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PAPER

Extrapolation of Group Proximity from Member Relations Using
Embedding and Distribution Mapping

Hideaki MISAWA†a), Student Member, Keiichi HORIO†,††b), Member, Nobuo MOROTOMI†††,
Kazumasa FUKUDA†††, and Hatsumi TANIGUCHI†††, Nonmembers

SUMMARY In the present paper, we address the problem of extrap-
olating group proximities from member relations, which we refer to as
the group proximity problem. We assume that a relational dataset consists
of several groups and that pairwise relations of all members can be mea-
sured. Under these assumptions, the goal is to estimate group proximities
from pairwise relations. In order to solve the group proximity problem, we
present a method based on embedding and distribution mapping, in which
all relational data, which consist of pairwise dissimilarities or dissimilari-
ties between members, are transformed into vectorial data by embedding
methods. After this process, the distributions of the groups are obtained.
Group proximities are estimated as distances between distributions by dis-
tribution mapping methods, which generate a map of distributions. As an
example, we apply the proposed method to document and bacterial flora
datasets. Finally, we confirm the feasibility of using the proposed method
to solve the group proximity problem.
key words: group proximity, relational data, multidimensional scaling
(MDS), self-organizing map (SOM), SOM of SOMs (SOM2)

1. Introduction

Data visualization plays an important role in finding prox-
imity structures of hidden information in data. Principal
component analysis (PCA) [1] and the self-organizing map
(SOM) [2] are representative visualization tools for vectorial
data. Most data analysis methods are based on the vecto-
rial representation of data, whereas there exist various types
of non-vectorial data, such as sequences, trees, and graphs.
For such structured data, pairwise relations between objects
are often measured as proximities (similarities or dissimilar-
ities). The data that consist of pairwise proximities are re-
ferred to as relational data, proximity data, or (dis)similarity
data. Relational data can be created from vectorial data with
a certain similarity or dissimilarity measure. Therefore, the
relational representation of data may be more general than
the vectorial representation [3]. For example, pairwise re-
lational data occur as alignment scores or evolutionary dis-
tances between two DNA sequences in bioinformatics and
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also occur as human proximity judgments in empirical sci-
ences, such as psychology and psychophysics. Multidimen-
sional scaling (MDS) and its variants can visualize proxim-
ity structures of relational data [4], [5].

In the present paper, we address the problem of extrap-
olating group proximities from member relations. We as-
sume that a relational dataset consists of several groups and
that pairwise relations of all members can be measured, re-
gardless of the groups to which the members belong. The
goal is to estimate group proximities from pairwise relations
under this situation. We refer to this problem as the group
proximity problem.

Let us present an example of journal similarities. Jour-
nals are collections of articles, and each journal is regarded
as a group of articles. Articles are considered to be rela-
tional data because their pairwise similarities, such as co-
occurrence counts of certain words or co-citation counts,
can be measured. In this case, a journal and an article are
regarded as a group and a member, respectively, and the
goal is to estimate journal proximities from article similar-
ities. This example is related to text mining, web mining,
and bibliometrics.

As another example, let us consider the case of bacte-
rial flora analysis. Bacterial floras are communities of bac-
teria, and each bacterial flora is represented as a set of bacte-
rial DNA sequences in gene-based analysis. The properties
of bacterial floras are characterized by their compositions
(types and relative amounts of bacteria). The proximities of
bacterial DNA sequences are calculated as alignment scores
or evolutionary distances. In this case, a bacterial flora and
a bacterial DNA sequence are regarded as a group and a
member, respectively, and the goal is to estimate composi-
tional proximities from sequence similarities. This example
is related to (microbial) ecology and is further illustrated in
Sect. 3.

