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PAPER

Time Score: A New Feature for Link Prediction in Social Networks∗

Lankeshwara MUNASINGHE†a), Nonmember and Ryutaro ICHISE†b), Member

SUMMARY Link prediction in social networks, such as friendship net-
works and coauthorship networks, has recently attracted a great deal of
attention. There have been numerous attempts to address the problem of
link prediction through diverse approaches. In the present paper, we focus
on the temporal behavior of the link strength, particularly the relationship
between the time stamps of interactions or links and the temporal behavior
of link strength and how link strength affects future link evolution. Most
previous studies have not sufficiently discussed either the impact of time
stamps of the interactions or time stamps of the links on link evolution.
The gap between the current time and the time stamps of the interactions
or links is also important to link evolution. In the present paper, we intro-
duce a new time-aware feature, referred to as time score, that captures the
important aspects of time stamps of interactions and the temporality of the
link strengths. We also analyze the effectiveness of time score with differ-
ent parameter settings for different network data sets. The results of the
analysis revealed that the time score was sensitive to different networks and
different time measures. We applied time score to two social network data
sets, namely, Facebook friendship network data set and a coauthorship net-
work data set. The results revealed a significant improvement in predicting
future links.
key words: link prediction, time stamps, temporal behavior, social net-
works

1. Introduction

Link prediction [13] was introduced as a way to infer which
new links are likely to occur in the near future in a given
network. If we are presented with a snapshot of a network
at time tc, the goal is to predict links that are likely to occur
at a future time t f . The information of the structure of the
given network and the features of nodes and edges can be
used to predict future links.

Link prediction in social networks has become an im-
portant task in network science because it offers great ben-
efits to the users of social networking services as well as
to various organizations and researchers. For example, on-
line social networking services, such as Facebook, can pro-
vide their users with more accurate service and more pre-
cise recommendations or suggestions. Therefore, users of
these services can efficiently find their friends, colleagues,
or people whom they wish to meet [14]. Organizations such
as security agencies and business organizations will be able
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to find more accurate information regarding unseen rela-
tionships among people or organizations and so may oper-
ate more effectively. Researchers can find other individu-
als in the same research field, experts, and research organi-
zations [8], [9], [21], [24], [25], [32], [33]. However, highly
structured massive real-world networks involving heteroge-
neous entities with complex associations have added new
challenges to link prediction research. Supervised and un-
supervised learning methods [4], [11] have been used in pre-
vious studies with different frameworks for link prediction,
but machine learning approaches remain an immense chal-
lenge [5], [27]. Machine learning methods are difficult to ap-
ply because of the complexity and size of the networks as
well as the temporal behaviors of the links in the networks.

The temporality of links can be caused by various fac-
tors depending on the nature of the network. The factors that
cause the temporal behavior of the links and how these fac-
tors can be effectively used for link prediction in networks
must be determined. To our knowledge, this scenario has not
been discussed sufficiently in the context of link prediction.
The links are strong for a certain period of time but then
become weaker and fade. Such link behavior increases the
complexity of link prediction because stronger links have a
greater influence over link evolution than weaker links. The
main contribution of the present study is determining the im-
pact of the relationship between the time stamps of the in-
teractions and the link strength for future links. Therefore,
we introduce a new feature to incorporate the impact of the
time stamps of the interactions and the gap between the cur-
rent time and the time stamps. In addition, the present paper
discusses the correlation between the measurement unit of
time and the parameters of the new feature as an extension
of a previous study [16]. We use the new feature in conjunc-
tion with supervised machine learning methods in order to
predict links in network data sets.

The remainder of the present paper is organized as fol-
lows. In Sect. 2, we discuss related studies and the impor-
tance of time awareness for link prediction. In Sect. 3, we
introduce a method of link prediction and the newly pro-
posed feature, time score. Experimental results are pre-
sented in Sect. 4, and a general discussion is presented in
Sect. 5. Section 6 presents our conclusions and discusses
future research.

2. Related Research

In this section, we review research related to link prediction
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as well as background information on link prediction. The
increase in the number of studies related to link prediction
in the recent literature reveals a growing interest in link pre-
diction. Diverse approaches, including machine learning ap-
proaches and probabilistic approaches, have been proposed
in order to address the problem of link prediction.

