ̃t(k)
〉

dk. (5)

Applying (4) to (3) we get∣∣∣ψ̃t+1(k)
〉
=

∑
n

eiknM+|ψt(n − 1)〉 + eiknM−|ψt(n + 1)〉

= eik M+
∑

n

eik(n−1) |ψt(n − 1)〉

+ e−ik M−
∑

n

eik(n+1) |ψt(n + 1)〉

= eik M+
∣∣∣ψ̃t(k)

〉
+ e−ik M−

∣∣∣ψ̃t(k)
〉

=
(
eik M+ + e−ik M−

) ∣∣∣ψ̃t(k)
〉
.

Then, the time-evolution in Fourier space is given by∣∣∣ψ̃t+1(k)
〉
= Mk

∣∣∣ψ̃t(k)
〉

(6)

where Mk = eik M+ + e−ik M−. In matrix form

Mk =
1
2

[
ae−ik be−ik

beik aeik

]
. (7)

In general, the state at time t is given by the t-th power
of operator Mk applied to the initial state∣∣∣ψ̃t(k)

〉
= Mt

k

∣∣∣ψ̃0(k)
〉
. (8)

The following lemma shows the eigenspectrum of op-
erator Mk.

Lemma 2: Let Mk be a unitary matrix as in (7). The eigen-
values and eigenvectors of Mk are

λ j(k) = 1/2
(
a cos k ±

√
b2 − a2 sin2 k

)
and

|λ j(k)〉 = Nj(k)

[
−ia sin k ±

√
b2 − a2 sin2 k

beik

]

respectively, with j = 1, 2. Furthermore, Nj(k) is a normal-
ization coefficient given by

Nj(k) =

(∣∣∣∣∣−ai sin k ±
√

b2 − a2 sin2 k
∣∣∣∣∣2 + |b|2

)−1/2

.

Proof. The characteristic polynomial of Mk is determined
by det(Mk − λI) = 0. Then

det(Mk − λI) = λ2 − aλ cos k +
a2

4
− b2

4
.

Solving the equation gives the eigenvalues

λ j =
a cos k ±

√
b2 − a2 sin2 k
2

,

for j = 1, 2. In order to find the eigenvectors, we solve the
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following system of linear equations

(Mk − λ jI)

[
x j

y j

]
=

⎡⎢⎢⎢⎢⎣x j( a
2 e−ik − λ) + y j

b
2 e−ik

x j
b
2 eik + y j( a

2 eik − λ j)

⎤⎥⎥⎥⎥⎦ =
[
0
0

]
.

By letting y j = 1, we get x j = (−a + 2λ je−ik)/b. Given that
any multiple of this vector is still an eigenvector, multiply y j

and x j by beik and obtain

beik

[
x j

y j

]
=

[−aeik + 2λ j

beik

]
=

[
−ai sin k±

√
b2 − a2 sin2 k

beik

]
.

Then Nj(k) is 1 divided by the �2-norm of this vector, and
multiply the eigenvectors by Nj(k) to normalize them. �

Diagonalize (7) to obtain

Mt
k =

∑
j∈{1,2}

λ j(k)t |λ j(k)〉〈λ j(k)|,

where λ1(k) and λ2(k) are the eigenvalues with correspond-
ing eigenvectors |λ1(k)〉 and |λ2(k)〉. Now apply the diag-
onalized operator to the time evolution (8) and obtain the
following form

|ψ̃t(k)〉 =
∑

j

(
λ j(k)t

∣∣∣λ j(k)
〉 〈
λ j(k)

∣∣∣) ∣∣∣ψ̃0(k)
〉

=
∑

j

〈
λ j(k)

∣∣∣ ψ̃0(k)
〉
λ j(k)t

∣∣∣λ j(k)
〉
. (9)

The initial state is [α←0 , α
→
0 ]T , and in Fourier space be-

comes |ψ̃0(k)〉 = [α←0 , α
→
0 ]T for all k ∈ [−π, π]. To write

Eq. (9) in a simpler way, define

ξ j(k) =
〈
λ j(k)

∣∣∣ ψ̃0(k)
〉

= α←0 Nj(k)
(
−ia sin k ±

√
b2 − a2 sin2 k

)∗
+ α→0 Nj(k)b∗e−ik, (10)

where ∗ is the complex conjugate. This can be expressed in
matrix form as[

ξ1(k)
ξ2(k)

]
=

⎡⎢⎢⎢⎢⎢⎣(−ia sin k +
√

b2 − a2 sin2 k)∗ b∗e−ikN1(k)

(−ia sin k −
√

b2 − a2 sin2 k)∗ b∗e−ikN2(k)

⎤⎥⎥⎥⎥⎥⎦
×

[
α←0
α→0

]
.