In order to solve the group proximity problem, we
present a method based on embedding and distribution map-
ping. In the proposed method, all relational data are trans-
formed into vectorial data by embedding methods. After this
process, the vectorial distributions of groups are obtained.
Group proximities are estimated as distances between dis-
tributions by distribution mapping methods, which generate
a map of distributions. In the present paper, we use a metric
MDS and the SOM of SOMs (SOM2) [6] for embedding and
distribution mapping, respectively.

The remainder of the present paper is organized as fol-
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Fig. 1 Process of the proposed method.

lows. In Sect. 2, the problem is formulated, and the process
of the proposed method is described. Experimental results
obtained for two datasets are presented in Sect. 3. Finally,
we conclude the paper in Sect. 4.

2. Group Proximity Problem

2.1 Problem Formulation

The problem considered herein is that of extrapolating group
proximities from member relations. Let O = {o1, . . . , oN}
denote a set of N objects. Since the problem here is not
clustering, the objects O are divided into M groups in ad-
vance. We assume that the pairwise relations of all objects
can be measured regardless of the groups to which the ob-
jects belong. Relational data are given in the form of an
N × N relational matrix, R = (ri j), where ri j is the pairwise
relation between objects oi and o j. A pairwise similarity or
dissimilarity is often used as the pairwise relation ri j. In this
situation, the problem is to estimate group proximities from
the relational matrix R.

Figure 1 shows the process of the proposed method. In
the proposed method, the relational data R are transformed
into vectorial data X = {x1, . . . , xN} by embedding methods.
After this process, the vectorial distributions of the groups
are obtained. Group proximities are estimated as distances
between distributions by distribution mapping methods. The
remainder of this section describes the embedding and dis-
tribution mapping methods.

2.2 Embedding

Embedding methods represent objects in a low-dimensional
Euclidean space in such a way that certain relationships
between the objects are preserved. For example, isomet-
ric feature mapping (Isomap) [7], local linear embedding
(LLE) [8], and stochastic neighbor embedding (SNE) [9] try
to preserve geodesic distances, local geometries, and proba-
bilities of objects being neighbors, respectively.

Among such embedding techniques, MDS is one of
the most well-known methods for embedding relational
data [4], [5]. Metric MDS attempts to preserve pairwise
dissimilarities. For the group proximity problem, pairwise
relations (dissimilarities) of members should be preserved
as distances between embedding vectors because the group
proximities are estimated from distribution distances, which
are based on vector distances. Hence, a metric MDS is used
in the present paper.

Suppose that pairwise relation ri j is given as a pairwise
dissimilarity δi j. The goal of metric MDS is to find a rep-
resentation of the objects in low-dimensional space so that
the distances di j approximates the dissimilarities δi j, where
di j = ‖xi − x j‖. In the present paper, we use a metric MDS,
in which the cost function, usually referred to as the stress
function, is defined as

E =

√√∑
i> j(δi j − di j)2∑

i> j δ
2
i j

. (1)

The configuration of X = {x1, . . . , xN} is optimized by mini-
mizing the cost function E.

2.3 Distribution Mapping

In the present paper, distribution mapping methods are de-
fined as a method for generating a map of distributions, as
shown in Fig. 1. If the distances between distributions can
be calculated, then the distributions are considered to be re-
lational data. Therefore, embedding methods can be used to
generate a map of the distributions. However, it is not easy
to calculate distribution distances in analytical form.

The SOM has been used to visualize the similarities be-
tween data vectors in a variety of fields [2]. The SOM2 was
proposed as an extension of the SOM so as to represent rela-
tionships between data distributions [6]. The SOM2 gener-
ates a map of the distributions. In the learning of the SOM2,
each distribution is represented by a SOM, and distribution
distances are estimated using the learned SOMs. The SOM2
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is useful for the group proximity problem because the SOM
can represent the different distributions by learning. Hence,
the SOM2 is used in the present paper.

