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SUMMARY Feature selection (FS) plays an important role in pattern
recognition and machine learning. FS is applied to dimensionality reduc-
tion and its purpose is to select a subset of the original features of a data
set which is rich in the most useful information. Most existing FS methods
based on rough set theory focus on dependency function, which is based
on lower approximation as for evaluating the goodness of a feature subset.
However, by determining only information from a positive region but ne-
glecting a boundary region, most relevant information could be invisible.
This paper, the maximal lower approximation (Max-Certainty) – minimal
boundary region (Min-Uncertainty) criterion, focuses on feature selection
methods based on rough set and mutual information which use different
values among the lower approximation information and the information
contained in the boundary region. The use of this idea can result in higher
predictive accuracy than those obtained using the measure based on the
positive region (certainty region) alone. This demonstrates that much valu-
able information can be extracted by using this idea. Experimental results
are illustrated for discrete, continuous, and microarray data and compared
with other FS methods in terms of subset size and classification accuracy.
key words: rough sets, mutual information, feature selection, boundary
region, classification

1. Introduction

In many fields of artificial intelligence such as machine
learning, pattern recognition, text categorization, and data
mining, an essential technique used in data preprocessing
is Feature Selection (FS). Feature selection technique is ap-
plied to reduce the number of features, remove irrelevant, re-
dundant, or noisy data, and bring about important effects for
applications, namely the increasing speed of a learning algo-
rithm, the improved predictive accuracy and the capability
in understanding the results. Feature selection is a process
which selects a subset of the original features of a data set
while the most essential information of the data set should
still be preserved. Feature selection has been expanded into
many other fields of research. It has also been developed
for decades as in the statistical pattern recognition [20], [30],
machine learning [5], [23], [41], and data mining [9], [22].
At the same time, it was widely applied in a number of fields
such as text classification [1], [42], intrusion detection [25],
[31], and gene expression analysis [36], [48].

Over the past ten years, a large number of feature selec-
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tion methods have been proposed. The widely used meth-
ods for filter-feature selection method are rough set [37],
[38] and mutual information [8]. Most existing FS ap-
proaches [6], [7], [15], [16], [18], [21], [26], [28], [46] based
on the rough set method take subset evaluation method
which searches for a minimum subset of features that sat-
isfies some goodness measures relying on the information
gathered from the lower approximation alone. Mutual in-
formation approach is widely used for features ranking [3],
[11], [24], [39] which assesses features individually and as-
signs them weights according to their degrees of relevance.
A subset of features is often selected from the top of the
ranking list, which approximates the set of relevant features.
However, the disadvantages of feature ranking are the dif-
ficulty to remove redundant features because features are
likely to have a similar ranking. Besides, this feature se-
lection technique requires predefining of the number of fea-
tures to be selected and the optimal subset is taken from the
best result of the classification accuracy.

The rough set (RS) theory proposed by Pawlak [37],
[38] provided a new mathematic model for dealing with
imprecise, uncertain, and incomplete information. The
rough set approach analyzes data relying on two impor-
tant concepts, namely the lower and upper approximation
of a set. The theory of RSs has been applied success-
fully in many fields of research [6], [7], [15], [18], [21], [26],
[28], [29], [35] and is currently one of the most developed
techniques in intelligent data analysis. Unlike other intelli-
gent methods, such as fuzzy set theory and statistical meth-
ods, rough sets analysis requires no human input or do-
main knowledge and uses only the information presented
in the given data. However, in some situations, the the-
ory of RSs may not be able to effectively analyze the data
sets with noise or vagueness. Therefore, many papers have
solved those problems by applying to the variable precision
rough set [4], [33], [51], [52] which uses a parameter to con-
trol noise effect in data.

Finding a subset (reduct) of an information system is
a key problem in RS Theory. We desire to get reducts of
an information system in order to extract rule-like knowl-
edge from an information system. Reduct is a minimal at-
tribute subset of the original attributes which has the same
classification of objects of the universe as the whole set of
attributes. Most existing RS-based FS approaches [6], [16],
[17], [21], [28] rely on the key concept of the lower approx-
imation or region of certainty as for evaluating the good-
ness of a feature subset in determining an optimal reduct
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such as dependency function [16], [21] and the significance
of attributes [6], [28]. Although this concept has success-
fully been applied to numerous FS problems, the approaches
neglect the information that is contained in the boundary
region or the region of uncertainty. Therefore, using the
information from the lower approximation alone is insuffi-
cient for efficient feature selection when dealing with high-
dimensional or highly-noisy data. In addition, ignoring the
information contained in the inconsistent region during the
feature selection process may lead to a loss of much valuable
information. While there are some researches based on RSs
which determine the boundary region information [10], [19],
these approaches determine by using only the knowledge of
the upper approximation as a whole rather than considering
the lower approximation and the boundary region which are
supposed to be conceptually separated. Therefore, some pa-
pers have been successfully applied the method to solve sev-
eral problems [29], [30] which consider the lower approxi-
mation and the boundary region separately.

