
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012
763

PAPER Special Section on Foundations of Computer Science

Enumerating All Rooted Trees Including k Leaves

Masanobu ISHIKAWA†a), Nonmember, Katsuhisa YAMANAKA††b), Yota OTACHI†††c),
and Shin-ichi NAKANO†d), Members

SUMMARY This paper presents an efficient algorithm to generate all
(unordered) rooted trees with exactly n vertices including exactly k leaves.
There are known results on efficient enumerations of some classes of graphs
embedded on a plane, for instance, biconnected and triconnected trian-
gulations [3], [6], and floorplans [4]. On the other hand, it is difficult to
enumerate a class of graphs without a fixed embedding. The paper is on
enumeration of rooted trees without a fixed embedding. We already pro-
posed an algorithm to generate all “ordered” trees with n vertices including
k leaves [11], while the algorithm cannot seem to efficiently generate all
(unordered) rooted trees with n vertices including k leaves. We design a
simple tree structure among such trees, then by traversing the tree structure
we generate all such trees in constant time per tree in the worst case. By
repeatedly applying the algorithm for each k = 1, 2, . . . , n − 1, we can also
generate all rooted trees with exactly n vertices.
key words: graph algorithm, enumeration, rooted tree, family tree

1. Introduction

It is useful to have a complete list of objects for a particular
class. Such a list can be used to search a counter-example
for a hypothesis; to obtain the best object, among all the
candidates, with respect to some criterion; or to experimen-
tally measure the average performance of an algorithm for
all possible inputs.

Trees are fundamental models, frequently used in var-
ious fields such as searching for keys, modeling computa-
tions, and parsing a program, etc. Several enumeration al-
gorithms for trees have been proposed [1], [2], [5], [7], [9]–
[11].

In this paper, we focus on (unordered) rooted trees with
n vertices including k leaves. There are several algorithms to
enumerate all rooted trees with n vertices [1], [2]. However,
there is no algorithm to enumerate all rooted trees with the
specified number of leaves. We design an efficient algorithm
that enumerates all rooted trees with n vertices including k
leaves. The algorithm generates such trees in constant time

Manuscript received April 11, 2011.
Manuscript revised July 11, 2011.
†The authors are with the Department of Computer Science,

Gunma University, Kiryu-shi 376–8515 Japan.
††The author is with the Department of Electrical Engineering

and Computer Science, Iwate University, Morioka-shi, 020–8551
Japan.
†††The author is with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980–8579 Japan.
a) E-mail: ishikawa@nakano-lab.cs.gunma-u.ac.jp
b) E-mail: yamanaka@cis.iwate-u.ac.jp
c) E-mail: otachi@dais.is.tohoku.ac.jp
d) E-mail: nakano@cs.gunma-u.ac.jp

DOI: 10.1587/transinf.E95.D.763

per tree.
From theoretical point of view, our algortihm attains a

“grouped” listing, that is, it can list all rooted trees in the
increasing order of the number of leaves. From an applica-
tion viewpoint, in a test of an algorithm, we may hope a data
set excluding the “extra” data for saving time. Trees with a
small (large) number of leaves tend to be special forms. For
example, a tree is a path if k = 1 and is a star if k = n−1. Us-
ing our algorithm, we can generate data set excluding trees
with special forms.

A rooted tree refers to a tree with one designated “root”
vertex. Note that no ordering is defined among the children
of each vertex. Figure 1 (a) shows all (unordered) rooted
trees with 5 vertices including 3 leaves. If we define an or-
dering among the children of each vertex then the resulting
tree is called an ordered tree. Figure 1 (b) shows all ordered
trees with 5 vertices including 3 leaves.

Several enumeration algorithms for trees have been
proposed.

Beyer and Hedetniemi [1] gave an algorithm to gener-
ate all rooted trees with n vertices. Their algorithm is the
first one to generate all rooted trees in constant time per
tree on average. Li and Ruskey [2] also gave an algorithm
to generate all rooted trees, and claimed that it was easily
modified to generate restricted classes of rooted trees. The
possible restrictions include (1) upper bound on the number
of children and (2) lower and upper bounds on the height of
a rooted tree.

