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Improvement of SVM-Based Speech/Music Classification Using
Adaptive Kernel Technique

Chungsoo LIM†, Nonmember and Joon-Hyuk CHANG††a), Member

SUMMARY In this paper, we propose a way to improve the classifica-
tion performance of support vector machines (SVMs), especially for speech
and music frames within a selectable mode vocoder (SMV) framework. A
myriad of techniques have been proposed for SVMs, and most of them are
employed during the training phase of SVMs. Instead, the proposed algo-
rithm is applied during the test phase and works with existing schemes. The
proposed algorithm modifies a kernel parameter in the decision function of
SVMs to alter SVM decisions for better classification accuracy based on
the previous outputs of SVMs. Since speech and music frames exhibit
strong inter-frame correlation, the outputs of SVMs can guide the kernel
parameter modification. Our experimental results show that the proposed
algorithm has the potential for adaptively tuning classifications of support
vector machines for better performance.
key words: SVM, SMV, adaptive kernel, sigmoid

1. Introduction

Recent progress in mobile communication and semi-
conductor technology enables us to receive diverse multi-
media services with our personal wireless devices such as
cell phones. Since these services and technologies are still
emerging, there are still problems to be resolved. One issue
is how to effectively utilize limited bandwidth. To fully take
advantage of limited bandwidth, variable bit-rate speech
coding has been researched. An example of variable bit-
rate coding is the selectable mode vocoder (SMV) speech
codec adopted by the third-generation partnership project
2 (3GPP2). Variable bit-rate coding requires speech/music
classification, and the SMV codec incorporates a simple
speech/music classification algorithm for different bit-rate
allocations [1]. Among speech/music classification tech-
niques, a technique that combines features from the SMV
codec and support vector machines (SVMs) recently showed
great potential [2]. To take advantage of the potential, we
propose an algorithm that adaptively tunes classifications of
SVMs specifically tailored for speech and music frames.

While existing techniques targeting SVMS [3]–[5] are
employed during the training phase of SVMs, a technique
that applies during the test phase of SVMs was proposed [6].
This technique assigns a different weight to each input el-
ement based on its contribution to generalization error in
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order to improve the performances of SVMs. Since this al-
gorithm is designed for the test phase, it can be utilized with
other techniques developed for the training phase, yielding
an increase in synergistic performance.

In this paper, we propose a simple but effective algo-
rithm employed during the test phase, in which the decision
function of SVM is evaluated. For the kernel function, we
use a radial basis function (RBF) [5]. With this classical
kernel function, we can manipulate the RBF width param-
eter. Since the influence of the kernel parameter of RBF
on SVM outputs is not clearly understood, we analyze the
impact of the kernel parameter on SVM classifications and
show how to control SVM classifications with the kernel
parameter. Even though we know how to control outputs
of the decision function, adaptively tuning SVMs requires
guidance that minimizes classification error. For this pur-
pose, we propose a novel scheme for adjusting the kernel
parameter by using strong correlations of speech/music ac-
tivity among neighboring input frames [7].

2. Brief Review of SMV Codec

At first, we briefly review the SMV codec since it is uti-
lized for the system. SMV, an adaptive multi-rate speech
codec adopted as a standard in 3GPP2, is capable of effi-
ciently utilizing limited bandwidth [1]. It features four aver-
age data rate and four operational modes dynamically cho-
sen based on the types of input frames and statuses of com-
munication channels respectively. The parameters used for
speech/music classification are running average of energy,
running mean of the reflection coefficients, running mean of
the partial residual energy, running mean of the normalized
pitch correlation, running average of the periodicity counter,
and music continuity counter as listed in [2].