The state of the walk at time t can be expressed by∣∣∣ψ̃t(k)
〉
= Mt

k

∣∣∣ψ̃0(k)
〉
=

∑
j

λt
j(k)ξ j(k)

∣∣∣λ j(k)
〉
. (11)

Let α̃←t (k) and α̃→t (k) be the amplitudes of the state
∣∣∣ψ̃t(k)

〉
in Fourier space going left and right respectively. Then, by
Eq. (11) and Lemma 2 these amplitudes are

α̃←t (k) =
∑

j

λ j(k)tξ j(k)Nj(k)

×
(
−ia sin k ±

√
b2 − a2 sin2 k

)
(12)

and

α̃→t (k) =
∑

j

λ j(k)tξ j(k)Nj(k)beik. (13)

The final step is to reverse back to the original domain
of the walk. This is done by applying (5) to (12) and (13),

α←t (n) =
1

2π

∫ π

−π

∑
j

ξ j(k)Nj(k)λt
je
−ikn

×
(
−ia sin k ±

√
b2 − a2 sin2 k

)
dk (14)

and

α→t (n) =
1

2π

∫ π

−π

∑
j

ξ j(k)Nj(k)beikλt
je
−ikndk, (15)

Note that a discrete walk is being approximated by an in-
tegral. The Euler-Maclaurin summation formula† gives the
error term for these approximations.

Equations (14) and (15) can be solved by the steepest
descent method from complex analysis, obtaining this way
closed-form solutions. This is done in the next section.

3. Asymptotic Approximation

In this section it is shown how to find close-form solutions to
the integrals (14) and (15). First, in Sect. 3.1 the technique
used in this research known as the steepest descent method
is briefly explained. Then, in Sect. 3.2 the same technique
is applied to the integral-forms of the walk (Eqs. (14) and
(15)).

3.1 Steepest Descent Method

Here one of the most powerful methods for asymptotic ap-
proximation of integrals is briefly explained. The method is
known as Steepest Descent Approximation or Saddle Point
Method. For a deeper understanding on this technique refer
to [22].

The method of steepest descent is an asymptotic ap-
proximation method for certain types of exponential inte-
grals of the form

It =

∫
C
g(z)et f (z)dz (16)

where C is a contour in the complex z-plane and g(z) and
f (z) are complex-valued analytic functions. The parameter
t is taken to be real and positive, and we are interested in the
asymptotic behavior of (16) as t → ∞ with t > 0. Laplace’s
and stationary phase methods are just instances of this gen-
eral procedure. The integral is dominated by the highest
stationary points of f , i.e. if f (z) = u(x, y) + iv(x, y) with
z = x + iy we expect the integral to be dominated by points

†∑b
n=a f (n) =

∫ b

a
f (x)dx + f (a)+ f (b)

2 +
∑∞

k=1
B2k

(2k)! ( f (2k−1)(b) −
f (2k−1)(a)), where each Bi is a Bernoulli number [21].
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where u is maximum and v is constant. The only possible
extrema for f are the saddle points, where f ′(z) = 0. Since
f is analytic, u and v satisfy the Cauchy-Riemann equation

∂2u
∂x2
+
∂2u
∂y2
= 0,

and from the maximum principle [22] we have that if ∂2u
∂x2 > 0

then ∂2u
∂y2 < 0 or vice versa. If z0 is the saddle point, then

we can deform the contour to C′ (by Cauchy’s theorem) so
that it passes through z0. From the Taylor expansion of f (z)
about z0 we have

f (z) ∼ f (z0) +
1
2

f ′′(z0)(z − z0)2,

where ∼ means “is close up to additive error to”. Then
g(z) ∼ g(z0), because for large t the main contribution to
the integral comes from f . Then It becomes

It ∼ g(z0)et f (z0)
∫

C′
e

1
2 t f ′′(z0)(z−z0)2

dz.

Setting

z − z0 = reiφ and f ′′(z0) =
∣∣∣ f ′′(z0)

∣∣∣ eiθ

it can be seen that

It ∼ g(z0)et f (z0)
∫

C′
exp

(
1
2

t
∣∣∣ f ′′(z0)

∣∣∣ eiθ+2iφr2

)
eiφdr.