In the following, we briefly explain the architecture and
learning process of the SOM2. For additional details, please
refer to [6]. Suppose that M groups of data {X1, . . . , XM} are
given and each group Xm consists of Im data vectors Xm =

{xm1, . . . , xmIm }. A SOM2 has M child SOMs and a single
parent SOM. The m-th child SOM has L reference vectors
{vm1, . . . , vmL}. A joint reference vector Vm of the m-th child
SOM is defined as Vm = (vm1, . . . , vmL). The task of the m-
th child SOM is to represent the m-th group distribution of
Xm. The parent SOM has K reference maps {W1, . . . ,WK},
where the k-th reference map Wk represents a joint reference
vector Wk = (wk1, . . . ,wkL). The task of the parent SOM is
to generate a SOM of the group distributions using the child
SOMs. The learning algorithm of the SOM2 is described as
follows.

Step 0 All reference vectors {vml(0)} and {wkl(0)} are ini-
tialized randomly.

Step 1 Upon iteration of the learning t, the child SOMs are
updated by the batch SOM algorithm as follows:

l∗mi(t) = arg min
l
‖xmi − vml(t − 1)‖2, (2)

βl
mi(t) =

exp
(
−d2

c (l, l∗mi(t))/2σ
2
c(t)
)

∑Im

i′=1 exp
(
−d2

c (l, l∗mi′ (t))/2σ
2
c(t)
) , (3)

vml(t) =
Im∑

i=1

βl
mi(t)xmi, (4)

where l∗mi(·), dc(·, ·), σc(·), βl
mi(·) are the index of the best

matching unit, the distance between two units on the
child SOM grid, the neighborhood size, and the neigh-
borhood coefficient, respectively.

Step 2 The reference maps are updated by the batch SOM
algorithm regarding {Vm(t)} as a set of data vectors.

k∗m(t) = arg min
k
‖Wk(t) − Vm(t)‖2

= arg min
k

L∑
l=1

‖wkl(t) − vml(t)‖2, (5)

αk
m(t) =

exp
(
−d2

p(k, k∗m(t))/2σ2
p(t)
)

∑M
m′=1 exp

(
−d2

p(k, k∗m′ (t))/2σ2
p(t)
) , (6)

Wk(t) =
M∑

m=1

αk
m(t)Vm(t). (7)

Here, k∗m(·), dp(·, ·), σp(·), αk
m(·) are the index of the

best matching map, the distance between two maps on
the parent SOM grid, the neighborhood size, and the
neighborhood coefficient.

Step 3 The best matching maps are copied to the corre-
sponding child SOMs.

Vm(t) =Wk∗m (t). (8)

Steps 1 through 3 are repeated while reducing the neighbor-
hood sizes σp(t) and σc(t) monotonically according to the
following equations until t reaches the number of learning
iterations tL:

σ(t) = σmin + (σmax − σmin) exp(−t/τ), (9)

where σmax and σmin are the maximum and minimum val-
ues, respectively, of the neighborhood size.

3. Experiments

In order to illustrate the proposed method, we performed ex-
periments on two datasets. In the first experiment, we used
the NIPS 14-16 dataset †. Although the NIPS 14-16 dataset
is not a genuine relational dataset, we used this dataset as
an easily understandable example. In the second experi-
ment, as a genuine relational dataset, we used a bacterial
flora dataset, which was a set of bacterial DNA sequences.

3.1 Experiment 1: NIPS Document Dataset

This dataset was created by Globerson [10] from articles
presented in the Neural Information Processing Systems
(NIPS) conferences from 2001 to 2003. The number of doc-
uments in the dataset is 593. Each document was catego-
rized into one of 13 technical areas. In this experiment, a
technical area and a document were regarded as a group and
a member, respectively. The goal of this experiment is to
estimate the proximities between the technical areas from
document dissimilarities.