Recently, Parthaláin et al. [35] proposed the feature se-
lection (DMRSAR) algorithm, an extension of the rough set
attribute reduction approach (RSAR) [21]. In this method,
the information contained both in the lower approximation
and the boundary region is used to search for the best feature
subset. The DMRSAR algorithm used a distance measure to
determine the proximity of objects in the boundary region
and those in the lower approximation and assign a signifi-
cant value to these distances. The measure of the goodness
of a feature subset is the combination of equal participation
of the dependency value and the significance value. Obvi-
ously, in some situations, this method can obtain a subset
that is smaller than those selected by using the informa-
tion gathered from the lower approximation alone. How-
ever, determining to select a feature subset still significantly
relies on the lower approximation information. Therefore,
both RSAR and DMRSAR approaches relying on the de-
pendency function as an evaluation measure are unsuccess-
ful when applied to an inconsistent data.

The central problem of RS theory is classification anal-
ysis. It uses the available information to completely perform
classification of the objects that belong to a specified class.
Although it is able to handle an inconsistent granular data,
it is not tolerate to noise or inexact attribute values. Quite
frequently, the available information allows only for partial
classification. The theory of RSs can be used as a model
which is a kind of classification while the classification must
be fully correct or certain. Therefore, classifying by control-
ling the degree of uncertainty or the error of misclassifica-
tion is outside the realm of RS theory. Furthermore, accep-
tance for some certain level of uncertainty in practice could
result in improved performance of the learning algorithm.
To overcome these drawbacks, Ziarko [51], [52] introduced
variable precision rough set (VPRS), extended from theory
of RSs, which determines some objects of the given data set
as misclassified or uncertain objects. Therefore, in this pa-
per, VPRS is used to partition feature space of a data set. In
addition, the lower and upper VPRS approximations can be

calculated based on of the majority inclusion relation where
the degree of inclusion is obtained by allowing a predefined
level of an error.

This paper presents a novel feature selection method
which is based on the VPRS and mutual information. This
method determines the different amount of information in
the lower approximation and the boundary region in or-
der to select the feature subsets. Noisy data has little in-
fluence on the results that were produced by the proposed
method. It can also result in outperformance of the classi-
fication accuracies compared to those obtained by using the
RS dependency-based approaches.

The remainder of this paper is structured as follows.
Section 2 summarizes the theoretical background of VPRS
and mutual information. In Sect. 3 we propose the novel
approach for feature selection based on VPRS and mutual
information. The pseudo-code of our algorithm is also pre-
sented in this section. Section 4 compares the proposed
method with some current approaches by running experi-
ments for some data sets of University of California, Irvine
(UCI). Section 5 concludes the method proposed in this pa-
per and points out some future research tasks.

2. Background

In this section, the basic concepts in the theories of variable
precision rough set and mutual information based on rough
sets are described.

2.1 Variable Precision Rough Set

Although the theory of RSs is able to handle inconsistencies
in data, the values of condition or decision attributes are ex-
pected to be exact and accurate. Noisy or vague data are out-
side the scope of RS theory. In the application of many real
data sets, the assumption of exact data is not fulfilled and
some objects are misclassified or condition attribute values
are corrupted. To overcome these drawbacks, Ziarko [51],
[52] introduced an extension of RS theory that is an vari-
able precision rough set. The principal idea of VPRS is to
allow objects to be classified with an error smaller than a
certain predefined level. Some fundamentals of VPRS are
introduced in the following part.

Let IS = (U, A) be an information system, where U is a
finite nonempty set of N objects {x1, x2, . . . , xN}, A is a finite
nonempty set of attributes. V is a value of a set of attribute
values in A and f is an information function f : UxA −→ V .

Any subset P of attributes A, the equivalence (also
called indiscernibility) relation IND(P) on U:

IND(P)=
{(

xi, x j

)
∈U×U |∀a∈P, fa(xi)= fa(x j)

}
. (1)

If (xi, x j) ∈ IND(P), then xi and x j are indiscernible
with respect to P. The equivalence classes of the P-
indiscernibility relation are denoted by [xi]P. Therefore, the
elements in [xi]P are indiscernible by attributes from P.