A tree without a root vertex is called a free tree. Due
to the absence of a root vertex, the generation of nonisomor-
phic free trees is a more difficult problem. Wright et al. [10]
and Li and Ruskey [2] presented algorithms to generate all
free trees in O(1) time per tree on average. Nakano and
Uno [7] improved the running time to O(1) time in the worst
case.

An ordered tree is a rooted tree with a left-to-right
ordering specified for the children of each vertex. An al-
gorithm to generate all ordered trees has been proposed

Fig. 1 All (a) (unordered) rooted trees and (b) ordered rooted trees with
5 vertices including 3 leaves.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

764
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

by Nakano [5]. Sawada [9] handled the enumeration prob-
lem for a similar but another class of trees, called circu-
lar-ordered trees. A circular-ordered tree refers to a rooted
tree with a circular ordering specified for the children of
each vertex. Sawada [9] presented algorithms to generate
circular-ordered trees and unrooted ones in O(1) time per
tree on average.

Pallo [8] as well as Nakano [5] presented an algorithm
to generate all ordered trees with n vertices including k
leaves in O(n − k) time per tree on average. Yamanaka et
al. [11] improved the running time to constant per tree in the
worst case.

In this paper we design a simple algorithm to generate
all rooted trees with exactly n vertices including k leaves.
Due to the absence of orderings of children, this problem is
more difficult than the one with orderings. Our algorithm
generates each such tree in constant time in the worst case.

If we modify the algorithm in [11] so that it outputs
only “left-heavy” trees then we can generate all rooted trees
with exactly n vertices including exactly k leaves. However
it may take much time to check whether each generated tree
is left-heavy or not, and resulting algorithm enumerates all
such trees in O(nk) time for each. We will explain the detail
in Sect. 3.

The concept of our algorithms is as follows. We first
define a tree structure among trees, called a family tree, in
which each vertex corresponds to each tree to be enumer-
ated. By traversing the tree structure we can enumerate all
trees. Based on this concept several enumerating algorithms
are designed [6], [7], [11]. However to enumerate all rooted
trees with exactly n vertices including k leaves, we have to
carefully design a new tree structure among them, and it is
not so easy.

The rest of the paper is organized as follows. Sec-
tion 2 provides some definitions; Sect. 3 introduces the left
heavy embedding of rooted trees; Sect. 4 defines a family
tree among rooted trees with n vertices including k leaves;
and Sect. 5 presents an algorithm to generate all such trees.
Finally Sect. 6 concludes the study.

2. Definitions

Let G be a connected graph with n vertices. A path is a se-
quence of distinct vertices (v1, v2, . . . , vp) such that (vi−1, vi)
is an edge for i = 2, 3, . . . , p. The length of a path is the
number of edges in the path.

A tree is a connected graph with no cycle. A rooted
tree is a tree with a vertex r chosen as its root. For each
vertex v in a rooted tree, let UP(v) be the unique path from
v to r. If UP(v) has exactly p edges then we say that the
depth of v is p and write dep(v) = p. The parent of v � r
is its neighbor on UP(v), and the ancestors of v � r are the
vertices on UP(v) except v. The parent of r and the ancestors
of r are not defined. We say if v is the parent of u, then u is a
child of v, and if v is an ancestor of u, then u is a descendant
of v. The height of a vertex v, denoted by height(v), is the
number of edges on the longest path from v to a descendant

Fig. 2 Examples of the depth sequences.

of v. A leaf is a vertex having no child. If a vertex is not a
leaf, then it is called an inner vertex.