3.1.1 Experimental Setting

According to the experiment in [10], the 100 most frequent
words were first removed, and then the next 2,000 most fre-
quent words were used. Each document was represented
as a word count vector. The word-count vectors were nor-
malized such that the sum of the word counts in each doc-
ument was one. One document was excluded because the
document was far away from other documents in the MDS
coordinates. Thus, a total of 592 documents were used in
this experiment. The dissimilarities δi j between the docu-
ments were calculated as Euclidean distances between the
normalized word-count vectors, and the 592 × 592 dissimi-
larity matrix Δ = (δi j) was created.

We used the MDS implemented as the mdscale func-
tion in the MATLAB statistics toolbox with cmdscale initial-
ization. In the learning of the SOM2, the parameters were
set as follows: M = 13, L = 25 (5 × 5), K = 36 (6 × 6),
σp,max =9, σp,min = 1, τp = 30, σc,max = 7.5, σc,min = 0.1,
τc = 40, and tL = 400.

3.1.2 Results and Discussion

Figure 2 shows a vectorial representation of the NIPS doc-
†Available from http://robotics.stanford.edu/˜gal/data.html.
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Fig. 2 Vectorial representation of the NIPS dataset by MDS.

uments. All of the documents were transformed into two-
dimensional vectorial data by the MDS, as shown in the
rightmost bottom panel of Fig. 2. The value of the cost
function E was 0.37. Data points have one-to-one corre-
spondences with the documents. Each panel shows the doc-
ument distribution of each technical area, where the number
in parentheses indicates the number of documents in each
technical area. Figure 2 shows that the groups (technical ar-
eas) tend to be composed of the nearby points (documents)
in the MDS coordinates.

If the dissimilarities are the Euclidean distances and the
dimensionality of embedding vector is proper, then the MDS
can isometrically embed the objects. The dimensionality of
the embedding vector should be high in order to preserve
the pairwise dissimilarities as much as possible. However,
we observed the low reproducibility of the SOM2 results for
the high-dimensional embedding vectors. We believe that
the reason for this is that the SOM can approximate the data
distribution, the intrinsic dimension of which is high, in sev-
eral different ways. Therefore, two-dimensional embedding
was used for visual interpretation and reproducibility in the
present paper.

Figure 3 (a) shows a parent map (K = 6 × 6) generated
by the SOM2 from the distributions shown in Fig. 2. The
grid in each box represents the reference map (L = 5 × 5).
The distributions shown in Fig. 2 were overlaid on the corre-
sponding best matching maps. Figures 3 (b) and 3 (c) show
the U-matrix and MDS representations, respectively, of the

parent map. The U-matrix representation visualizes the dis-
tances between the neighboring reference maps as color or
gray scale and reveals cluster structures [11]. The MDS rep-
resentation was generated by the MDS from the distances
between the reference maps. In both representations, the
distances between the reference maps were calculated as the
distances between the joint reference vectors in the manner
described in Eq. (5).

As shown in Fig. 3, similar technical areas were placed
in close proximity to each other, although the numbers of
documents in the technical areas were very different. The
technical areas related to machine learning, e.g., AA (Al-
gorithms & Architectures), CN (Control & Reinforcement
Learning), and LT (Learning Theory), tend to be in the up-
per right part of the parent map. On the other hand, the tech-
nical areas related to brain science, e.g., BI (Brain Imaging)
and VB (Biological Vision), tend to be located in the left
part of the parent map.

The documents related to vision were divided into three
technical areas. Only VS (Vision) was used for the doc-
uments in 2001 and 2002, whereas, instead of VS, VB and
VM (Machine Vision) were used for the documents in 2003.
Documents corresponding to VB and VS are considered to
have been included in VS. As a result, VS was located be-
tween VB and VM, as shown in Fig. 3.

NS (Neuroscience) and IM (Implementations) were ar-
ranged next to each other in Fig. 3 although these technical
areas appear not to be similar. The reason for this is that the



808
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

Fig. 3 Group proximity map for the NIPS dataset. (a) Parent map of the SOM2. (b) U-matrix repre-
sentation of the parent map. (c) MDS representation of the parent map.

documents in IM were concerned primarily with the hard-
ware implementation of models related to NS, e.g., neurons
and neural networks.