Let X and Y be the nonempty subsets of a finite uni-
verse U. The relative degree of misclassification of set X
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with respect to set Y is defined as

c(X,Y) = 1 − |X ∩ Y |
|X| , i f |X| > 0 (2)

= 0, i f |X| = 0 (3)

It is important to note that c(X,Y) = 0 if and only if
X ⊆ Y .

The majority inclusion relation which is the degree of
inclusion obtained by allowing an admissible classification
error (β), can be defined as

X ⊆β Y ⇐⇒ c(X,Y) ≤ β, 0 ≤ β < 0.5 (4)

The P-lower approximation and P-upper approxima-
tion of X can be defined as

P(X)β =
⋃{

[xi]P | [xi]P ⊆β X
}
, (5)

P(X)β =
⋃
{[xi]P |c([xi]P , X) < 1 − β} . (6)

Let Q be equivalence relations over U. Therefore, the
definition of the positive region, the negative region and the
boundary region based on VPRS is given by

POS Pβ(Q) =
⋃

X∈U/Q
P(X)β, (7)

NEGPβ(Q) = U −
⋃

X∈U/Q
P(X)β, (8)

BNDPβ(Q) =
⋃

X∈U/Q
(P(X)β − P(X)β), (9)

and also the degree of dependency (or the quality of classi-
fication) as:

γPβ(Q) =

∣∣∣POS Pβ(Q)
∣∣∣

|U | . (10)

Note that, according to the above definitions of set ap-
proximations, the lower approximation of set X can be inter-
preted as the collection of all the elementary sets which can
be classified into X with the classification error not greater
than β. The upper approximation of X includes all the ele-
mentary sets that cannot be classified into −X with the error
not greater than β. Finally, the boundary region of X consists
of all the elementary sets that cannot be classified either into
X or into −X with the classification error that is not greater
than β. Note also that P(X)β = P(X) for β = 0, therefore,
the traditional rough set becomes a special case of VPRS.

Figure 1 shows set approximations based on VPRS of
set X. The rectangular grid demonstrates the information
granules of U induced by the equivalence relations IND(P).
In VPRS, we can see the granules which include X can be
classified into the positive region depending on the value of
the specified β. Therefore, we can imagine the trade-off of
information granules which consist of X between the posi-
tive region and the boundary region controlled by β value.

2.2 Mutual Information Based on Rough Sets

The information theory proposed by Shannon [43] provides

Fig. 1 Variable precision rough set in discrete feature space.

useful tools to measure the information of a data set with
entropy and mutual information. The entropy can be inter-
preted as an estimation of the quantity of information rep-
resented in random variables. The mutual information is
a measure of generalized correlation between two random
variables, and can also be interpreted as the amount of in-
formation shared by two random variables. In information
system, entropy can be an information measure for feature
selection on probabilistic knowledge about a given feature.

In RS theory, an equivalence relation induces a parti-
tion of the universe. The partition can be regarded as a type
of knowledge. The meaning of knowledge in information-
theoretical framework of rough sets is interpreted as follows.

For any subset P ⊆ A of features, let U/IND(P) =
{X1, X2, . . . , Xn} denote the partition induced by the equiv-
alence relation IND(P). The information entropy H(P) of
knowledge P is defined as

H(P) = −
n∑

i=1

p(Xi) log(p(Xi)), (11)

where p(Xi) =
|Xi |
|U | , 1 ≤ i ≤ n.

Let P and Q be the subset of A. Let U/IND(P) =
{X1, X2, . . . , Xn},U/IND(Q) = {Y1,Y2, . . . ,Ym} denote the
partitions induced by the equivalence relations IND(P) and
IND(Q), respectively. The conditional entropy H(Q|P) of
knowledge Q given by the knowledge P is defined as

H(Q|P) = −
n∑

i=1

p(Xi)
m∑

j=1

p(Yj|Xi) log(p(Yj|Xi)), (12)

where p(Xi) =
|Xi |
|U | , p(Yj|Xi) =

|Y j∩Xi|
|Xi | , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The mutual information is a measure of the amount of
information that knowledge P contains about knowledge Q
which is defined as

I(Q; P) =
m∑

j=1

n∑

i=1

p(Yj, Xi) log
p(Yj, Xi)

p(Yj)p(Xi)
, (13)

where p(Xi) =
|Xi |
|U | , p(Yj, Xi) =

|Y j∩Xi|
|U | , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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If the mutual information between P and Q are large
(small), it means P and Q are closely (not closely) related.
The relation between the mutual information and the en-
tropy can be defined as

I(P; Q) = H(Q) − H(Q|P). (14)

When applying mutual information in feature selec-
tion, mutual information plays a key role in measuring the
relevance and redundancy among features. The main advan-
tages of mutual information are its robustness to noise and
transformations. We focus on the feature selection meth-
ods based on mutual information as a measure of relevance
and redundancy of features to find the most relevant feature
subset. In this paper, mutual information is used as infor-
mation measure of correlation between the lower approxi-
mation P(X)β and class X. Furthermore, mutual information
of the boundary region BNDPβ(X) with respect to class X
is measured. More details on information measuring of the
lower approximation and the boundary region can be seen
in the next section.

