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Estimating the Gowers Norm of Modulo Functions over Prime
Fields

Akinori KAWACHI†a), Nonmember, Hidetoki TANAKA†b), Student Member,
and Osamu WATANABE†c), Fellow

SUMMARY We show a technique for estimating an upper bound of the
Gowers norm of modulo functions over prime fields, which reduces the es-
timation to the greatest common divisor of some periodic sequences. This
estimation provides inapproximability of the modulo functions by low-
degree polynomials over prime fields, which is a generalization of Viola
and Wigderson’s result in the case of the binary field.
key words: Gowers norm, Modulo functions

1. Introduction

1.1 Background

The Gowers norm is a measure for analyzing functions from
a viewpoint of derivatives over general groups. This mea-
sure was originally introduced by Gowers [1], [2] to give an
alternative proof of Szemerédi’s theorem.

Definition 1 (Gowers norm): Let d ≥ 0, G be an additive
group, and ⊕ be the addition over G. Then the degree d
Gowers norm ‖ f ‖Ud of a function f : G → C is defined as

‖ f ‖Ud := E
x,y1,...,yd∈G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∏

S⊆[d]
|S |is even

v f (x, S ) ·
∏

S⊆[d]
|S |is odd

v f (x, S )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2d

,

(1)

where v f (x, S ) is defined by

v f (x, S ) := f

⎛⎜⎜⎜⎜⎜⎜⎝x ⊕
⊕

j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠
and v f (x, S ) is its conjugate.
Remark. Throughout this paper, for any fixed n ≥ 1, we
consider functions over n variables. But for simplicity, we
identify n-variate functions and functions on vectors con-
sisting of n elements.

Note that the Gowers norm is indeed a norm [1], [2], i.e., the
Gowers norm takes a positive real, and satisfies the triangle
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inequality.
We state this general definition for the sake of com-

pleteness of our presentation; but for our target function, the
Gowers norm can be expressed in a much simpler form (see
(5) in Sect. 2), which is the actual target of our analysis.

There are many applications of the Gowers norm in
complexity theory such as linearity testing in PCP [3], [4],
pseudorandom generators for low-degree polynomials [5],
[6], and hardness amplification for low-degree polynomi-
als [7]. These results are shown by analyzing the Gowers
norm over the binary field Z2. On the other hand, the Gow-
ers norm over general groups are also important as well.
The analysis of the Gowers norm is equivalent to a gener-
alization of the Fourier analysis, known as the “higher-order
Fourier analysis,” which recently attracts much attention in
mathematics, e.g., [8]. In this context, it is more natural to
analyze the Gowers norm over general groups of important
functions. The main technical contribution of this paper is to
demonstrate some approach for analyzing the Gowers norm
over general groups (see Sect. 1.2).

Let us see a typical example of using the Gowers norm.
Viola and Wigderson [7] provided an elegant and simple
proof for a correlation bound between the modulo function
and low-degree polynomials over Z2 by estimating the Gow-
ers norm of the modulo function. The correlation between a
function f and a class C of functions is defined as

Corr( f ,C) := min
g∈C

∣∣∣∣∣Pr
x

[
f (x) = g(x)

] − Pr
x

[
f (x) � g(x)

]∣∣∣∣∣ .
That is, if there is some function g ∈ C that approximates f
well, then Corr( f ,C) is close to 1, and otherwise, Corr( f ,C)
is close to 0. Let MODm be an n-variate modulo function
defined by

MODm(x1, . . . , xn) :=

{ −1, if m divides
∑n

i=1 xi, and
+1, otherwise.

For any D ⊆ Z, by MODm|D we denote the n-variate function
MODm whose domain is restricted to Dn. Let P(2)

d be the set
of n-variate polynomials∗ of degree d over Z2.