3. RBF Kernel Parameter Modification to Enhance
SVM

Radial basis function (RBF) is one of the classical kernel
functions adopted in SVM [5] and is used for classification
problems that are not linearly separable. In this section, we
vary the parameter of RBF to examine the influence of it
on the outputs of SVMs. When input vector x is linearly
separable, the decision function results in the following:

f (x(t)) =
M∑

i=1

α∗i yi〈x∗i , x(t)〉 + b∗ (1)
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where x∗i is the ith vectors of M support vectors and x(t)
is the tth input frame vector. Optimization bias b∗ and La-
grange multiplier α∗ are acquired by solving a quadratic pro-
gramming problem. If input vectors are not linearly separa-
ble, its decision function should incorporate a kernel func-
tion, given by

f (x(t)) =
M∑

i=1

α∗i yiK(x∗i , x(t)) + b∗. (2)

As mentioned above, RBF is used as the kernel function and
is defined as the following:

K(x∗i , x(t)) = exp(−γ ‖ x∗i − x(t) ‖2) (3)

where γ is the kernel parameter of RBF and is associated
with the width of RBF. If we add a small positive value (δ)
to γ to increase it, the new modified RBF kernel becomes

K̃(x∗i , x(t)) = exp(−(γ + δ) · ‖x∗i − x(t) ‖2). (4)

If we rewrite Eq. (4), it can be expressed as

K̃(x∗i , x(t)) = exp(−γ‖x∗i −x(t) ‖2) · exp(−δ‖x∗i −x(t) ‖2)

(5)

As seen above, the modified kernel function K̃(x∗i , x(t)) is
the product of the original kernel function K(x∗i , x(t)) and
exp(−δ‖x∗i − x(t) ‖2). Here, if a positive δ is added to γ, the
added term exp(−δ‖x∗i − x(t) ‖2) is a value between 0 and 1,
making K̃(x∗i , x(t)) smaller than K(x∗i , x(t)). On the contrary,
if a negative δ is added to γ, exp(−δ‖x∗i − x(t) ‖2) is a value
larger than 1, making K̃(x∗i , x(t)) larger than K(x∗i , x(t)).

For a clear analysis, we vary δ and observe how the
outputs of the decision function changes as Table 1 contains
the result. The first row shows six δ values added to the ker-
nel parameter γ. The second row holds the ratio between the
number of transitions from positive to negative outputs and
the number of positive outputs before γ is adjusted. The last
row represents the ratio between the number of transitions
from negative to positive outputs and the number of nega-
tive outputs before γ is modified. This table is populated
with 50 data files that will be explained in Sect. 5.

If a positive δ is added to γ, outputs of SVMs are likely
to change from positive to negative values, and the reverse
transitions rarely occur. On the other hand, a negative δ pro-
duces the opposite behavior. To achieve more insight about
this behavior, it is desirable to consider the decision function
that follows.

f (x(t)) = f +(x(t)) − f −(x(t)) + b∗ (6)

where f +(x(t)) is one part of f (x(t)) that corresponds to the

Table 1 Impact of kernel parameter δ on the polarity of f (x(t)).

δ 0.03 0.06 0.09 −0.03 −0.06 −0.09
+→ − 11.41 23.69 53.15 0.22 0.27 0.26
− → + 0.08 0.15 0.22 6.05 15.32 32.76

case where yi is 1, and f −(x(t)) is the other part of f (x(t))
that corresponds to the case where yi is −1. If a negative
δ is added to γ, both f +(x(t)) and f −(x(t)) become larger,
and, at the same time, the difference between them tends to
be larger too. Thus, for the case where f +(x(t)) is larger
than f −(x(t)) but f (x(t)) is negative due to a negative bias
b∗, bigger difference between f +(x(t)) and f −(x(t)) resulted
from a negative δ can switch the polarity of f (x(t)). This is
the major reason for the polarity switch from negative to a
positive value when a negative δ is added to γ. The polarity
switch from a positive to negative value when a positive δ is
used can be similarly explained.

For our speech/music classification, because we label
music as −1 and speech as 1, if a positive value is added to γ,
more classifications are made for music, while the number
of classifications as speech decreases. One more thing we
can learn from the table is that the number of transitions is
proportionate to δ. From these two observations, we can
concluded that we are able to control output of the decision
function with δ. Nonetheless, there is one thing missing:
there is no rigorous rule for adjusting γ. Section 4 introduces
a rule for when to adjust the kernel parameter.