3. Feature Selection Based on Min-Uncertainty and
Max-Certainty

3.1 Problems of Rough-Set-Based Feature Selection
Methods

As discussed previously, most existing RS-based FS ap-
proaches rely on the information of the lower approxima-
tion as for evaluating the goodness of a feature subset in
determining an optimal subset. Many approaches based on
the theory of RSs have employed the dependency function
which is based on the lower approximation as an evalua-
tion step in the FS process. Recently, the DMRSAR ap-
proach [35] has been proposed on the RS-based FS method
which uses information of both the boundary region (uncer-
tainty region) and the positive region (certainty region) to
guide a search for the best feature subset. Unfortunately,
these RS-based approaches yield an empty set of reduct
when they are applied to data in which no equivalence class
is consistent in terms of a single feature because the depen-
dency of each single feature is zero.

Figure 2 shows a discrete feature space in one dimen-
sion, where the samples are divided into a set of equiva-
lence classes {E1, E2, . . . , E6} based on their feature values.
Samples with the same feature values are grouped into one
equivalence class. The height of the rectangles in Fig. 2 de-
notes the number of samples of the equivalence class. We
can see that all of the equivalence classes are inconsistent
because their samples belong to more than one of the de-
cision classes. Therefore, both the RSAR and DMRSAR
methods based on dependency function yield an empty set
for the data sets which no equivalence class is consistent at
the first stage.

In this section, we will present a strategy for feature
subset selection based on the idea of uncertainty informa-
tion minimization and certainty information maximization.

Fig. 2 A discrete feature space in one dimension.

This idea yields a nonempty set of reduct when it is applied
to the data sets which all equivalence classes are inconsis-
tent in terms of a single feature. We use both the informa-
tion contained in the lower approximation and the boundary
region for feature selection. In addition, mutual informa-
tion is used as the information measure for both lower ap-
proximation and boundary region to guide the search for the
optimal feature subset. This proposed approach selects the
feature that gives the lower approximation information that
is mostly relevant to class. The total information of all lower
approximation is subtracted by the information contained in
the boundary region with respect to classes.

3.2 Min-Uncertainty and Max-Certainty

The idea of Min-Uncertainty and Max-Certainty attempts to
maximize the information of the certainty region while min-
imizing those of uncertainty. The evaluation of the good-
ness of a feature subset can be done by selecting the fea-
tures that contain most different amount of information cal-
culated by subtracting the information of the boundary re-
gion from the information of the lower approximation. This
proposed criterion is a novel concept different from most ex-
isting rough-set-based FS approaches. Besides, it is contrary
to the concept of the DMRSAR method [35] which uses the
information gathered from both the information contained in
the lower approximation and the boundary region to search
for reducts.

Let D be a decision attribute while universe U can
be partitioned into a collection of equivalence classes
U/IND(D) = {D1,D2, . . . ,Dm}. Then the boundary region
of U/IND(D) with respect to the set of attributes P and with
β value is defined as

BNDPβ(D) =
⋃

Di∈U/IND(D)

(P(Di)β − P(Di)β), (15)

For a subset of features P and β value, the mutual in-
formation of the boundary region BNDPβ(D) with respect to
knowledge D can be defined as

BI(P, β) = I(U/IND(D); BNDPβ(D)/IND(P)). (16)

The total information of mutual information between
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the lower approximation P(Di)β and the equivalence class
Di with β value, denoted by LI(P, β), can be defined as

LI(P, β) =
m∑

i=1

I(Di; P(Di)β). (17)

Hence, the problem of selecting feature subset P is
equivalent to the maximizing of LI(P, β) and the minimiz-
ing of BI(P, β), that is to maximize the objective function
E(P, β), where

E(P, β) = LI(P, β) − BI(P, β), 0 < β < 0.5. (18)

Obviously, if LI(P, β) = H(D), and then the objective
function E(P, β) value is maximum, it shows that the approx-
imate information contains no uncertainty with respect to P
and β. Therefore, a subset of features P is determined as
strongly relevant features. Conversely, if BI(P, β) = H(D),
then P and β bring about the approximating of information
that has the highest uncertainty. Consequently, P is the ir-
relevant features that have no useful information related to
decision attribute D. The difference amount of both val-
ues is obtained as both operate in the range [0,H(D)], and
the E(P, β) has a value in the range [−H(D),H(D)]. A new
feature selection mechanism can be constructed by using
the difference amount of information between the certainty
value and uncertainty value to guide the search for the best
feature subset.