Link prediction is a type of link mining, which is a
newly emerging research field in the realm of data min-
ing, and presents new challenges to machine learning tech-
nologies [6]. Feature construction and collective classifica-
tion using a learned model is a prominent feature of ma-
chine learning. A support vector machine (SVM) was used
in combination with the structural features of networks in-
troduced in [13] for link prediction in coauthorship net-
works [8], [21]. Later, the introduction of features such as
keyword match count for paper topics and abstracts [24],
[32], in combination with decision trees provided more ac-
curate link predictions in coauthorship networks. These pre-
vious studies have proven the consistency and effectiveness
of decision trees and the SVM [3] in link prediction. How-
ever, sparse real-world networks have presented additional
difficulties in machine learning approaches due to the huge
imbalance between possible links and actual links observed
in these networks. The authors of a previous study [14] in-
terpreted the problem of link prediction as a problem in class
imbalance between possible links and actual links. They
used SMOT [2], which is a widely accepted sampling strat-
egy to overcome imbalance.

Probabilistic approaches basically estimate the likeli-
hood of future possible links [10]. Among recent studies, a
local probabilistic model was used in [31] to estimate the
cooccurrence probability of a node with other nodes within
the local proximity of the node. The local proximity is de-
fined on the path length, and the path length is defined in
terms of the number of links. However, the temporal behav-
ior of the links within the defined proximity has not been
taken into account. It would be more effective if the impact
of older links and more recent links were taken into account
in defining local proximity, rather than considering only the
path length. The probabilistic graph created using the struc-
tural features introduced in [13] has been used in [12] to
estimate the probabilities of future links in a network. Here,
the time stamps of the links were used to compute the dif-
ference in joining time for groups. However, the temporal
behavior of the links in link prediction phase was not con-
sidered.

Besides machine learning and probabilistic ap-
proaches, other different approaches can be seen in the lit-
erature. Link prediction models were built using statisti-
cal relational learning and properties of relational data [22].
Relational markov network model was used in [28] to de-
fine joint probabilistic model over entire network. Then the
model was used for link prediction in entire network. A ma-
trix alignment method was used to determine the most pre-
dictive features of a link structure by aligning adjacency ma-
trix of a network with weighted similarity matrices [26]. The
weighted similarity matrices computed from node attributes

and neighborhood topological features and the weights were
learned by minimizing an objective function.

There are many time-evolving network models can be
found in the literature. Epidemic models [17] are one of
the popular time-dependent models which are generally de-
signed to study the disease outbreaks over the human net-
works. Baràbasi-Albert model [34] is one of the best known
generative network model which has been use to study the
evolution of networks. Exponential random graph mod-
els [35] are widely use to estimate probabilistic models for
small-world networks. However, most of the above network
models are focused on a particular type of networks. In con-
trast to that, our method is adaptable for any type of net-
works because it can easily use with machine learning meth-
ods.

Some of the above worthy studies considered the tem-
poral behaviors of the links in the networks but most others
are not. For example, when matching semantic similarities,
matching abstract keywords [24], would be more effective
if higher weights were assigned to keywords in more recent
publications. The random walk [14] would be more effective
if the random walker were to choose its path according to not
only the path weight but also using the link strength, which
varies over time. Recently, the time-aware maximum en-
tropy [29] was introduced in order to assign higher weights
to more recent collaborations, as compared to older collab-
orations, in coauthorship networks. Although the impact
of the time stamps on the temporality of the links was dis-
cussed, the impact of all coocurrences and time stamps of all
interactions is not taken into account when assigning a score
to a node. These observations inspired us to investigate the
temporal behavior of the links. Therefore, we focused on
finding a relationship between the time stamps of interac-
tions or links and the temporal behaviors of the links and
how this relationship affects future link evolution.

3. Supervised Learning Method for Link Prediction

As discussed above, link prediction deals with predicting
future possible links in a given network. Most of the ap-
proaches discussed in Sect. 2 use structural features of net-
works and the features of the nodes and edges for link pre-
diction. In coauthorship networks, the nodes are authors,
and the edges are the publications by these authors, whereas
in friendship networks, such as Facebook, the nodes are
users, and the links are the relationships between users. In
both cases, similarities between nodes and the structural fea-
tures of the networks can be used to predict future links. For
example, the number of common neighbors of a node pair
and Jaccard’s coefficient [15] can be computed. Once these
features are calculated for a particular node pair, we have a
vector of values referred to as a feature vector [21], which
may be correlated with the future possible link between that
node pair.