∗Precisely speaking, for comparing with the function MODm

that takes ±1 values, we assume that 1 and 0 values of polynomials
are converted to −1 and +1 respectively. In other words, P(2)

d is the
set of functions that are expressed as sg(p(x)) with some n-variate
degree-d polynomial p(x) mapping Zn

2 to Z2, where sg(v) := −1 if
v = 1 and +1 otherwise. In this paper, we will simply call such
functions “polynomials.”
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Viola and Wigderson investigated the power of degree
d polynomials over Z2 for approximating MODm|Z2 . They
showed that Corr(MODm|Z2 , P

(2)
d ) ≤ e−Ω(n/4d) for any odd m;

that is, no low-degree polynomial approximates the modulo
function well. Their proof takes the following two steps:
first the estimation of the correlation is reduced to that of
the Gowers norm of this modulo function over the binary
field Z2, and then, this Gowers norm is estimated. More
concretely, in the second step, they showed that this Gowers
norm over Z2 satisfies

‖MODm|Z2‖Uk ≤ m

⎧⎪⎪⎨⎪⎪⎩1 − α
(

1
2

)k
⎫⎪⎪⎬⎪⎪⎭

n
2k

(2)

for some constant α > 0 that depends only on m. This bound
is not so difficult to show. On the other hand, it seems dif-
ficult to obtain similar bounds for the Gowers norm over
more general fields. Indeed, there have been few results for
the estimation over non-binary fields [9], especially, of im-
portant functions from computer-scientific viewpoints. The
main purpose of this paper is to demonstrate some technical
approach for such analysis.

1.2 Our Result

We demonstrate some approach for analyzing the Gowers
norm of the modulo function over prime fields Zq. Our tar-
get function is MODm the same function that has been stud-
ied in [7]; but here we analyze its Gowers norm over the
finite field Zq for any prime q (hence, more precisely, our
target is MODm|Zq ). We show the following upper bound
similar to the bound (2).

Theorem 2 (Main theorem): For any prime q ≥ 3 and any
m coprime to q, let ‖MODm|Zq‖Uk be the Gowers norm of
MODm over Zq. Then, for all even k ≥ 2, we have

‖MODm|Zq‖Uk ≤ m

⎧⎪⎪⎨⎪⎪⎩1 − α
(

2
q

)k
⎫⎪⎪⎬⎪⎪⎭

n
2k

,

where α > 0 is a constant that depends on m and q only.

This, following [7], immediately yields the following
correlation bound between MODm|Zq and P(q)

d .

Corollary 3: Let q ≥ 3 be a prime and let m be coprime to
q. Then we have

Corr(MODm|Zq , P
(q)
d ) ≤ e−Ω(n/qd).

Remark. We define the set P(q)
d of polynomials in the same

way as P(2)
d . That is, P(q)

d is the set of functions that are
expressed as sg(p(x)) with some degree-d polynomial p(x)
mapping Zn

q to Zq.

Although the function MODm has been studied in the
literature as one of the typical functions for discussing com-
plexity lower bounds, one may think that it is a rather tech-
nical target. On the other hand, our main result is obtained

in fact by analyzing more basic functions that are defined by

e�m(x) := e2πi�x/m (3)

with parameters m and � ∈ [m − 1]. These functions form
the Fourier basis over finite cyclic groups Zm. Hence, by
applying our technique, we can prove an upper bound of the
Gowers norm of any function over a finite cyclic group if
we know its Fourier coefficients. Thus, our analysis could
be useful for other applications of the Gowers norm over a
finite cyclic group.

Note that a more recent result [10] also provides a dif-
ferent technique to estimate a variation of the Gowers norm
of another version of modulo functions over prime fields.
Their target function MOD′m : Zn

q → Zm is

MOD′m(x1, . . . , xn) :=

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

xi

⎞⎟⎟⎟⎟⎟⎠ mod m

for m < q, where the sum is computed in Z. Due to this
difference, a variation of the Gowers norm is analyzed. Also
the technique is based on analysis of directional derivatives,
which is totally different from ours.

1.3 Overview of Our Analysis

Here we explain briefly the outline of our analysis and the
organization of this paper. For proving the main theorem,
we first bound the Gowers norm of MODm over Zq by

‖MODm|Zq‖Uk ≤ m

(
max
�∈[m−1]

‖e�m‖Uk

)n

(4)

Then our task is reduced to give a good bound for the Gow-
ers norm of each e�m. For this task, we introduce a sequence
of q-tuple g(k) := (g1(k), . . . , gq(k)) of numbers, and show
that

(
‖e�m‖Uk

)2k

≤ 1 −
(

2
q

)k
⎧⎪⎪⎪⎨⎪⎪⎪⎩1 −

∑q
j=1 cos

(
2π
m � · g j(k)

)
q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
for all � ∈ [m−1]. This bound is useless if all g1(k), . . . , gq(k)
were divided by m because in this case, the lemma would

yield only a trivial upper bound
(
‖e�m‖Uk

)2k

≤ 1. We will,
however, show that this is not the case; that is, there is some
g j(k) that is not divisible by m, which is the main technical
lemma and the nontrivial part of our technique.