3.3 mUMC Feature Selection Algorithm

Figure 3 shows a VPRS-based mUMCREDUCT algorithm
with the idea of maximum certainty and minimum uncer-
tainty. The proposed method is the calculation searching for
a superset for all candidate reducts with the value of β varies
from 0.05 to 0.45 in the step of 0.05. We can consider pa-
rameter β as the level of uncertainty or the admissible clas-
sification error of each equivalence class in a feature space.
Therefore, β is used as a parameter for controlling the ratio
of the samples in the minority classes (misclassified) and the
majority class (classified) in each equivalence class.

Each candidate reduct is calculated by considering with
β value. Therefore, the maximum number of a candidate
reduct equals the number in step of the divided β interval.

Fig. 3 The mUMCREDUCT algorithm.

The mUMCREDUCT algorithm uses the maximum value
of objective function E value of a subset to guide a can-
didate reduct selection process. If E value of the current
reduct is greater than that of the previous, then this subset is
retained and used in the next iteration of the loop. A candi-
date reduct selection process terminates when an addition of
any remaining features results in the value of the objective
function E reaching the information entropy of the decision
classes.

The proposed mUMCREDUCT algorithm works on
the idea of greedy search for the feature selection process.
The algorithm begins with an empty subset R. The do until
loop works by calculating E value of a subset and incre-
mentally adding a single conditional feature at a time. For
each iteration, a conditional feature that has not already been
evaluated will be temporarily added to subset R (line 4). If
the difference amount of information of the current subset
R ∪ {x} is greater the previous subset (T ), then the attribute
added in (line 5) is retained as part of the new subset T (line
6).

The do until loop is terminated when the difference
amount of information of the current candidate reduct
(E(R, β)) equals the information entropy of decision classes
(H(D)). However, the algorithm can be terminated when the
addition of all remaining feature does not improve the value
of the evaluation function E.

We now analyze time complexity of mUMCREDUCT
before an empirical study of its efficiency is done. As we
can see from Fig. 3, major computation of the algorithm
involves E values for the certainty and uncertainty region
which have quadratic complexity in terms of the number of
instances (M) in a data set. In terms of dimensionality N,
to determine a candidate reduct, the algorithm has the best-
case complexity O(N) only when one feature is selected and
the rest of the features are all neglected, and the worst-case
complexity O(N2) when all features are selected.

4. Experimental Results and Discussion

In this section, we first test the influence of parameter β on
estimation for all candidate reducts with the value of β varies
from 0.05 to 0.45 in the step of 0.05. An optimal reduct of
each classifier is selected from the candidate reducts with
the highest predictive accuracy. Then, the results of mUMC-
based feature selection will be compared to some existing
techniques.

4.1 The Influence of β on mUMC-Based Feature Selection

In this section, we show the influence of parameter β on
the number of selected features and an optimal subset of
features for the learning algorithm on eighty data sets from
the UCI Machine Learning Repository (see Table 1) [47].
We also consider the four well-known learning algorithms,
namely SVM, C4.5, NB and PART, to estimate an optimal
subset and classification accuracy based on a tenfold cross
validation.
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Table 1 Description of UCI benchmark data sets.

Dataset Number of Number of Attribute Class
features instances types

1 credit 21 1000 discrete 2
2 heart 14 294 discrete 2
3 votes 17 300 discrete 2
4 soybean 36 307 discrete 19
5 lymp 19 148 discrete 4
6 promoters 58 106 discrete 2
7 splice 61 3190 discrete 3
8 derm 35 358 discrete 6
9 dna 58 318 discrete 2

10 ionos 34 351 continuous 2
11 wine 14 178 continuous 3
12 sonar 61 208 continuous 2
13 landsat 37 2000 continuous 6
14 wdbc 31 569 continuous 2
15 parkinsons 23 195 continuous 2
16 water2 39 521 continuous 3
17 spectf 45 267 continuous 2
18 vehicle 19 846 continuous 4

Table 2 Number of selected features with the value of β.