4. Guidance Based on Correlations among Adjacent
Frames

Although we know how to control outputs of SVMs with the
kernel parameter of RBF, we still need a rule for adaptively
tuning the outputs of SVMs. To adjust the kernel param-
eter in such a way as to reduce error, we propose a way
to use strong correlations among adjacent frames in the ac-
tual speech and music signals. The speech and music sig-
nals used in our experiments consist of three distinct seg-
ments: speech segments, music segments, and silence seg-
ments. Since each segment is at least a few seconds long,
there are a group of frames in each segment. Hence, a frame
is likely to be in the same class as its previous frames with
high probability. Actual probability that the current frame is
in the same class as the previous ones is nearly 100%.

However, we can not use this correlation because we
do not have a priori information about the class of each
frame. Therefore, we should depend on previous classifi-
cations made by SVMs. Figure 1 shows the block diagram
of the proposed algorithm. The output of the SVM ( f (x(t)))
is first smoothed by using

fs(x(t)) = k f fs(x(t − 1)) + (1 − k f ) f (x(t)) (7)

Fig. 1 Block diagram of the proposed algorithm.
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where fs(x(t)) is a smoothed SVM output and k f is the
smoothing factor. Since f (x(t)) depending on the input sig-
nal may change abruptly, particularly in onset and offset re-
gions, fs(x(t)) could increase or decrease rapidly, respec-
tively. Thus, the smoothing operation can reduce intermedi-
ate mis-classification while the delay due to the smoothing
does not causes a serious problem at the onset region [8].
The smoothed outputs are then converted to probabilities ac-
cording to

P( fs(x(t))) = P(H(t) = H0 | fs(x(t))

=
1

1 + exp(A fs(x(t)) + B)
(8)

where H(t) denotes the correct hypothesis for the tth frame,
and H0 and H1 designate hypothetical music and speech, re-
spectively. Also, A and B are the parameters obtained via
maximum likelihood estimation for modeling the distribu-
tion of SVM outputs. To obtain these parameters, the model
trust algorithm in [9] based on Levenberg Marquardt algo-
rithm is adopted. While a probability is a value between zero
and one, δ, an additive modification to the kernel parameter
γ, can be either a positive or a negative value. Therefore, the
output from the sigmoid function needs to be mapped to an
appropriate range by the following Min-Max normalization.

δ =
P( fs(x(t))) − Pmin

Pmax − Pmin
· (δmax − δmin) + δmin (9)

where Pmax and Pmin are the maximum and minimum value
of P(x(t)), respectively, which are observed over the whole
training set, and δmax and δmin are the maximum and mini-
mum values of δ, respectively, which should be set to limit δ
to a proper range. This normalization step ensures that δ has
an appropriate value derived from the outputs of the SVM.

As shown in Table 1, in order for the output of SVM
to change from a positive value to a negative value, the
kernel parameter should be incremented, and vice versa.
Therefore, the parameter should be incremented for music
and decremented for speech. To achieve this, P( f (x(t))) in
Eq. (8) is defined to be the probability that a frame is a music
frame. For example, P( f (x(t))) tends to be low for a speech
frame if the previous SVM outputs have been correct. Con-
sequently, low P( f (x(t))) results in a negative δ according to
the Min-Max normalization, increasing the probability for
the frame to be a speech frame.

5. Experiments and Results

In this section, the proposed technique is evaluated. For
experiments, we use the TIMIT speech database [10] and
commercial music CDs. 50 database files were formed
from TIMIT database and music CDs and used for 10-fold
cross-validation. The speech portion of the database was
extracted from TIMIT database and the music portion was
created from music CDs of five different genres: metal, jazz,
blues, hip-hop, and classical music. Note that the speech-
overlapped music frames in music segments were classified

as music for proper training because it is evident that we
need to assign the higher bit rate to this signal in enhancing
music quality at the SMV encoding. All data were sampled
at 8 kHz with a frame size of 20 ms. Each database file is
composed of five speech segments (6 - 12 s each), five mu-
sic segments (28 - 32 s each), and ten periods of silence (ran-
domly selected between 3 and 15 s), and these segments al-
ternated. Each of these files contained music segments from
one genre only. The six parameters introduced in Sect. 2
were concatenated to form a feature vector for each frame.