An ordered tree is a rooted tree in which a left-to-right
ordering is specified for the children of each vertex. Let
C(v) = (c1, c2, . . . , cd(v)) be the left-to-right ordering of the
children of v from left to right, where d(v) is the number of
children of v. We call it the child sequence of v. A vertex ci

is the next sibling of ci−1.
Let T be an ordered tree with n vertices, and

(v1, v2, . . . , vn) be the list of the vertices of T in pre-
order. Then, the sequence of the depth L(T) =

(dep(v1), dep(v2), . . . , dep(vn)) is called the depth sequence
of T . See Fig. 2 for examples. The three trees in Fig. 2 are
isomorphic as rooted trees, but non-isomorphic as ordered
trees.

Let T1 and T2 be two ordered trees, and L(T1) =
(a1, a2, . . . , an) and L(T2) = (b1, b2, . . . , bm) be their depth
sequences. If either (1) ai = bi for each i = 1, 2, . . . , j − 1
and aj > b j, or (2) ai = bi for each i = 1, 2, . . . ,m and
n > m, then we say that L(T1) is heavier than L(T2), and
write L(T1) > L(T2).

3. Left-heavy Embedding of Rooted Trees

In this section we define the left-heavy embedding [7] of a
rooted tree.

Given a rooted tree T , by choosing some left-to-right
ordering among the children of each vertex we can generate
many ordered trees. The heaviest ordered tree among them
is called the left-heavy embedding of T , and if ordered tree
is the left-heavy embedding of some rooted tree then it is
called a left-heavy ordered tree. We can observe there is a
one-to-one mapping from the set of rooted trees to the set of
left-heavy ordered trees. Thus if an algorithm can generate
all left-heavy ordered trees then it also generates all rooted
trees.

Let S n,k be a set of all left-heavy ordered trees with
exactly n vertices including exactly k leaves. If we generate
all ordered trees in S n,k, then by ignoring the left-to-right
orderings we can also generate all rooted trees with exactly
n vertices including exactly k leaves.

We denote by T (v) the subtree of an ordered tree T
rooted at v. We have the following lemma.

Lemma 1: ([7]) An ordered tree T is a left-heavy ordered
tree if and only if L(T (ci−1)) ≥ L(T (ci)) holds for every pair
of a vertex ci−1 and its next sibling ci.

From Lemma 1, we can check whether T is a left-

ISHIKAWA et al.: ENUMERATING ALL ROOTED TREES INCLUDING K LEAVES
765

heavy ordered tree or not, as follows. For every pair of
a vertex ci−1 and its next sibling ci, we traverse T (ci−1)
and T (ci) with depth first manner, then we check whether
L(T (ci−1)) ≥ L(T (ci)) holds. Observe that for any ci−1 and
its next sibling ci, L(T (ci−1)) ≥ L(T (ci)) can be checked in
O(n) time. Furthermore, it is not difficult to see that the
number of pairs (ci−1, ci) is O(k). Thus, this naive method
can be done in O(nk) time.

Combining this method and Yamanaka’s enumera-
tion [11], one can enumerate all left-heavy ordered tree with
n vertices including k leaves in O(nk) time for each. There-
fore it seems to be difficult to accomplish efficient, say O(1)
time, enumeration following this approach.

In this paper we define a new tree structure among left-
heavy ordered trees with n vertices including k leaves, then
propose an efficient algorithm to enumerate such trees.

4. Family Tree

In this section we define a tree structure among the trees
in S n,k, in which each vertex corresponds to a tree in S n,k

and each edge corresponds to a relation between two trees
in S n,k.

If either k = 1 or k = n − 1, then |S n,k | = 1 and its
enumeration is trivial. So we assume 1 < k < n − 1.

We need some definitions.
Let T be an ordered tree, and r its root. If a leaf v is

a child of the root then v is called a root leaf. A path P in
T is called a non-branching path if (1) P starts at a child of
r, (2) P ends at a leaf of T , and (3) all internal vertices of
P has exactly one child in T . Note that P may consist of a
root leaf. If T has a non-branching path, then the rightmost
path among the longest non-branching paths is denoted by
RL(T) (R and L mean rightmost and longest, respectively).
See Fig. 3. The root leaves are depicted by gray circles and
RL(T) is drawn as gray lines.