Data β Average
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

credit - - 11 9 10 10 10 10 11 10.1
heart 7 7 8 7 7 7 7 8 8 7.3
votes - - 11 10 9 9 9 9 9 9.4

soybean - - - - - 12 19 16 16 15.8
lymp 8 8 8 7 7 6 9 9 7 7.7

promoters 5 5 5 5 5 5 5 5 5 5
splice - - - - - - 11 11 11 11
derm 10 10 12 9 11 9 10 7 7 9.4
dna 4 5 5 4 4 4 4 4 4 4.2

ionos 6 7 6 8 7 7 8 6 6 6.8
wine 4 4 4 4 4 4 4 4 4 4
sonar 4 4 4 4 4 4 4 4 4 4

landsat - - - 12 13 12 14 14 15 13.3
wdbc 8 8 8 8 6 6 6 7 7 7.1

parkinsons 5 5 5 5 5 5 5 6 6 5.2
water2 8 8 7 7 6 7 7 7 7 7.1
spectf 7 7 7 7 7 7 6 6 7 6.8
vehicle - - - - - - 9 8 8 8.3

To show the influence of the values of parameter β, we
consider a series of numeric values varies from 0.05 to 0.45
in the step of 0.05. Table 2 shows the number of features
selected with β value in the range of 0.05–0.45. It can be
seen that some data yield empty subsets when calculating
with some β values, e.q., β = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
for the splice and vehicle data. In this situation, the ratio of
the samples in all minority classes over the whole set of the
samples in the equivalence class is not less than the specified
β value of each single feature. However, we can calculate to
find candidate feature subsets with β value that is specified
to be higher than the ratio of the samples in all minority
classes over the whole sample set of the equivalence class.
Therefore, the ratio of samples in the minority classes for
each single feature does not exceed the specified β value.

Figure 4, 5 and 6 show changes of attribute significance
with the number of selected features obtained for soybean
and splice data. The significance of the feature subset is

computed with the RSAR-based dependency, DMRSAR-
based dependency and significance, and mUMC, respec-
tively. The values of mUMC rapidly grow relatively high
size of β before the set of features is formed by eight fea-
tures. Then, the growth slows down until it completely stops
when the value of features has equaled the entropy of deci-
sion classes. Meanwhile, the values of RSAR proceeded
gradually increase on both data. For splice data which is
inconsistent data, the value of RSAR stops early with the
dependency value less than 1. However, the feature signif-
icance of DMRSAR stops very early on the soybean and
splice data because it encounters the local maximum. There-
fore, we can observe that the relationship mUMC ≥RSAR ≥
DMRSAR in the phenomenon in the soybean and splice
data.

The classification accuracy of candidate subsets with
the values of β on both soybean and splice data is shown in
Fig. 5 and 6. The subset of features with the highest accu-
racy of classifier is chosen as an optimal subset to compare
performance with other FS techniques. We can see that the
highest accuracy of SVM, C4.5, NB, and PART when β =
0.4 or 0.45 for the splice data. While dealing with the soy-
bean data, the highest accuracies of SVM, C4.5, NB, and
PART with values of β are 0.4, 0.45, 0.4 or 0.45, and 0.45,
respectively.

The optimal subset of features and the values of param-
eter with the highest predictive accuracy of each learning al-
gorithm are shown in Table 3. Then, the highest predictive
accuracy on a learning algorithm is selected to compare its
performance with the RS-based attribute reduction methods
and some existing classical techniques.

4.2 Comparison of Feature Selection Algorithms on UCI
Benchmark Data Sets

In this section, we experiment with different algorithms of
feature selection using 18 data sets, as described in Ta-
ble 1, where nine data sets are the discrete features and
nine data sets are the numerical features. Before apply-
ing to all feature selection techniques the numerical fea-
tures are required to be discretized by the equidistance
partitioning method [24] in order to segment the numeri-
cal features into several intervals and form the discretized
data sets. Meanwhile, we also apply ReliefF to directly
select the continuous features which are normalized into
[0, 1]. Next, we use sequentially greedy forward search to
form the best features when we compare the algorithms that
evaluate features based on RS-dependency function (RSAR
and DMRSAR), consistency-based subset (CNS) [27], and
correlation-based feature selection (CFS) [14], respectively.
In addition, the proposed method is compared with Reli-
efF [44] and FCFB [50] which have special searching strate-
gies.

We first show the results of both discrete and numeri-
cal feature selection. The number of selected features of the
data is given in Table 4, where the last column is the av-
erage number of features on four classifiers of the mUMC
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Fig. 4 Attribute significance versus the number of selected features.

Fig. 5 Attribute significance and classification accuracy on splice data with values of β.