In Sect. 2, we explain our analysis following this out-
line, and in Sect. 3, we give the proof of the main technical
lemma.

2. Proof of the Main Theorem

We follow the outline stated in Sect. 1.3 and prove the main
theorem. Throughout this section, we fix any n ≥ 1, any
prime q ≥ 3, and any m that is coprime to q. Our target
function is MODm|Zq , but we omit the subscript specifying
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the domain for simplifying our notation. The Gowers norm
we consider here is defined over the field (Zq)n. Note that
for any n-variate real valued function f , its degree d Gowers
norm is simply stated as

‖ f ‖Ud = E
x,y1,...,yd∈Zn

q

⎡⎢⎢⎢⎢⎢⎢⎣
∏

S⊆[d]

f

⎛⎜⎜⎜⎜⎜⎜⎝x ⊕
⊕

j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

1/2d

, (5)

where by x ⊕ y we denote the component-wise Zq addition
of vectors.

First we prove the bound (4).

Lemma 4: The bound (4) holds for all � ∈ [m − 1].

Proof. For any � ∈ [m − 1], define u�(x1, . . . , xn) by

u�(x1, . . . , xn) := e�m

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

x j

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then it is easy to see that for every (x1, . . . , xn) ∈ Zn
q,∑m−1

�=1 u�(x1, . . . , xn) is m − 1 if m divides
∑n

i=1 xi and
−1 otherwise. This means that MODm(x1, . . . , xn) ≤∑m−1
�=1 u(x1, . . . , xn) in the domain Zn

q. Hence, by using (5),
we have

‖MODm‖Uk = E
x,y1,...,yk∈Zn

q

⎡⎢⎢⎢⎢⎢⎢⎣
∏
S⊆[k]

MODm

⎛⎜⎜⎜⎜⎜⎜⎝x ⊕
⊕

j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

1/2k

≤ E
x,y1,...,yk∈Zn

q

⎡⎢⎢⎢⎢⎢⎢⎣
∏
S⊆[k]

m−1∑
�=1

u�

⎛⎜⎜⎜⎜⎜⎜⎝x ⊕
⊕

j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

1/2k

=

∥∥∥∥∥∥∥
m−1∑
�=1

u�

∥∥∥∥∥∥∥
Uk

.

On the other hand, by the triangle inequality, we have
∥∥∥∥∥∥∥

m−1∑
�=1

u�

∥∥∥∥∥∥∥
Uk

≤
m−1∑
�=1

‖u�‖Uk ≤ m · max
�∈[m−1]

‖u�‖Uk .

Now consider ‖u�‖Uk for any � ∈ [m−1]. Then we have

‖u�‖Uk = E
x,y1,...,yk∈Zn

q

⎡⎢⎢⎢⎢⎢⎢⎣
∏
S⊆[k]

e�m

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

i=1

xi ⊕
⊕

j∈S
y j,i

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

1
2k

= E
x,y1,...,yk∈Zn

q

⎡⎢⎢⎢⎢⎢⎢⎣
n∏

i=1

∏
S⊆[k]

e�m

⎛⎜⎜⎜⎜⎜⎜⎝xi ⊕
⊕

j∈S
y j,i

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

1
2k

= E
x,y1,...,yk∈Zq

⎡⎢⎢⎢⎢⎢⎢⎣
∏
S⊆[k]

e�m

⎛⎜⎜⎜⎜⎜⎜⎝x ⊕
⊕

j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

n
2k

=
(
‖e�m‖Uk

)n
,

where xi and y j,i denote respectively the ith coordinate of
vector x and y j. The bound (4) follows. �

Now our task is to give a good bound for ‖e�m‖Uk . For
this, we introduce a sequence {g(k)}k≥2 of q-tuples of Zq el-
ements. First define a q × q circulant matrix Dq by

Dq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1
. . .

. . .

1 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where empty entries represent 0 in the matrix. Then we de-
fine the kth q-tuple g(k) = (g1(k), g2(k), . . . , gq(k)) induc-
tively. Define g(2) := (0, . . . , 0,−q, q), and for any k ≥ 3,
define

g(k)T := Dqg(k − 1)T,

where by xT we denote the transposition of a row vector x.
Note that the computation is over Zq.