Note that φ is the angle of inclination of the oriented
tangent to C at point z0, i.e. φ = arg(z0) on C [22]. Choosing
θ + 2φ = π, i.e., φ = (π − θ)/2 then

It ∼ g(z0)et f (z0)eiφ
∫

C′
e−

1
2 t| f ′′(z0)|r2

dr

and solving this as a Gaussian integral† yields

It = g(z0)et f (z0)eiφ

(
2π

t | f ′′(z0)|
)1/2

+ O(t−1). (17)

The deformation of the contour chosen to make the in-
tegration Gaussian corresponds to the steepest descent path
from the saddle point, hence the name of the method [22].
Taking this path is not essential, other methods like station-
ary point and Perron’s method take another path with similar
results [22].

3.2 Asymptotic Approximation of the Walk on the Line

3.2.1 Left Amplitude

First the integral-form corresponding to Eq. (14) is solved.
First, put the integral in the form of Eq. (16) by setting n =
γt (γ = n/t) and writing

α←t (γt) =
1

2π

∫ π

−π

∑
j

g j(k)et f j(k) (18)

where

f j(k) = log λ j(k) − ikγ, (19)

g j(k) = Nj(k)ξ j(k)
(
−ia sin k ±

√
b2 − a2 sin2 k

)
. (20)

The saddle points θ j of f j(k) are defined by the equa-
tion

f ′j (θ j) = −iγ ∓ a sin θ j√
b2 − a2 sin2 θ j

= 0.

This equation has a unique solution at

θ j = ± arcsin

⎛⎜⎜⎜⎜⎜⎝ bγ

a
√
γ2 − 1

⎞⎟⎟⎟⎟⎟⎠ . (21)

Note that |λ j(θ j)| = 1. Moreover

f j(θ j) = −iγθ j + log

⎛⎜⎜⎜⎜⎜⎝±b +
√

a2(1 − γ2) + b2γ2

2
√

1 − γ2

⎞⎟⎟⎟⎟⎟⎠ (22)

and

f ′′j (θ j) =
±(γ2 − 1)

√
b2γ2 + a2(1 − γ2)

b
. (23)

Another solution to the equation f ′(θ j) = 0 is at −π−θ j

in the interval [−π, π]. However, since f ′′(θ j) and f ′′(−π −
θ j) have similar behavior, the computations do not change.

The contour is the real line in [−π, π] and has no imag-
inary part, therefore φ = arg θ j = 0 in Eq. (17).

Now using (17), the asymptotic expansion can be ob-
tained

α←t (γt) =
1

2π

∑
j

g j(θ j)e
t f j(θ j)

⎛⎜⎜⎜⎜⎜⎝ 2π
t| f ′′j (θ j)|

⎞⎟⎟⎟⎟⎟⎠
1/2

+ O(t−1)

=
1

2π

∑
j

N j(θ j)ξ j(θ j)

⎡⎢⎢⎢⎢⎢⎣±b(1 − γ)√
1 − γ2

⎤⎥⎥⎥⎥⎥⎦
×

⎛⎜⎜⎜⎜⎜⎝±b +
√

a2(1 − γ2) + b2γ2

2
√

1 − γ2

⎞⎟⎟⎟⎟⎟⎠
t

e−iγθ j t

×
⎛⎜⎜⎜⎜⎜⎝ 2π|b|

t|γ2 − 1|√b2γ2 + a2(1 − γ2)

⎞⎟⎟⎟⎟⎟⎠
1/2

+ O(t−1).

3.2.2 Right Amplitude

Next is the solution of Eq. (15). Following the same steps as
above, write the integral as

α→t (γt) =
1

2π

∫ π

−π

∑
j

h j(k)et f j(k), (24)

where f j is defined in the same way as in (19), and
†The Gaussian integral or probability integral is given by∫ ∞

−∞ e−x2
dx =

√
π.
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h j(k) = Nj(k)ξ j(k)beik. (25)

Reusing the previous calculations for f j (Eqs. (21), (22)
and (23)), the asymptotic expansion is

α→t (γt) =
1

2π

∑
j

h j(θ j)e
t f j(θ j)

⎛⎜⎜⎜⎜⎜⎝ 2π
t| f ′′j (θ j)|

⎞⎟⎟⎟⎟⎟⎠
1/2

+ O(t−1)

=
1

2π

∑
j

N j(θ j)ξ j(θ j)beiθ j

×
⎛⎜⎜⎜⎜⎜⎝±b +

√
a2(1 − γ2) + b2γ2

2
√

1 − γ2

⎞⎟⎟⎟⎟⎟⎠
t

e−iγθ j t

×
⎛⎜⎜⎜⎜⎜⎝ 2π|b|

t|γ2 − 1|√b2γ2 + a2(1 − γ2)|

⎞⎟⎟⎟⎟⎟⎠
1/2

+ O(t−1)

4. Closed-Form Formulas and Convergence

4.1 Formulas

Approximate closed-forms for the amplitudes of the state of
the walk on the line were given. Now the main contribution
of this paper can be stated formally.