Fig. 6 Attribute significance and classification accuracy on soybean data with values of β.

method. In Tables 4–8, we observe that most of the features
in raw data have been deleted by all the feature selection
algorithms. At the same time, we then apply SVM, C4.5,
NB and PART classifiers on each of the newly obtained data
sets (with only selected features), and obtained the aver-
age accuracy of 10-fold cross validation. The results show
that these algorithms are effective in retaining the classifi-

cation ability. The RSAR and DMRSAR algorithms yield
an empty set when it is applied to the “votes” and “credit”
data, because all equivalence classes are inconsistent at the
first stage. In this case, the positive region of each single
feature is an empty set. However, all the other feature selec-
tion algorithms can determine to find the subset of features.
We can also find that the subset contains different features
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Table 3 The optimal subset and the β values for classifier.

Data SVM C4.5 NB PART
Size β Size β Size β Size β

credit 11 0.15 11 0.15 11 0.45 10 0.35–0.4
heart 8 0.4–0.45 7 0.25–0.35 8 0.4–0.45 7 0.2
votes 9 0.25–0.45 10 0.2 9 0.25–0.45 9 0.25–0.45

soybean 16 0.4 16 0.4–0.45 16 0.45 19 0.35
lymp 7 0.25 9 0.35–0.4 9 0.35–0.4 6 0.3

promoters 5 0.2,0.45 5 0.15 5 0.2,0.45 5 0.2,0.45
splice 11 0.4–0.45 11 0.4–0.45 11 0.4–0.45 11 0.4–0.45
derm 11 0.25 11 0.25 11 0.25 11 0.25
dna 4 0.05 4 0.2 4 0.05 5 0.15

ionos 7 0.25 7 0.1 6 0.15 8 0.2
wine 4 0.05–0.15 4 0.2–0.3 4 0.35–0.45 4 0.2–0.45
sonar 4 0.15 4 0.15 4 0.05 4 0.15

landsat 14 0.35 15 0.45 14 0.35 13 0.25
wdbc 6 0.25–0.3 8 0.1 6 0.25–0.3 8 0.1

parkinsons 5 0.15–0.2 5 0.05–0.1 5 0.05–0.1 5 0.05–0.1
water2 7 0.3 7 0.3 8 0.1 7 0.3
spectf 6 0.35–0.4 7 0.2 7 0.45 6 0.35
vehicle 9 0.35 9 0.35 9 0.35 9 0.35

Table 4 Number of selected features with different techniques.

Data Feature Selection Algorithm
RSAR DMRSAR CFS CNS FCFB ReliefF mUMC

credit - - 3 10 3 11 10.7
heart 7 6 6 8 5 4 7.5
votes - - 3 8 3 6 9.2

soybean 13 4 21 11 15 15 16.7
lymp 6 1 9 7 8 7 7.7

promoters 4 4 6 4 6 4 5
splice 10 10 22 10 22 11 11
derm 7 2 20 6 15 15 11
dna 4 4 4 4 2 6 4.2

ionos 5 5 5 5 3 8 7
wine 4 4 7 4 7 4 4
sonar 4 4 12 4 1 14 4

landsat 11 12 22 13 3 13 14
wdbc 7 6 8 6 5 10 7

parkinsons 4 4 7 5 1 7 5
water2 7 2 7 6 3 9 7.2
spectf 7 6 8 7 1 6 6.5
vehicle 8 9 5 7 4 6 9

Average - - 9.72 6.99 5.94 8.66 8.16

when applying different algorithms.
Noisy data has great influence on the results that were

produced by the RSAR and DMRSAR algorithms. ReliefF
introduces a number of the nearest neighbors to control the
noise effect. mUMC is created on the idea of dealing with
noise with a parameter that controls the noise effect. The
noisy instance has little influence on the feature selection
process of mUMC. However, ReliefF does need to be pre-
defined the number of the nearest neighbors and the num-
ber of the sampling instances which both require domain
knowledge. Moreover, ReliefF is feature selection based on
the feature ranking method and it needs to be chosen for the
optimal number of features.

Among the 18 data and seven algorithms of feature se-
lection, CFS comes with the maximal number of features
with nine data sets; meanwhile, ReliefF obtains the maxi-
mal number of features as seven data sets. On the average,

Table 5 Classification accuracy of SVM classifier (In Percent).