By using this sequence, we now show the following
bound for ‖e�m‖Uk .

Lemma 5: For all � ∈ [m − 1] and all k ≥ 2, we have

(
‖e�m‖Uk

)2k

≤ 1 −
(

2
q

)k
⎧⎪⎪⎪⎨⎪⎪⎪⎩1 −

∑q
j=1 cos

(
2π
m � · g j(k)

)
q

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Proof. By Definition 1,
(
‖e�m‖Uk

)2k

is expressed as

E
x∈Zq

y1,...,yk∈Zq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∏
S⊆[k]
|S | is even

e�m

⎛⎜⎜⎜⎜⎜⎜⎝x ⊕
⊕

j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠ ·
∏
S⊆[k]
|S | is even

e�m

⎛⎜⎜⎜⎜⎜⎜⎝x ⊕
⊕

j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Since e�m(x) = e2πi�x/m, we have e�m(x) = e�m(−x) and e�m(z) ·
e�m(z′) = e�m(z + z′); hence, we can simplify the above to
derive

(
‖e�m‖Uk

)2k

=
1

qk+1

∑
x,y1,...,yk∈Zq

e�m

⎛⎜⎜⎜⎜⎜⎜⎝
∑

S⊆[k]

(−1)|S |
⎛⎜⎜⎜⎜⎜⎜⎝x ⊕

⊕
j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ .

Let

Qx,y1,...,yk :=
∑

S⊆[k]

(−1)|S |
⎛⎜⎜⎜⎜⎜⎜⎝x ⊕

⊕
j∈S
y j

⎞⎟⎟⎟⎟⎟⎟⎠ .

Note that e�m(x) = cos
(

2π
m � · x

)
+ i sin

(
2π
m � · x

)
; hence, from

the fact that the Gowers norm is positive real, we have

(
‖e�m‖Uk

)2k

=
1

qk+1

∑
x,y1,...,yk∈Zq

cos

(
2π
m
� · Qx,y1,...,yk

)
.

Bounding cos(·) by the trivial 1 on inputs y1, . . . , yk in Zk
q \

{1, q − 1}k, we then obtain the following bound.
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(
‖e�m‖Uk

)2k

≤ 1
qk+1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑
x∈Zq

∀yi∈{1,q−1}

cos

(
2π
m
� · Qx,y1,...,yk

)
+ (qk+1 − 2kq)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= 1 −
(

2
q

)k

+
1

qk+1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑
x∈Zq

∀yi∈{1,q−1}

cos

(
2π
m
� · Qx,y1,...,yk

)⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= 1 −
(

2
q

)k

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 − 1

2kq

∑
x∈Zq

∀yi∈{1,q−1}

cos

(
2π
m
� · Qx,y1,...,yk

)⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (6)

Now for any y1, . . . , yk ∈ {1, q − 1}, we can claim (see
Claim 6 below) that sequence (Qx,y1,...,yk )x∈[q−1] is a permu-
tation of sequence g(k). Hence we have

∑
x∈Zq

cos

(
2π
m
� · Qx,y1,...,yk

)
=

q∑
j=1

cos

(
2π
m
� · g j(k)

)
.

Then the bound of the lemma follows from this and the
above bound (6). �

Claim 6: For any integer k ≥ 2, consider any y1, . . . , yk ∈
{1, q − 1}. Then sequence (Qx,y1,...,yk )x∈[q−1] is a permutation
of sequence g(k).

Proof. Let {{·}} denotes a multiset. For the claim, we show
by induction on k that{{

Q0,y1,...,yk , . . . ,Qq−1,y1,...,yk

}}
=

{{
g1(k), . . . , gq(k)

}}
holds for all k ≥ 2 and y1, . . . , yk ∈ {1, q − 1}.

For the base case, i.e., k = 2, noting that

Qx,y1,y2 = x − (x ⊕ y1) − (x ⊕ y2) + (x ⊕ y1 ⊕ y2),

we obtain{{
Q0,y1,y2 , . . . ,Qq−1,y1,y2

}}
= {{0, . . . , 0, q,−q}} .

For showing the inductive step for k ≥ 3, we first note
that Qx,y1,...,yk can be expressed as

Qx,y1,...,yk = Qx,y1,...,yk−1 − Qx⊕yk ,y1,...,yk−1 .