Theorem 3: Let γ = n/t and a ≡ eiπτ1 + eiπτ2 , b ≡ eiπτ1 −
eiπτ2 . If the state of the walk is

|Ψt〉 =
∑

n

|ψt(n)〉 with |ψt(n)〉 =
[
α←t (n)
α→t (n)

]

then,

α←t (γt) ∼ 1
2π

∑
j

N jξ jA j

⎡⎢⎢⎢⎢⎢⎣±b(1 − γ)√
1 − γ2

⎤⎥⎥⎥⎥⎥⎦ ,
α→t (γt) ∼ 1

2π

∑
j

N jξ jA jbeiθ j ,

where the terms Aj, Nj, ξ j and θ j are given by

Aj =

⎛⎜⎜⎜⎜⎜⎝±b +
√

a2(1 − γ2) + b2γ2

2
√

1 − γ2

⎞⎟⎟⎟⎟⎟⎠
t

×
⎛⎜⎜⎜⎜⎜⎝ 2π|b|

t|γ2 − 1|√b2γ2 + a2(1 − γ2)

⎞⎟⎟⎟⎟⎟⎠
1/2

e−iγθ j t,

Nj =

(∣∣∣∣∣−ia sin θ j ±
√

b2 − a2 sin2 θ j

∣∣∣∣∣2 + |b|2
)−1/2

,

ξ j = α
←
0 (0)

(
−ia sin θ j ±

√
b2 − a2 sin2 θ j

)∗
+ α→0 (0)b∗e−iθ j ,

sin θ j = ±
⎛⎜⎜⎜⎜⎜⎝ bγ

a
√
γ2 − 1

⎞⎟⎟⎟⎟⎟⎠ ,
with α←0 (0) and α→0 (0) as the initial amplitudes of the walk
for n = 0, and α←0 (n) = α→0 (n) = 0 for n � 0.

In a seminal work, Konno [8], [9] gave explicit expres-
sions for the amplitudes of a U(2) coin using a discrete path
integral method. However, these expressions were not in
closed-form, as it is claimed in this work.

In order to assess the quality of the approximation,
Figs. 2 and 3 show a comparison between the probability
distributions given by Theorem 3, and a numerical simula-
tion of walks that start with an equal superposition of direc-
tions for different values of the parameters. It can be seen
that the approximation gives some errors, but the asymptotic
agrees with the simulation. The figures show that Theorem 3
is close to the real values of the probability distribution, in
particular in the middle part of the plots.

The errors in the approximation made by Theorem 3
can be computed from two parts, the Euler-Maclaurin for-
mula and the steepest descent method. Denote these errors
by ε and ε respectively. Let Bi =

∑i
r=0

(
i
r

)
Bi−r be a Bernoulli

number [21], and let d ∈ {←,→}. Then, the error for αd
t (γt)

is
∑

j ε j,d + ε j,d, where

ε j,d =

∞∑
m=1

B2m

(2m)!

(
∂2m−1

∂k2m−1
α̃d

t (π) − ∂2m−1

∂k2m−1
α̃d

t (−π)

)
(26)

Fig. 2 Comparison between the probability distributions of numerical
simulation (dark) and Theorem 3 (dashed) with τ1 = 1/2 and τ2 = 0,
t = 100, and initial state in equal superposition of directions.

Fig. 3 Comparison between the probability distributions of numerical
simulation (dark) and Theorem 3 (dashed) with τ1 = 3/4 and τ2 = 1/2,
t = 100, and initial state in equal superposition of directions.
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and

ε j,d =
1

2π

∑
j

et f j(θ j)

⎛⎜⎜⎜⎜⎜⎝ 2π
t| f ′′j (θ j)|

⎞⎟⎟⎟⎟⎟⎠
1/2

×
⎛⎜⎜⎜⎜⎜⎝ ∞∑

m=1

(−1)m

m!

⎛⎜⎜⎜⎜⎜⎝ 1
2t| f ′′j (θ j)|

⎞⎟⎟⎟⎟⎟⎠
m
∂2m

∂k2m
ρ j(θ j)

⎞⎟⎟⎟⎟⎟⎠ , (27)

where ρ j is either Eq. (20) if d =←, or (25) if d =→. It
can be seen that if we take m terms from each summation,
ε j,d = O(2−m) and ε j,d = O(t−m).