Rn,k is the ordered tree consisting of a path with n − k
edges and k−1 leaves attached at the root so that those leaves
appear on the right of the path. See Fig. 4 for an example.
Rn,k ∈ S n,k holds.

We now define the parent tree P(T) for each T ∈
S n,k\{Rn,k} by the following two cases. Let T ′ be the tree ob-
tained from T by removing (1) all root leaves and (2) RL(T)
if T has one or more non-branching paths. Let x be the last
vertex of T ′ in preorder. Since T � Rn,k such x always ex-
ists.

Case 1: x has one or more siblings.
P(T) is the tree obtained from T by (1) removing x,

then (2) attaching a new root leaf as the rightmost child of r.
See Fig. 5 (a).

Case 2: x has no sibling.
We have the following two subcases

Case 2 (a): T has RL(T).
P(T) is the tree obtained from T by (1) removing x,

(2) attaching a new leaf to the end vertex of RL(T), then

Fig. 3 Examples for non-branching paths and root leaves.

Fig. 4 Root tree R8,4.

Fig. 5 Illustration for the parents.

(3) re-embedding the resulting tree to be left heavy. See
Fig. 5 (b). The extended non-branching path may move to
the left. Note that RL(P(T)) has one or more edges, al-
though RL(T) may be a root leaf.

Case 2 (b): T has no RL(T). Thus T has no non-branching
path.

Let P = (v0 = r, v1, . . . , vq = x) be the path in T start-
ing at r and ending at x. Let P′ = (vp, vp+1, . . . , vq) be the
subpath of P such that d(vp−1) ≥ 2, d(vp) = d(vp+1) = · · · =
d(vq−1) = 1. P(T) is the tree obtained from T by (1) re-
moving P′, then (2) appending P′ to r so that P′ becomes
the rightmost non-branching path. See Fig. 5 (c). Note that
P(T) has exactly one or two non-branching paths. If P(T)
has exactly one non-branching path P, then P has one or
more edges, and the starting vertex of P is the rightmost

766
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

Fig. 6 Family tree T8,4.

child of the root. Otherwise P(T) has exactly two non-
branching path P1, P2, then P1 and P2 have one or more
edges respectively, and the starting vertices of P1 and P2 are
the rightmost and the second rightmost child of the root.

We say T is a child tree of P(T). If P(T) is derived in
Case 1 then T is called a Type 1 child. Similarly if P(T) is
derived in Case 2 (a) or 2 (b) then it is called a Type 2 (a) or
2 (b) child, respectively.

We have the following lemma.

Lemma 2: For any T ∈ S n,k \ {Rn,k}, P(T) ∈ S n,k holds.

Proof. In each case P(T) has n vertices including k leaves,
and P(T) is the left-heavy embedding. Q.E.D.

By repeatedly finding the parent tree of the derived tree,
we can have the unique sequence T,P(T),P(P(T)), . . . of
trees in S n,k. We have the following lemma.

Lemma 3: For any T ∈ S n,k the sequence T,P(T),P(P(T)),
. . . always ends up with Rn,k.

Proof. Let T be a tree in S n,k, and nb(T) be the num-
ber of edges in non-branching paths in T . We can observe
nb(P(T)) > nb(T) always holds, and for any T ∈ S n,k\{Rn,k},
nb(Rn,k) > nb(T) holds.

Therefore by repeatedly finding the parent tree of de-
rived tree, we eventually obtain Rn,k on which nb(T) is max-
imized. Q.E.D.

By merging those sequences of trees in S n,k, we can
have the family tree, denoted by Tn,k, of S n,k, in which each
vertex corresponds to a tree in S n,k and each edge connects
a tree T and its parent P(T). See Fig. 6.

5. Enumerating All Child Trees

If we can enumerate all child trees of a given tree in the fam-
ily tree Tn,k, then by applying the algorithm recursively we
can enumerate all trees in S n,k. We now give an algorithm to
enumerate all child trees of a given tree in S n,k.