Then for the case yk = 1, by the induction hypothesis, we
have {{

Q0,y1,...,yk , . . . ,Qq−1,y1,...,yk

}}
=

{{
g1(k − 1) − g2(k − 1), . . . , gq(k − 1) − g1(k − 1)

}}
=

{{
g1(k), . . . , gq(k)

}}
.

Similarly, for the case yk = q − 1, we have{{
Q0,y1,...,yk , . . . ,Qq−1,y1,...,yk

}}
=

{{
g2(k − 1) − g1(k − 1), . . . , g1(k − 1) − gq(k − 1)

}}
=

{{
−g1(k), . . . ,−gq(k)

}}
=

{{
g1(k), . . . , gq(k)

}}
,

where the last equality can be proved also by induction. �

Here for using the bound of Lemma 5 to derive the de-
sired bound, it suffices to show that some g j(k) is not divisi-
ble by m, which is immediate from the following lemma that
will be proved in the next section.

Lemma 7 (Main lemma): For any even k ≥ 2, we have

gcd(g(k)) = q(k−2)/(q−1)�+1,

where gcd(g(k)) is the greatest common divisor (GCD) of
the numbers in the q-tuple g(k) = (g1(k), . . . , gq(k)).

Proof of Theorem 2. Recall that the bound of Lemma 5. We
have

(
‖e�m‖Uk

)2k

≤ 1 −
(

2
q

)k
⎧⎪⎪⎪⎨⎪⎪⎪⎩1 −

∑q
j=1 cos

(
2π
m � · g j(k)

)
q

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Then by Lemma 7, for all even k ≥ 2, there is some g j(k)
that is not divisible by m; for this j, we have

δ := cos

(
2π
m
�g j(k)

)
< 1.

Note that 1 − δ > 0 is determined only by q and m. Hence,
using the trivial bound 1 for the other cos(·) terms, we obtain

(
‖e�m‖Uk

)2k

≤ 1 −
(

2
q

)k (
1 − q − 1 + δ

q

)
.

Then by using α defined by

α := 1 − q − 1 + δ
q

=
1 − δ

q
> 0,

the bound of the theorem is derived. �

3. Proof of Main Lemma

For proving Lemma 7, we estimate the GCD of another tuple
rather than that of g(k) directly. Let r = (q−1)/2. We define
an r × r matrix Ar by

Ar =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1
1 2 1
. . .

. . .
. . .

1 2 1
1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then define an r-tuple a(2) = (a1(2), a2(2), . . . , ar(2)) :=
(0, . . . , 0, q), and for each even k ≥ 4, define the kth r-tuple
inductively by

a(k)T := Ar a(k − 2)T. (7)

It can be shown (see Claim 9 at the end of this proof)
that gcd(g(k)) = gcd(a(k)) for any even k ≥ 2. Thus, for our
lemma, it suffices to show that
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gcd(a(k)) = q(k−2)/(q−1)�+1 (8)

holds for every even k ≥ 2. We prove this by induction on k.
For the case that 2 ≤ k ≤ q − 1, it is easy to see that

(i) a1(k), . . . , ar−k/2(k) are all 0, (ii) ar−k/2+1(k) = q, and (iii)
ar−k/2+2(k), . . . , ar(k) are all multiples of q. Thus, we have
gcd(a(k)) = q for 2 ≤ k ≤ q, which proves (8).

For the case that k ≥ q + 1, for using the induction
hypothesis to prove (8) it suffices to show that

gcd(a(k)) = q · gcd(a(k − (q − 1))).

This follows from two claims of the following lemma,
whose proof will be shown in the following two subsections.

Lemma 8: For any even k ≥ q + 1, we have

(a) gcd(a(k)) = Q · gcd(a(k − (q − 1)) for some Q that is
multiple of q, and

(b) gcd(a1(k)/q, . . . , ar(k)/q) = gcd(a(k − (q − 1)).

Finally we complete the proof by showing the follow-
ing claim.

Claim 9: For any even k ≥ 2, we have gcd(g(k)) =
gcd(a(k)).

Proof. Let {{g(k)}} to denote
{{
g1(k), . . . , gq(k)

}}
. For the

claim it suffices to show that

{{g(k)}} = {{0,±a1(k),±a2(k), . . . ,±ar(k)}}
holds for every even k ≥ 2.