In a supervised learning approach, we use the feature
vectors of each node pair to learn a model that can then be
used to predict the appearance of future links. Once we com-
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Table 1 Feature listing.

Feature Formula BC† TSC††
Adamic/Adar

∑
vkεΓ(vi)

⋂
Γ(v j)

1
log|Γ(vk)| � �

Common neighbors |Γ(vi)
⋂
Γ(v j)| � �

Jaccard’s coefficient
|Γ(vi)

⋂
Γ(v j)|

|Γ(vi)
⋃
Γ(v j)| � �

Preferential attachment |Γ(vi)||Γ(v j)| � �

Time score
∑
n

Hmn β
kn

|t1n−t2n |+1 - �

†Baseline combination ††Time score combination

pute the feature vectors for each node pair, we obtain a set of
feature vectors for node pairs that are already linked and an-
other set of feature vectors for node pairs that are not linked.
The goal is to find a model that predicts unlinked node pairs
that are likely to be linked in the future using feature vec-
tors of already linked node pairs. To this end, we train the
supervised machine learning method using the set of fea-
ture vectors to find unlinked node pairs which are likely to
become linked in the future.

3.1 Features Used for Link Prediction

Table 1 lists the details of the features used in the present
study. We used two different combinations of features in
the proposed machine learning approach for link prediction.
One set was used as the baseline combination, and the other
set is the time score combination, which includes the time
score introduced herein. The existing features are described
below.

Adamic/Adar [1] This measure indicates that if a node pair
has a common neighbor that is not common to several
other nodes, then the similarity of that particular node
pair is higher than that of node pairs having neighbors
that are common to several other nodes. This measure
assigns higher weights to common neighbors that are
not common to several other nodes.

Common neighbors Number of common neighbors of a
node pair.

Jaccard’s coefficient [15] Normalized measure of common
neighbors.

Preferential attachment [18] This measure indicates that
new links are more likely to be formed with nodes of
higher degree, or nodes that are popular in the network.

In the formulas in Table 1, vi, v j, and vk denote nodes, and
Γ(vi) and Γ(v j) denote the sets of neighbors of vi and v j,
respectively. In Sect. 3.2, we discuss the new feature called
time score introduced herein.

3.2 Time Score

We introduced a new feature to incorporate the effectiveness
of common neighbors and their temporality. The features
discussed in Sect. 3.1 are based solely on common neigh-
bors, but do not consider the temporal behavior of the com-
mon neighbors. The strengths of links with common neigh-
bors vary over time. In the context of social networks, the

Fig. 1 Nodes a and b have common neighbor c. Here, t1 is the most
recent time stamp of the interactions between a and c, and t2 is the most
recent time stamp of the interactions between b and c. The current time is
denoted as tc.

effectiveness of the common neighbors depends not only on
the cooccurrence frequency, or number of common neigh-
bors, but also on how long the neighbors have been in con-
tact. The time stamps of the interactions are useful in find-
ing such information. This information provides a far better
view of the importance of common neighbors than consid-
ering only the number of common neighbors. To this end,
we designed a new feature based on the following concepts.

1. The strength of a link varies over time. If the nodes at
the ends of a link have not interacted with each other
for a long time with respect to the current time, then
the link becomes weaker.

2. We assigned a higher score to node pairs which have in-
teracted with their common neighbors within a closer
proximity of time. In other words, if the difference be-
tween the time stamps of the most recent interactions of
common neighbors having the node pair is small, then
this difference has a greater effect on future links.

Combining the above considerations, we introduced a new
feature, time score (TS), to take into account the time aware-
ness for link prediction. Time score for the node pair a and
b that has n common neighbors is defined as follows:

TS (a, b) =
∑

n

Hmnβ
kn

|t1n − t2n | + 1
(1)

This concept is illustrated in Fig. 1. Nodes a and b have
common neighbor c. Here, t1 is the most recent time stamp
of the interactions between a and c, and t2 is the most recent
time stamp of the interactions between b and c. In addition,
Hm is the harmonic mean of the cooccurrence frequencies of
a and b with the common neighbor c. β is a damping factor
(0 < β < 1). k is the difference between current time tc and
the most recent time stamp from t1 and t2, and k is defined
as follows:

k = tc − max(t1, t2) (2)

The number of interactions or cooccurrences, referred to as
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link value, of a node pair is also important in determining the
link strength. Therefore, we used the harmonic mean of the
link values of each node in a node pair with their common
neighbor. The harmonic mean, Hm, of numbers x1, . . . , x j is
defined as follows:

Hm =
1

1
j

j∑
i=1

1
xi

(3)

Typically, the harmonic mean is appropriate for situations
in which an average of rates is desired. In Eq. (3), xi (i =
1, . . . , j) denote the rates. In the present case, j = 2 because
we used the link values of each node in a node pair with
their common neighbors as the rates.