Let T be a ordered tree with root r in S n,k. To generate
all children, we define trees T1(v), T2a(v), T2b(v) for some
vertex v of T , later. These are candidates for children of T .
That is, every child tree of T ∈ S n,k is either T1(v), T2a(v),
T2b(v), however the reverse is not always true.

Later we classify those trees into the child trees and
others.

Let T ′ be the tree obtained from T by removing (1)
all root leaves and (2) RL(T) if T has one or more non-
branching paths. The active path AP(T) = (a1, a2, . . . , ap)
of T is the path in T ′ such that (1) a1 is the rightmost child
of the root, (2) ai is the rightmost child of ai−1 for each
i = 2, 3, . . . , p, and (3) ap is a leaf.

If T has a root leaf, then for each i = 1, 2, . . . , p −
1, T1(ai) is the tree obtained from T by (1) removing the
rightmost root leaf, then (2) attaching a new leaf to ai as the
rightmost child. See Fig. 7 (a). T1(ai) is a candidate of Type
1 child.

If T has a root leaf and RL(T), where RL(T) =
(b1, b2, . . . , bq), then for each i = 1, 2, . . . , q − 1, T1(bi) is
the tree obtained from T by (1) removing the rightmost root
leaf, then (2) attaching a new leaf to bi as the rightmost child.
See Fig. 7 (a). T1(bi) is also a candidate of Type 1 child.

If T has RL(T) and RL(T) has one or more edges,
where RL(T) = (b1, b2, . . . , bq), then T2a(ap) is the tree ob-
tained from T by (1) removing bq, (2) attaching a new leaf to
ap, then (3) re-embedding the resulting tree to be left-heavy.
See Fig. 7 (b). T2a(ap) is a candidate of Type 2(a) child.

If (1) T has exactly one non-branching path, say
RL(T) = (b1, b2, . . . , bq), (2) RL(T) has one or more edges,
and (3) b1 is the rightmost child of the root, then for each
i = 1, 2, . . . , p − 1, T2b(ai) is the tree obtained from T by
(1) removing the RL(T) = (b1, b2, . . . , bq), then (2) attach-
ing the RL(T) to ai so that b1 is the rightmost child of ai.
See Fig. 7 (c). T2b(ai) is a candidate of Type 2(b) child.

We assume that T has exactly two non-branching paths
such that they contain the rightmost child of the root and
the second rightmost child, respectively. Thus the two non-
branching path are AP(T) = (a1, a2, . . . , ap) and (T) =
(b1, b2, . . . , bq). Then, for each i = 1, 2, . . . , q − 1 T2b(bi)
is the tree obtained from T by (1) removing the AP(T), then
(2) attaching the AP(T) to bi so that a1 is the rightmost child
of bi. See Fig. 7 (c).

Now we classify those trees into the child trees of T
and others.

Type 1 child tree:
If T has no root leaf, T1(v) is not defined. Assume

otherwise. For each i = 2, 3, . . . , p − 1, T1(ai) is a Type 1
child of T if and only if T1(ai) is a left-heavy ordered tree.
For each i = 1, 2, . . . , q − 1, T1(bi) is a Type 1 child tree of
T if and only if (1) (T) has one or more edges, (2) b1 is the
rightmost child of the root vertex excluding root leaves, and
(3) T1(bi) is the left-heavy ordered tree.

Type 2 (a) child tree:
If T has no RL(T) or RL(T) consists of a root leaf then

ISHIKAWA et al.: ENUMERATING ALL ROOTED TREES INCLUDING K LEAVES
767

Fig. 7 Examples of child trees.

T2a(ap) is not defined. Assume otherwise. T2a(ap) is a Type
2 (a) child of T if and only if T2a(ap) is a left-heavy ordered
tree.

Type 2 (b) child tree:
We assume that T has no root leaf. If T has exactly

one non-branching path such that it has one or more edges
and b1 on RL(T) is the rightmost child of the root, then for
each i = 1, 2, . . . , p − q, T2b(ai) is a Type 2 (b) child tree,
since they are left-heavy. On the other hand, for each i =
p − q + 1, p − q + 2, . . . , q, T2b(ai) is not left-heavy, so it is
not a child tree of T .