We demonstrated that the proposed method can visual-
ize the proximities between the technical areas from docu-
ment dissimilarities. In this experiment, group proximities
largely depend on the positions of the groups in the MDS
coordinates. In the next experiment, we present an example
in which group proximities depend on their compositions.

3.2 Experiment 2: Bacterial Flora Dataset

We applied the method to a bacterial flora dataset in the sec-
ond experiment. Bacterial floras are communities of bacte-
ria and their properties are characterized by their composi-
tions, which are the types and relative amounts of bacteria
contained in the floras. The types (taxa) of bacteria are iden-
tified by 16S ribosomal RNA (rRNA) gene analysis, where
bacterial taxa are estimated based on the similarities of 16S
rRNA gene sequences to the sequences of known species.
In bacterial flora analysis, it is necessary to elucidate rela-
tionships between bacterial compositions and physiological
or environmental conditions. In the first stage of the analy-
sis, questions such as whether the compositions of bacterial
floras are similar and what part of a bacterial flora is dif-
ferent from other bacterial floras arise. In this experiment,
we attempted to answer these questions using the proposed
method.

In this experiment, we analyzed a part of sequence data
used in [12]. Morotomi et al. analyzed the intestinal bacte-
rial floras of 29 healthy Japanese adults [12]. The fecal sam-
ples were collected from 29 subjects twice at five month in-
tervals. In order to identify bacteria contained in each sam-
ple, 96 clones were randomly selected and sequenced from
each sample using a clone library method [13]. In this ex-
periment, for the sake of easy interpretation, 10 samples (A
through J) were selected from among 29 samples in the first
collection (samples 1, 6, 8, 11, 16, 17, 24, 26, 28, and 29 in
[12]). After refining sequences, we obtained 887 sequences
of the partial 16S rRNA genes in total. In this experiment,
a bacterial flora (sample) and a sequence were regarded as
a group and a member, respectively. The goal of this ex-
periment is to estimate proximities between bacterial floras
from sequence dissimilarities.

3.2.1 Experimental Setting

The similarity between two DNA sequences can be mea-
sured as an alignment score. The alignment is the process
of lining up two sequences to assess their degree of simi-
larity. We used the Smith-Waterman (SW) alignment algo-
rithm [14], which was implemented as the SSEARCH pro-
gram in the FASTA sequence analysis package [15]. Let si j

denote the SW score between the i-th sequence and the j-th
sequence. The SW score si j was linearly transformed into
the dissimilarity δi j as follows:
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Fig. 4 Vectorial representation of the bacterial flora dataset by MDS.

δi j =

{
1 − si j/smax (i � j)

0 (i = j)
, (10)

where smax is the maximum SW score. The 887 × 887 dis-
similarity matrix Δ = (δi j) was used in the MDS. We used
the MDS implemented as the mdscale function in the MAT-
LAB statistics toolbox with cmdscale initialization. In the
learning of the SOM2, the parameters were set as follows:
M = 10, L = 49 (7 × 7), K = 36 (6 × 6), σp,max =9,
σp,min = 1, τp = 30, σc,max = 10.5, σc,min = 0.1, τc = 40,
and tL = 400.

3.2.2 Results and Discussion

Figure 4 shows a vectorial representation of the bacterial se-
quence data. All bacterial sequences were transformed into
two-dimensional vectorial data by the MDS, as shown in
the rightmost bottom panel of Fig. 4. The value of the cost
function E was 0.35. Data points have one-to-one corre-
spondences with bacterial DNA sequences. Different sym-
bols indicate different bacterial taxa at the taxonomic rank
of genus. A total of 46 genera were detected from 10 sam-
ples. The eight most frequent genera are shown by various
different symbols, and the remaining genera are shown as
“others”. The number in parentheses in each panel denotes
the number of sequences in each sample. The bacterial flora
of each sample was represented as the vectorial distribution.
Unlike the NIPS dataset (Fig. 2), the groups (bacterial flora)
did not consist of the nearby points (sequences) in the MDS
coordinates. Figure 5 shows the composition of each sam-
ple. Figures 4 and 5 show that the samples had different
compositions.