In Eq. (1), the term βkn increases as kn decreases. We
use the reciprocal of the term |t1n − t2n | + 1, where t1n and
t2n are the time stamps of the most recent interactions of
the node pair with the common neighbor. This term be-
comes larger when the difference between t1n and t2n be-
comes larger. The addition of one in the term is in order
to avoid the time score from becoming infinite when the two
time stamps are equal.

Compiling all, the new feature time score can be used
as a feature, which is used for predicting future possible
links. In order to show how to calculate time score, let us
assume that two authors, a and b, have common neighbor
author c. If a and c published two papers in 2005 and 2006
and authors b and c published one paper in 2008, then the
harmonic mean of two publications and one publication is
obtained as follows:

Hm =
1

1
2 ( 1

2 +
1
1 )
= 1.3333 (4)

If the current year is assumed to be 2011, then the time score
for a future possible link between a and b can be calculated
as follows:

TS (a, b) =

(
1.3333 ∗ 0.53

|2008 − 2006| + 1

)
≈ 0.05555 (5)

In this case, k = 2011 − 2008 = 3, because the latest time
stamp is 2008, and the current year is 2011. The number of
common neighbors, n, is 1, and we assume that β = 0.5.

4. Experimental Evaluation

In order to test the effectiveness of the proposed method, we
performed two experiments using two real-world social net-
work data sets. The first experiment tested the correlation
between β and the unit of k. The purpose of this experiment
was to provide guidelines for choosing values of the damp-
ing factor β, particularly for different time units k and differ-
ent data. The second experiment tested the effectiveness of
time score for link prediction.

We used two data sets in these experiments. The first
data set was Facebook friendship network data from [30],
which were collected from the regional Facebook network

of New Orleans. The Facebook data was collected for
60,290 users who are connected by 1,545,686 links. We
extracted a snapshot of the data from October 2007 to Jan-
uary 2009. The second data set is a coauthorship data set
extracted from 66,791 publications on condensed matter
physics from 1997 to 2005 in the cond-mat archive †. This
data set contains data for 79,208 authors who are connected
by 641,796 links.

In the experiments, we used J48 weka implementa-
tion [7] of C4.5 decision tree algorithm [23] and SMOT
oversampling algorithm [2] with default parameters. Su-
pervised machine learning algorithms required training data
to train the learner. Therefore, we used user interactions
(wall postings) within three consecutive months to predict
the links of the following month because social networks
such as Facebook show drastic changes within short peri-
ods of time. In order to predict the links that emerged dur-
ing January 2009, we trained the decision tree algorithm us-
ing the data from September 2008 to December 2008. Fea-
tures were computed using the network data from Septem-
ber 2008 to November 2008, and the links that emerged dur-
ing December 2008 were considered to be the positive ex-
amples for training data. The trained model was applied for
the features calculated for the data from October 2008 to
December 2008 in order to predict the links that emerged
during January 2009.

For the coauthorship data, we used data for three con-
secutive years to predict the links of following year, and the
unit of k is years. For example, in order to predict the set of
links that emerged in 2010, features for the training set were
calculated using the coauthorship data from 2006 to 2008,
and links that emerged in the year 2009 were considered to
be positive examples for training data.

Tables 2 and 3 show the statistics of the two network
data sets used in the experiments. The real-world networks
we used for our experiments are very sparse, and so the rate
of positive examples is very low. On average, the percent-
ages of positive examples in the Facebook data and the coau-
thorship data were 0.05% and 0.08%, respectively. In order
to solve this problem, we used the SMOT oversampling al-
gorithm [2] in these experiments. After oversampling, the
percentages of positive examples in the Facebook data and
the coauthorship data were 0.3% and 0.5%, respectively.

4.1 Correlation between Damping Factor and Time Unit

In the first experiment, we test the correlation between β
and the unit of k. We analyzed the precision, recall, and
F-measure of the predictions for each data set by varying
β between 0.1 and 0.9. The purpose of this analysis is to
provide a guideline for selecting β according to the unit of
k. The range of k depends on the time unit.