4.2 Convergence and Properties

For quantum walks on the line and n-dimensional grids there
exists weak convergence theorems [17]. In this section, we
state the weak convergence of quantum walks on the line
with phase parameters using these previous results. Then
we show some applications of the convergence to compute
the support of the probability density function.

Theorem 4: Let Ω = [−π, π]×{1, 2} be a probability space
with probability measure μ = |〈ψ̃0(k)|λ j(k)〉|2dk/2π for k ∈
[−π, π] and j = 1, 2. Define a map h : Ω → R such that for
(k, j) ∈ Ω

h(k, j) ≡ h j(k) = (−1) j sin k√
sin2 k + tan2 π

2 (τ1 − τ2)
.

Let Xt be a position of the quantum walk at time t with dis-
tribution given by (1), and Z be a random variable of Ω with
distribution μ. Then we have as t → ∞

Xt

t
⇒ h(Z),

where⇒ denotes weak convergence†.

Proof. Consider the theorem that states the weak conver-
gence of quantum walks on the line [17, theorem 1]. Let
λ j(k) be as in Lemma 2. Then

λ′j(k) =
−a sin k

2
− a2 cos k sin k

2
√

b2 − a2 sin2 k
.

Dividing this by λ j(k) we obtain

−iλ′j(k)

λ j(k)
= (−1) j+1 ai sin k√

b2 − a2 sin2(k)
.

Then, after some algebra and observing that b
a =

eiπ/2 tan π
2 (τ1 − τ2), the theorem follows. �

As an application of Theorem 4, we can calculate the
position of the two peaks of the walk for large time.

Corollary 5: The limit distribution of Xt/t is concentrated
on the interval

[
− |a|2 , |a|2

]
.

Proof. Theorem 4 have its maximum and minimum values
for k = ±π/2 and the corollary follows. �

The maximum probability of Pt(n) is found at the top

of these two peaks, i.e., where n = ±
∣∣∣∣ a√

b2−a2

∣∣∣∣ t [17]. Con-
sidering |n/t| as the speed of the peaks, it can be seen that
by setting τ1 = τ2 it gets its maximum value, i.e. the fastest
spreading of the walk. This corresponds exactly to an iden-
tity operator, and the walk does not mix at all inside the
range of Corollary 5. In order to get high speed and max-
imum randomness (i.e. the best mixing for positions in-
side the range) for Pt(n), we can set any value such that
|τ1 − τ2| = 1/2. This implies that the support of h is in
[−1/

√
2, 1/

√
2]. In this case, the operator simulates exactly

the probability distribution of a Hadamard operator [17].
As another application of Theorem 4, we can compute

the density function of the random variable Y = Xt/t in the
asymptotic limit when t → ∞. Following the steps of [17]
for the Hadamard coin, we differentiate the quantity

P(Y ≤ y) =
∑

j

∫
k∈[−π,π]:h j(k)≤y

∣∣∣∣〈ψ̃0(k)
∣∣∣ λ j(k)

〉∣∣∣∣2 dk
2π
,

(28)

which yields the density function

f (y) =
|a|
2

π(y2 − 1)
√( |a|

2

)2 − y2

(29)

for y ∈ (−|a|/2, |a|/2), under the assumption of Im(α←0 ·
α→∗0 ) sin(τ1 − τ2)π = 0 and |α←0 | = |α→0 | = 1/

√
2, which

agrees with [8], [9].

5. Conclusions

This paper presented a study of discrete-time quantum walks
on the line. A symmetric S U(2) coin operation was pro-
posed and analyzed as a step towards an understanding of
quantum walks. Using Fourier analysis and asymptotic ap-
proximation methods, we computed a closed-form formula
for the amplitudes of the state of the walk. With this for-
mula, we have a direct way to compute the amplitudes at
any time step without recurring to time-consuming simu-
lations or numerical integration. This also give us a com-
plete characterization of the induced probability distribution
of general quantum walks on the line.

One important question that remains unanswered is the
relation between Theorems 3 and 4. Theorem 3 is based
on the computation of saddle points of the high oscillatory
kernel of Fourier coefficients. On the other hand, Theorem 4
is based on the method of moments (see [17] for details).
A relation between these two density functions could set a
common ground for the analysis of coined quantum walks.

†A sequence of random variables {Xi : i ≥ 1} converges
weakly to a random variable Z if limn→∞ Xn = Z, given that
limn→∞ E[h(Xn)] = E[h(Z)] for all bound continuous functions
h : R→ R.
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