If T has exactly two non-branching paths such that they
respectively contain the rightmost child of the root and the
second rightmost child, then for each i = 1, 2, . . . , q − b,
T2b(bi) is a Type 2 (b) child tree. Note that RL(T) is longer
than AP(T).

Based on the case analysis above we can enumerate all
child trees of T by Algorithm 1. By recursively applying
Algorithm 1 from the root tree Rn,k, we can enumerate all
trees in S n,k.

Now we analyze running time of Algorithm 1.
With a help of suitable data structure in [7] we can

check whether each of T1(ai), T1(bi) and T2a(ap) is left-
heavy or not in lines 4, 8 and 17, respectively in constant
time.

We also maintain RL(T) and AP(T) as a list.
To construct T2a(ap) we need to re-embed the resulting

tree to be left-heavy, in which RL(T) may move to right to a
suitable place. To accomplish this in constant time we store
the current tree T as the subtrees of T rooted at the children
of the root as follows. We store the subtrees having the same
height in a list, in which each subtree Tc appear in the order
of L(Tc). Also we prepare an array A[1..n] of pointers, in
which A[i] is a pointer to the list of the subtrees with height
i. Thus in constant time we can move RL(T) to the end of
the list having one less height. Also we can check whether
T has a root leaf or not in constant time.

Algorithm 1: find-all-children(T)
1 Let AP(T) = (a1, a2, . . . , ap) be the active path of T and

RL(T) = (b1, b2, . . . , bq) if T has RL(T).
2 if T has one or more root leaves then
3 for each i = 1, 2, . . . , p − 1 do
4 if T1(ai) is a left-heavy ordered tree then

find-all-children(T1(ai))
5 else break

6 if (1) RL(T) has one or more edges, (2) b1 is the rightmost
child of the root excluding root leaves then

7 for each i = 1, 2, . . . , q − 1 do
8 if T1(bi) is a left-heavy embedding then

find-all-children(T1(bi))
9 else break

10 else
11 if T has exactly one non-branching path, that is RL(T),

such that RL(T) has one or more edges, and b1 on RL(T) is
the rightmost child of the root then

12 for each i = 1, 2, . . . , (p − q) do
find-all-children(T2b(ai))

13 else
14 if T has exactly two non-branching paths, each of them

has one or more edges, and a1 and b1 are the rightmost
and the second rightmost child of the root then

15 for each i = 1, 2, . . . , (q − p) do
find-all-children(T2b(bi))

16 if T has RL(T) and RL(T) has one or more edges then
17 if T2a(ap) is a left-heavy ordered tree then

find-all-children(T2a(ap))

We can compute each T2b(ai) in constant time for each.
Thus we can enumerate all child trees in constant time

for each.

Theorem 1: After constructing and outputting the root tree
Rn,k in S n,k, one can enumerate all trees in S n,k in constant
time for each on average.

By Theorem 1, our algorithm generates each tree in
S n,k in constant time “on average.” However it may have
to return from the deep recursive calls without outputting

768
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

any tree in S n,k after generating a tree corresponding to the
rightmost leaf of a large subtree in the family tree. Therefore
the next tree in S n,k cannot be generated in constant time.

This delay can be canceled [7] by outputting each tree
before its children if the tree corresponds to a vertex at odd
depth, and after its children otherwise.

Now we have the following corollary.

Corollary 1: After constructing and outputting the root
tree Rn,k, one can enumerate all trees in S n,k in constant time
for each in the worst case.

For each k = 1, 2, . . . , n − 1, Rn,k is constructed from
Rn,k−1 in constant time by (1) removing the leaf on the
longest non-branching path, then (2) attaching a new leaf
as the rightmost child of the root. Thus by repeatedly apply-
ing the algorithm in Corollary 1 for each k = 1, 2, . . . , n − 1,
we can enumerate all rooted trees with exactly n vertices.
We have the following theorem.