Figure 2 shows the variation of average precision, re-
call, and F-measure for each β value for Facebook data. The
average precision, recall, and F-measure increase as β in-

†http://arxiv.org/archive/cond-mat/
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Table 2 Statistics of the Facebook data.

Prediction month
Training data Test data
Nodes Edges Nodes Edges

2008 Feb 13,733 50,248 13,732 47,986
2008 Mar 13,732 47,986 13,998 48,238
2008 Apr 13,998 48,238 14,762 50,732
2008 May 14,762 50,732 15,705 56,014
2008 Jun 15,705 56,014 16,381 58,546
2008 Jul 16,381 58,546 17,268 60,718
2008 Aug 17,268 60,718 18,339 63,392
2008 Sep 18,339 63,392 20,476 71,792
2008 Oct 20,476 71,792 22,732 80,848
2008 Nov 22,732 80,848 25,427 92,990
2008 Dec 25,427 92,990 28,370 106,106
2009 Jan 28,370 106,106 31,832 123,650

Table 3 Statistics of coauthorship data.

Prediction year
Training data Test data
Nodes Edges Nodes Edges

2001 23,411 135,798 27,349 167,180
2002 27,349 167,180 31,662 209,632
2003 31,662 209,632 34,860 237,346
2004 34,860 237,346 38,039 266,236
2005 38,039 266,236 41,213 288,796

Fig. 2 Variation of performance metrics with β for Facebook data.

creases. A notable increase occurs at β = 0.9. We conducted
a Grubbs’ test to determine the significance of the difference
between the F-measure at β = 0.9 and the F-measures at
β = 0.1 to 0.8. The results of the Grubbs’ test indicate that
β = 0.9 is an outlier with a significance level of 5%. This
indicates that the performance of the time score at β = 0.9
is significantly higher than for other β values and is thus a
good parameter for Facebook data. The approximate range
of k for the Facebook data is 0 to 90 days. Therefore, we
can recommend higher β values as more appropriate when k
takes a wide range of values.

Figure 3 shows the variation of average precision, re-
call, and F-measure for each β for coauthorship data. Better
performance is obtained for lower β values, as indicated by
the slight decrease in performance when β is greater than
0.5. The range of k is small (0 ≤ k ≤ 2) for the coauthorship
data because we used the data of three consecutive years to
predict links in the following year. The term βk can take a
higher value, even when β is small. Since the range of k is

Fig. 3 Variation of performance metrics with β for coauthorship data.

small for coauthorship data, the term βk takes closer values
for higher β values, and time score becomes less effective
for the learning algorithm. Therefore, lower β values should
be used to compute time score when k has a small range.

The unit of k can be years, days, or hours, depending
on the data set. We need to set β according to the unit of
k in order assign higher scores to interactions that have oc-
curred more recently. When k increases, βk decreases. For
higher values of k and lower values of β, the term βk is ap-
proximately 0. For example, when k = 10 and β = 0.5, βk

is approximately 0.00098. In order to obtain a meaningful
value for βk when k has a wide range, we must use a higher
β. In a network such as Facebook, interactions that occurred
ten days ago have more of an effect on future links than in-
teractions that occurred ten years ago in the coauthorship
network. Therefore, higher β values are better when k has a
wide range, and lower β values are better when k has a small
range.

4.2 Effectiveness of Time Score

In this section we discuss the experiments carried out to test
the effectiveness of time score for link prediction. We used
the β values corresponding to the highest F-measure for each
data set in the first experiment to compute time score. We
compared the performance metrics for baseline combination
(BC), which combines the existing features, and time score
combination (TSC), which combines the new feature time
score with the existing features.

4.2.1 Experiment Using Facebook Data

In the Facebook data, the frequency of the wall postings be-
tween users is considered to be the link value of each node
pair that is already connected. Time stamps of the links are
created using the time stamps of the wall postings so that
the time stamp of a link represents the day of the most re-
cent interaction between two users. We set β to be 0.9. The
unit of k is days.

The performance metrics for Facebook data are com-
pared in Fig. 4. The performance metrics show a notable
improvement for time score combination, as compared to
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Fig. 4 Comparison of performance metrics for Facebook data.

the baseline combination. On average, the use of time score
increased the precision, recall, and F-measure by 4%, 3%,
and 7%, respectively.