But for proving this relation inductively, we consider
more detailed relation between two sequences. Here we in-
troduce a variation of mod q addition/subtraction for calcu-
lating indices of q-tuples. For any i, j ∈ [q], we define

i
q
+ j :=

{
i + j, if i + j ≤ q, and
i + j − q, if i + j ≥ q + 1; and

i
q− j :=

{
i − j, if i − j ≥ 1, and
i − j + q, if i − j ≤ 0.

Then we show that for any even k ≥ 2, we have

∃h ∈ [q], ∃s ∈ {+1,−1}
gh(k) = 0,
g

h
q
+i

(k) = s · (−1)i · ai(k) (∀i ∈ [r]),
g

h
q−i

(k) = s · (−1)i+1 · ai(k) (∀i ∈ [r]).

(9)

Recall that q = 2r + 1. In the rest of the proof we show this
relation by induction on k.

First consider the base case, i.e., the case k = 2. Re-
call that g(2) = (0, . . . , 0,−q, q). By letting h = r, we have
gh(2) = 0,

g
h

q
+i

(2) = 0 = −ai(2) (∀i ∈ [r − 1]),
g

h
q−i

(2) = 0 = ai(2) (∀i ∈ [r − 1]),

g
h

q
+r

(2) = −q = −ar(2), and g
h

q−r
(2) = gq(2) = q = ar(2).

Hence the relation (9) holds by choosing s = −1 and +1
respectively for even and odd r.

For the induction step, assume that (9) holds for some
even k − 2 ≥ 2 with some h′ and s′, and derive the relation
(9) for k. (Since the argument is symmetric, we explain for
the case s′ = +1.) It turns out that (9) holds for k with

h = h′
q− 1 and s = −1.

Recall the definition of g(k). We have

g(k)T = (Dq)2g(k − 2)T,

where

(Dq)2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1
. . .

. . .
. . .

1 −2 1
1 1 −2
−2 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence for any j ∈ [q], we have

g j(k) = g j(k − 2) − 2g
j

q
+1

(k − 2) + g
j

q
+2

(k − 2).

For obtaining the relation between g(k) and a(k), we
replace all g j′ (k − 2)’s with ai′ (k − 2)’s by using the relation

(9) for k − 2, h′, and s = +1. First since h = h′
q− 1, we have

gh(k) = g
h′

q−1
(k − 2) − 2gh′ (k − 2) + g

h′
q
+1

(k − 2)

= (−1)2a1(k − 2) + 0 + (−1)1a1(k − 2) = 0,

which is the first equation of (9) for k and h. For showing

the second equation, we note that h
q
+ (r + 1) = h

q− r. Also
we use the following recurrence relation for a(k):

a1(k) = 2a1(k − 2) + a2(k − 2),
ai(k) = ai−1(k − 2) + 2ai(k − 2) + ai+1(k − 2)

(∀i ∈ {2, . . . , r − 1}),
ar(k) = ar−1(k − 2) + 3ar(k − 2).

Then we derive

g
h

q
+1

(k) = gh′ (k − 2) − 2g
h′

q
+1

(k − 2) + g
h′

q
+2

(k − 2)

= 0 − 2(−1)1a1(k − 2) + (−1)2a2(k − 2)

= (−1) · (−1)1a1(k), and

g
h

q
+r

(k) = g
h′

q
+(r−1)

(k − 2) − 2g
h′

q
+r

(k − 2) + g
h′

q
+(r+1)

(k − 2)

= (−1)r−1ar−1(k − 2)

−2(−1)rar(k − 2) + (−1)r+1ar(k − 2)

= (−1) · (−1)r (ar−1(k − 2) + 3ar(k − 2))

= (−1) · (−1)rar(k).

For any i ∈ {2, . . . , r − 1}, we have

g
h

q
+i

(k) = g
h′

q
+(i−1)

(k − 2) − 2g
h′

q
+i

(k − 2) + g
h′

q
+i+1

(k − 2)

= (−1)i−1ai−1(k − 2)

−2(−1)iai(k − 2) + (−1)i+1ai+1(k − 2)

= (−1) · (−1)iai(k).

Thus, the second equation holds for k with h and s = −1.
The third equation can be shown similarly. �
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3.1 Proof of the Part (a) of Lemma 8

Before the proof, we give an explicit expression of (Ar)r.