Theorem 2: After constructing and outputting the root tree
Rn,1, one can enumerate all rooted trees with exactly n ver-
tices in constant time for each in the worst case.

6. Conclusion

In this paper we have given an efficient algorithm to generate
all (unordered) rooted trees with exactly n vertices including
exactly k leaves. Our algorithm generates each such tree in
O(1) time, while a modified version of known algorithms
generates each such tree in O(nk) time.

By repeatedly applying our algorithm for k =

1, 2, . . . , n − 1, we can also generate all rooted trees with
exactly n vertices in constant time for each.

References

[1] T. Beyer and S. Hedetniemi, “Constant time generation of rooted
trees,” SIAM J. Comput., vol.9, no.4, pp.706–712, 1980.

[2] G. Li and F. Ruskey, “The advantages of forward thinking in gener-
ating rooted and free trees,” Proc. 10th Annual ACM-SIAM Symp.
on Discrete Algorithms, (SODA1999), pp.939–940, 1999.

[3] Z. Li and S. Nakano, “Efficient generation of plane triangula-
tions without repetitions,” Proc. 28th International Colloquium on
Automata, Languages and Programming, (ICALP 2001), LNCS,
vol.2076, pp.433–443, 2001.

[4] S. Nakano, “Enumerating floorplans with n rooms,” Proc. Interna-
tional Symposium on Symbolic and Algebraic Computation, (IS-
SAC 2001), Lect. Notes Comput. Sci., vol.2223, pp.104–115, 2001.

[5] S. Nakano, “Efficient generation of plane trees,” Inf. Process. Lett.,
vol.84, no.3, pp.167–172, 2002.

[6] S. Nakano, “Efficient generation of triconnected plane triangula-
tions,” Comput. Geom., Theory Appl., vol.27, no.2, pp.109–122,
2004.

[7] S. Nakano and T. Uno, “Constant time generation of trees with spec-
ified diameter,” Proc. 30th Workshop on Graph-Theoretic Concepts
in Computer Science, (WG 2004), LNCS, vol.3353, pp.33–45, 2004.

[8] J. Pallo, “Generating trees with n nodes and m leaves,” Int. J. Com-
put. Math., vol.21, no.2, pp.133–144, 1987.

[9] J. Sawada, “Generating rooted and free plane trees,” ACM Trans.
Algorithms, vol.2, no.1, pp.1–13, 2006.

[10] R. Wright, B. Richmond, A. Odlyzko, and B. McKay, “Constant
time generation of free trees,” SIAM J. Comput., vol.15, no.2,
pp.540–548, 1986.

[11] K. Yamanaka, Y. Otachi, and S. Nakano, “Efficient enumeration of
ordered trees with k leaves,” Theor. Comput. Sci., in press.

Masanobu Ishikawa received B.E. from
Gunma University in 2010. He is currently a
student of master course in the Graduate School
of Engineering, Gunma University. His research
interests include graph algorithms.

Katsuhisa Yamanaka is an assistant pro-
fessor of Department of Electrical Engineering
and Computer Science, Faculty of Engineering,
Iwate University. He received B.E., M.E. and
Ph.D. from Gunma University in 2003, 2005
and 2007, respectively. His research interests
include combinatorial algorithms and graph al-
gorithms.

Yota Otachi is an assistant professor of To-
hoku University. He received B.E., M.E. and
Ph.D. from Gunma University in 2005, 2007
and 2010, respectively. His research interests in-
clude graph theory and complexity.

Shin-ichi Nakano received his B.E. and
M.E. degrees from Tohoku University, Sendai,
Japan, in 1985 and 1987, respectively. In 1987
he joined Seiko Epson Corp. and in 1990 he
joined Tohoku University. In 1992, he received
Dr. Eng. degree from Tohoku University. Since
1999 he has been a faculty member of Depart-
ment of Computer Science, Faculty of Engineer-
ing, Gunma University. His research interests
are graph algorithms and graph theory. He is a
member of IPSJ, JSIAM, ACM, and IEEE Com-

puter Society.