According to the wall post data shown in Fig. 5, and
as stated in [30], the number of wall posts increases rapidly
from July 2008 to January 2009. This makes the network
more active, and most of the existing links become stronger.
The stronger links have a greater influence on future link
evolution. Therefore, the use of time score is more effec-
tive and yields better results. This observation further indi-
cates that time score is more sensitive to the temporal be-
havior of user interactions. However, in February 2008 and
June 2008, there is a decrease in the number of wall posts.
Thus, the network becomes less active, and the strengths of
the links do not exhibit temporal variations in behavior in
the network during this period. Therefore, the performance
metrics exhibit slightly lower values for time score combi-

Fig. 5 Variation of the number of wall posts in Facebook data.

nation than for baseline combination. Except for the results
of February 2008 and June 2008, the t-test at the 5% signif-
icance level indicates significant improvements. Therefore,
we can conclude that time score is more effective for rapidly
evolving networks.

4.2.2 Experiment Using Coauthorship Data

In the coauthorship data set, the unit of k is years. The time
stamp for the interaction between a pair of authors repre-
sents the year of publication of the coauthored paper. Hence,
the time stamp of a link represents the year of most recent
publication by a pair of authors. A damping factor of β = 0.2
was used in this experiment.

The performance metrics of this experiment are com-
pared in Fig. 6. The improvements in precision, recall, and
F-measure indicate the impact of time score for link pre-
diction in the coauthorship network that evolves primarily
over recent collaborations. In the graph comparing preci-
sion, with the exception of 2001, the results obtained using
time score combination are better than the results obtained
using baseline combination. All three performance metrics
indicate significant improvements according to the t-test at
the 5% significance level. The average improvements in
precision, recall, and F-measure are 14%, 11%, and 13%,
respectively.

5. Discussion

In the Facebook friendship network, the friends of a user can
view the wall posts of that user if the user shares the wall
posts with his/her friends. Thus, users who have that par-
ticular user as a common neighbor, while having no other
relationship, can become friends through each other’s post-
ings. Burst of wall postings indicates that more people are
interacting with each other and become friends. Therefore,
recent interactions happen in closer proximity of time have
a greater influence on link evolution. Besides the factors we
investigated in our experiments, the link evolution could be
depend on other temporal factors such as duration of data
collection and geographical region of the network. In par-
ticular, the Facebook network exhibits different patterns de-
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Fig. 6 Comparisons of performance metrics for coauthorship data.

pending on the time, the major events that occur during the
period of data collection, and the geographical region of the
network. Such kind of factors are to be explored in our fu-
ture works.

Previous studies have extensively investigated the evo-
lution of scientific collaboration networks using network
statistics [19], [20]. However, scientific collaborations are
time-sensitive. Researchers prefer to explore evolving top-
ics through new collaborations. To this end, researchers
tend to find associates or experts through their most recent
collaborations. This increases the temporality of the links
among the researchers. On the other hand, the temporality in
coauthorship networks has several causes. For example, re-
searchers tend to change research fields according to current
research trends and occasionally change institutes or univer-
sities. In such situations, the geographical locations of the
researchers and current research trends become important

factors in predicting links in coauthorship networks.

6. Conclusion and Future Research

The main contribution of the present study is the introduc-
tion of a new time-aware feature, called time score, for
link prediction in social networks using supervised machine
learning methods. The primary focus of the present study
was the impact of the relationship between the temporal be-
havior of link strength and the time stamps of interactions
and links for link evolution, which had not previously been
discussed sufficiently. We found that the time stamps of in-
teractions are crucial factors for link evolution. In particular,
we focused on the temporal behavior of common neighbors
in terms of link strength. We examined the proposed method
using two real-world data sets. The improvements in perfor-
mance metrics indicated by the experimental results verify
the effectiveness of time score for link prediction in social
networks. Therefore, we can obtain better predictions using
the newly proposed time score feature.

The present study was limited to node pairs having
common neighbors. In the future, we intend to extend the
proposed method to any node pair in a network. Exploring
other factors of temporal behaviors of networks is one of the
primary goals of our future research. Some of these factors
are network specific. Therefore, the use of temporal behav-
iors for link prediction is a challenging task. Furthermore,
we intend to demonstrate that the proposed method is appli-
cable to a wide range of algorithms that have been used for
link prediction, such as flow-based algorithms and statistical
modeling approaches.
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