Lemma 10:

[(Ar)
r]i, j=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
2r

r − (i − j)

)
−

(
2r

r − (i + j)

)
, if i + j ≤ r,(

2r
r − (i − j)

)
+

(
2r

i + j − (r + 1)

)
, if i + j ≥ r + 1,

where [M]i, j denotes the (i, j)-entry of the matrix M.

Proof. First we show that

[(Ar)
�]i, j =

(
2�

� − (i − j)

)
−
(

2�
� − (i + j)

)
+

(
2�

2r + � + 1 − (i + j)

)

(10)

holds for any integer � ∈ [r] by induction on �.
For the case � = 1, we can calculate(

2
1 − (i − j)

)
−

(
2

1 − (i + j)

)
+

(
2

2r + 2 − (i + j)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3, if i = j = r,

2, if i = j < r,

1, if i − j = 1 or j − i = 1,

0, if i − j > 2 or j − i > 2,

from which it is easy to see that (Ar)1 (= Ar) satisfies (10).
For the case � ≥ 2, we note that

[(Ar)
�]i, j =

r∑
k=1

[(Ar)
�−1]i,k[Ar]k, j

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2[(Ar)�−1]i,1 + [(Ar)�−1]i,2, if j = 1;

[(Ar)�−1]i, j−1 + 2[(Ar)�−1]i, j + [(Ar)�−1]i, j+1, if 1 < j < r;

[(Ar)�−1]i,r−1 + 3[(Ar)�−1]i,r, if j = r.

Then by using the induction hypothesis, it is again easy to
show (10).

Now by (10), we have

[(Ar)
r]i, j =

(
2r

r − (i − j)

)
−

(
2r

r − (i + j)

)
+

(
2r

3r + 1 − (i + j)

)
.

Note that
(

2r
3r+1−(i+ j)

)
=

(
2r

2r−{3r+1−(i+ j)}
)
=

(
2r

i+ j−(r+1)

)
. If i + j ≤

r, the third term becomes 0, since i + j − (r + 1) < 0. If
i+ j ≥ r+1, the second term becomes 0, since r− (i+ j) < 0.
Therefore the lemma follows. �

Proof of Part (a) of Lemma 8. Since r = (q − 1)/2, we have

a(k)T = (Ar)
r a(k − (q − 1))T. (11)

Hence it is sufficient to show that 2r+ 1 divides [(Ar)r]i, j for
every i, j ∈ [r].

In the case of i + j ≤ r, we have

[(Ar)
r]i, j =

(
2r

r − i + j

)
−

(
2r

r − i − j

)

=

(
2r

r − i − j

) ⎛⎜⎜⎜⎜⎜⎜⎜⎝
(

2r
r−i+ j

)
(

2r
r−i− j

) − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Here since(

2r
r−i+ j

)
(

2r
r−i− j

) = (r − i − j)!
(r − i + j)!

· (r + i + j)!
(r + i − j)!

=
(r + i + j) · · · (r + i − j + 1)
(r − i + j) · · · (r − i − j + 1)

,

by using a polynomial Ft(x) defined by

Ft(x) :=
(x + j) · · · (x − j + 1)
(t + j) · · · (t − j + 1)

− 1,

we have

[(Ar)
r]i, j =

(
2r

r − i − j

)
· Fr−i(r + i).

Then by using the fact that

Ft(−t − 1) =
(−t − 1 + j) · · · (−t − 1 − j + 1)

(t + j) · · · (t − j + 1)
− 1

= (−1)2 j (t + 1 − j) · · · (t + 1 + j − 1)
(t + j) · · · (t − j + 1)

− 1

= 1 − 1 = 0,

we can show x−(−t−1) divides Ft(x). In particular, Fr−i(r+i)
is divided by 2r + 1 (= (r + i) − (−t − 1)), and thus, 2r + 1
divides [Ar

r]i, j for any i and j.
In the case of i + j ≥ r + 1, we have

[(Ar)
r]i, j =

(
2r

r − i + j

)
+

(
2r

i + j − r − 1

)

=

(
2r

i + j − r − 1

) ⎛⎜⎜⎜⎜⎜⎜⎜⎝
(

2r
r−i+ j

)
(

2r
i+ j−r−1

) + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Here again by using(

2r
r−i+ j

)
(

2r
i+ j−r−1

) = {2r − j + 1 + (r − i)} · · · {2r − j + 1 − (r − i)}
{ j + (r − i)} · · · { j − (r − i)} ,

we can restate [(Ar)r]i, j as

[(Ar)
r]i, j =

(
2r

i + j − r − 1

)
·G(2r − j + 1),

where G(x) is a polynomial defined by

G(x) :=
{x + (r − i)} · · · {x − (r − i)}
{ j + (r − i)} · · · { j − (r − i)} + 1.