Since the dissimilarities used in this experiment were
non-Euclidean distances, the MDS did not isometrically em-
bed the objects. Furthermore, two-dimensional embedding
was used for visual interpretation and reproducibility, which
led to the low preservation of the pairwise dissimilarities.
The effects of the non-Euclideanity and preservation accu-
racy on the results must be investigated further.

Fig. 5 Composition of each sample.

Figure 6 (a) shows a parent map (K = 6 × 6) gen-
erated by the SOM2 from the data distributions shown in
Fig. 4. The grid in each box represents the reference map
(L = 7 × 7). The data distributions shown in Fig. 4 were
overlaid on the corresponding best matching maps. Note
that the information of bacterial taxa was not used in the
SOM2 algorithm. Figures 6 (b) and 6 (c) show the U-matrix
and MDS representations, respectively, of the parent map.

Figure 6 shows that the distributions of samples I and
F are more similar than those of the other samples. In the
diagonal direction from lower right to upper left on the par-
ent map, the percentages of the genus Ruminococcus and
the genus Prevotella tend to decrease and increase, respec-
tively. This direction corresponds to the horizontal axis in
Fig. 6 (c). On the other hand, in the diagonal direction from
lower left to upper right on the parent map, the percentages
of the genus Streptococcus and the genus Collinsella tend
to decrease and increase, respectively. This direction cor-
responds to the vertical axis in Fig. 6 (c). It is confirmed
that the proposed method can reveal the compositional dif-
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Fig. 6 Group proximity map for the bacterial flora dataset. (a) Parent map of the SOM2. (b) U-matrix
representation of the parent map. (c) MDS representation of the parent map.

ferences.
As shown in Fig. 5, the genus Streptococcus and the

genus Eubacterium were dominant in samples D and G, re-
spectively. Samples D and G appear to differ in their com-
position. However, Fig. 6 indicates that these samples are
similar. This is because the sequences of the genus Strep-
tococcus in sample D are similar to the sequences of the
genus Eubacterium in sample G, as shown in Fig. 6. This re-
sult implies that the proposed method can take into account
the sequence (member) similarities. The similarity between
sequences of 16S rRNA genes is used to identify bacterial
taxa. Therefore, this sequence similarity is thought to im-
plicitly represent the similarity between properties of bac-
teria. The proposed method can be used for bacterial flora
analysis, in which the sequence similarity must be taken into
account.

In this experiment, the compositional proximities of
the bacterial flora were estimated based on the distributions.
The next stage of bacterial flora analysis is to reveal the re-
lationships between bacterial compositions and physiologi-
cal or environmental conditions. The proposed method may
contribute to this stage of analysis.

Finally, we emphasize the potential of the proposed
method. The proposed method can be used for not only
communities of bacteria, but also for communities of peo-
ple, such as sports teams and classes in school. In the

present paper, the terms “group” and “member” are used to
explain the hierarchical structures of relational data. There-
fore, the proposed method can be widely applied to rela-
tional data with such a hierarchical structure.

4. Conclusion

We have addressed the problem of extrapolating group prox-
imities from member relations (group proximity problem)
and proposed a method based on embedding and distribu-
tion mapping. In the present paper, a metric MDS and the
SOM2 were used for embedding and distribution mapping,
respectively. The proposed method was applied to the NIPS
document and bacterial flora datasets. The results of these
experiments confirmed that the proposed method is useful
for solving the group proximity problem. In the future, we
intend to investigate the effects of the non-Euclideanity and
preservation accuracy on group proximities and to compare
the proposed method with other approaches for solving the
group proximity problem.
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