For training sigmoid parameters described in Sect. 4,
three-fold cross-validation was adopted. As a result of the
training, parameters A and B were set to −1.91531 and
1.29230, respectively. The two parameters that define the
range for δ are 0.08 for the upper bound and −0.08 for the
lower bound, and the smoothing factor k f was set to 0.9.

Figure 2 shows how δ improves classification perfor-
mance for a sequence of speech/music segments. Fig-
ure 2 (a) is an actual waveform of a test file, and Fig. 2 (b)
is the classification result of the previous SVM-based
scheme [2]. Figure 2 (d) shows δ to be added to the ker-
nel parameter, and its impact can be seen by comparing
Fig. 2 (b) and Fig. 2 (c), which is the result of the proposed
algorithm. During speech segments, δ becomes negative
making the mis-classified frames switch to speech frames,
and vice versa. Note that classification outcome 1 and 2 de-
note the speech and music classes, respectively.

Table 2 shows the performance improvement due to the
proposed enhancement. We compared the proposed algo-
rithm with the original algorithm in [1], the previous SVM-
based algorithm in [2], and the weight training algorithm in
[6], which are denoted by SMV , SVM, and WT , respectively.
The first column shows five music genres used for the exper-
iments, and the second column has four speech/music clas-
sification algorithms. SVM, whose kernel parameter was set
to 0.1 by the kernel parameter optimization algorithm in [3],
is used as a baseline for the proposed and the weight training
algorithm. The results summarized in the table are average
values from 10 validation runs. Pd for speech and music
represents the probability that non-overlapping music and
speech frames are correctly classified, and Pd for speech-
overlapped music (denoted by overlap) is the probability
that overlapped frames are classified as music. Note that
Pe denotes the error probability that encompasses speech,
music, and overlapped frames.

From the table, we can observe that the proposed
technique successfully improves the accuracy of SVM-
based classification for both non-overlapped and overlapped
frames by adaptively adjusting the kernel parameter based
on previous outputs of the decision function. It is also
discovered that the proposed algorithm outperforms or at
least produces comparable performance to the discrimina-
tive weight training, the previous SVM-based algorithm,
and the original algorithm in SMV.
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Fig. 2 (a) Waveform of a test file (repeating sequence: silence-speech-silence-music-silence) (b) Re-
sults of the previous SVM-based scheme (c) Results of the proposed scheme (d) Delta.

Table 2 Comparison with the original algorithm in SMV, the previ-
ous SVM-based algorithm, and weight training algorithm in terms of
speech/music detection probability Pd and total error probability Pe.

Class Method Speech Pd Overlap Pd Music Pd Total Pe

Blues

SMV [1] 0.882 0.309 0.453 0.488
SVM [2] 0.839 0.911 0.924 0.093
WT [6] 0.872 0.944 0.930 0.077

Proposed 0.926 0.934 0.935 0.066

Classic

SMV 0.860 N/A 0.394 0.511
SVM 0.739 N/A 0.681 0.307
WT 0.816 N/A 0.721 0.261

Proposed 0.753 N/A 0.734 0.256

Hiphop

SMV 1.000 0.120 0.035 0.707
SVM 0.821 0.901 0.824 0.116
WT 0.844 0.914 0.648 0.105

Proposed 0.927 0.931 0.868 0.070

Jazz

SMV 0.975 N/A 0.558 0.358
SVM 0.719 N/A 0.909 0.130
WT 0.750 N/A 0.918 0.124

Proposed 0.845 N/A 0.928 0.088

Metal

SMV 0.989 0.024 0.301 0.727
SVM 0.758 0.886 0.789 0.157
WT 0.776 0.915 0.757 0.147

Proposed 0.839 0.917 0.830 0.116

Avg.

SMV 0.897 0.151 0.348 0.558
SVM 0.773 0.899 0.825 0.161
WT 0.812 0.924 0.795 0.143

Proposed 0.858 0.927 0.859 0.119

6. Conclusions

We have proposed a novel and orthogonal technique that
adaptively tunes classifications of SVMs by modifying the
RBF kernel parameter based on correlations in speech and
music frames. Our experiments show that the proposed en-
hancement is capable of improving the classification accu-
racies of SVMs.
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