Then from the fact that G(− j) = 0, we can show that x−(− j)
divides G(x). In particular, 2r + 1 (= (2r − j + 1) − (− j))
divides G(2r − j + 1), and thus, it divides [(Ar)r]i, j for all i
and j. �
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3.2 Proof of the Part (b) of Lemma 8

We first observe the following property on the GCD of tu-
ples.

Lemma 11: Let x = (x1, . . . , xr), y = (y1, . . . , yr), and z =
(z1, . . . , zr) are vectors denoting r-tuples of integers such that
yT = UxT and zT = (VU)xT hold for some r × r integer
matrices U and V . Then we have

gcd(y1, . . . , yr) = gcd(y1, . . . , yr, z1, . . . , zr). (12)

In particular, if UV is the identity matrix Ir, then we have

gcd(y1, . . . , yr) = gcd(x1, . . . , xr). (13)

Proof. First Note that

zT = (VU)xT = V(UxT) = VyT.

Hence, we have that gcd(z) = c · gcd(y), since any common
divisor of y is also one of z. Then (12) follows, since

gcd(y, z) = gcd(gcd(y), gcd(z)) = gcd(y).

If furthermore UV = Ir, then since z = x, we have

gcd(y) = gcd(y, x) = gcd(gcd(x), gcd(y)) = gcd(x),

where the last equality holds since yT = UxT by an integer
matrix U. �

Proof of Part (b) of Lemma 8. For the proof, we com-
pute the GCD of (a1(k)/q, . . . , ar(k)/q). For simplicity, let
us write (a1(k)/q, . . . , ar(k)/q) as a(k)/q.

Recall first that r = (q−1)/2 and that a(k)T = (Ar)r a(k−
(q − 1))T by definition (7). Hence, we have

(a(k)/q)T =
1
q

(Ar)
r a(k − (q − 1))T.

Also recall that for proving the part (a) of Lemma 8, we
indeed proved that (Ar)r/q is an integer matrix. On the other
hand, we can show (Claim 12) that q(Ar)−r is also an integer
matrix. Then since

q(Ar)
−r · 1

q
(Ar)

r = Ir,

by Lemma 11, we have

gcd(a(k)/q) = gcd(a(k − (q − 1))).

�

Claim 12: q(Ar)−r is an integer matrix.

Proof. We denote the adjugate matrix of a matrix A by
Adj(A). By Cramer’s rule, we have

q(Ar)
−r =

(
1
q

(Ar)
r

)−1

=
Adj( 1

q (Ar)r)

det( 1
q (Ar)r)

=
Adj( 1

q (Ar)r)

(det Ar)r/qr
.

Note that Adj( 1
q (Ar)r) is an integer matrix, since 1

q (Ar)r is
an integer matrix and every cofactor of the matrix is also an
integer. Then for the claim it suffices to show that det(Ar) =
q.

We show that det(Ar) = q by induction on r. For the
case r = 2, we have

det(A2) =

∣∣∣∣∣∣2 1
1 3

∣∣∣∣∣∣ = 5,

and for the case r = 3, we have

det(A3) =

∣∣∣∣∣∣∣∣
2 1 0
1 2 1
0 1 3

∣∣∣∣∣∣∣∣ = 7.

Now for the induction step, consider any r > 4. By using
the cofactor expansion along the 1st row, we get

det(Ar)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1
1 2 1

1 2 1
. . .

. . .
. . .

1 2 1
1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1
1 2 1
. . .

. . .
. . .

1 2 1
1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
2 1
1 2 1
. . .

. . .
. . .

1 2 1
1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2 det(Ar−1) − det(Ar−2).

The last equation follows from the cofactor expansion along
the 1st column. By the induction hypothesis, we have

det(Ar) = 2 det(Ar−1)−det(Ar−2) = 2(q−2)−(q−4) = q.

Hence det(Ar) = q for every integer q. �
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