Data RSAR DMRSAR CFS CNS FCFB ReliefF mUMC
credit - - 71.20 74.20 71.20 75.70 75.90
heart 77.21 77.50 79.93 80.61 79.93 82.31 80.61
votes - - 94.33 93.33 94.33 93.66 95.33

soybean 83.06 85.34 92.18 84.36 90.55 88.27 90.90
lymp 81.75 81.75 82.43 79.72 81.08 86.48 83.10

promoters 85.84 85.84 91.50 85.84 91.50 94.02 94.33
splice 81.66 83.00 95.95 94.26 95.95 94.54 94.98
derm 81.00 55.02 97.76 75.69 95.81 94.41 97.76
dna 93.71 93.71 96.22 93.71 89.62 95.59 95.28

ionos 83.19 83.13 86.89 81.48 86.46 84.61 87.03
wine 93.82 93.82 97.75 93.25 97.75 95.50 95.50
sonar 76.44 76.44 76.44 72.11 74.03 78.80 78.88

landsat 83.70 83.70 84.40 83.50 82.60 81.50 83.75
wdbc 95.43 94.90 96.30 96.48 95.43 96.48 97.01

parkinsons 86.15 86.15 85.12 86.66 75.38 84.61 88.20
water2 79.65 75.81 80.80 78.31 78.50 82.14 80.99
spectf 79.40 79.40 79.40 79.40 79.40 79.40 79.40
vehicle 68.20 60.75 48.93 56.97 49.29 60.63 69.14

CFS and ReliefF select 9.72 and 8.66 features for dimen-
sionality reduction which are the highest two average values
among the size of features that seven algorithms are applied.
Although FCFB obtains with the highest feature reduction
on eleven data sets, it produces the number of the highest
accuracy that is less than that of mUMC with regard to all
classifiers. In many applications on machine learning the
wrapper-based postpruning is necessary for pressing a sub-
set of features. The number of features in the optimal subset
is greatly reduced with regard to a classifier. The optimal
number of features varies from one learning algorithm to
another. It is efficient to use a filter in selecting a candi-
date subset then wrapper is used to select an optimal subset.
However, a few of features (e.g., one or two features) in the
candidate subset is difficult or impossible to improve clas-
sification accuracy with wrapper-based reduction because
the candidate subset contains insufficient information for the
classifier.

With regard to the performance of SVM-based classi-
fication, as shown in Table 5, mUMC results in the highest
predictive accuracy in eleven cases. At the same time, in
Tables 6–8, the performance of mUMC achieves with the
highest predictive accuracy are twelve, eleven, and thirteen
cases with regard to C4.5, NB, and PART, respectively. By
scanning the results in Tables 5–8, we conclude that the effi-
ciency and capability of mUMC can achieve impressively
with the maximal number of the highest accuracy for all
classifiers when comparing with all other methods. Mean-
while, the average of dimensionality reduction is still higher
than both CFS and ReliefF as reported in Table 5.

4.3 Performance Comparison on Gene Expression Data
Sets

One important application of gene expression data is the
classification of samples into different categories, such as
types of tumor. Gene expression data are characterized by
many variables on only a few observations. In most gene ex-
pression data, the number of training samples is very small



978
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Table 6 Classification accuracy of C4.5 classifier (In Percent).

Data RSAR DMRSAR CFS CNS FCFB ReliefF mUMC
credit - - 71.20 72.20 71.20 73.60 73.00
heart 81.97 81.97 78.91 79.25 80.27 80.61 81.97
votes - - 94.00 93.66 94.00 93.66 94.00

soybean 81.75 83.38 82.08 80.45 83.38 85.99 86.64
lymp 73.64 76.35 78.37 74.32 75.67 76.35 77.70

promoters 84.90 84.90 83.01 84.90 83.01 83.96 86.79
splice 81.91 82.35 94.48 93.82 94.48 93.98 94.48
derm 69.83 55.30 93.01 72.06 92.73 87.15 94.69
dna 83.64 83.64 84.59 83.64 85.84 84.90 84.27

ionos 89.74 89.45 90.88 90.31 89.45 92.59 91.45
wine 89.88 89.88 94.38 96.62 94.38 95.50 96.62
sonar 70.67 70.67 71.63 75.00 71.63 76.92 83.65

landsat 85.75 85.75 83.25 81.30 82.45 81.70 84.05
wdbc 95.25 92.72 93.32 94.20 97.01 94.02 96.48

parkinsons 87.69 87.69 83.07 88.20 87.69 86.15 89.74
water2 81.95 75.43 82.34 80.23 81.38 81.95 85.60
spectf 80.14 79.02 76.77 79.40 79.40 79.40 82.77
vehicle 72.34 67.73 69.26 65.36 70.21 67.25 72.63

Table 7 Classification accuracy of NB classifier (In Percent).

data RSAR DMRSAR CFS CNS FCFB ReliefF mUMC
credit - - 74.40 75.80 74.40 75.30 76.00
heart 79.32 79.59 84.69 83.67 80.61 84.01 83.67
votes - - 95.66 93.00 95.66 93.66 90.66

soybean 82.41 82.41 87.62 81.10 85.99 83.38 88.59
lymp 80.40 83.10 83.10 83.10 82.43 84.45 84.88

promoters 93.39 93.39 95.28 93.39 95.28 93.39 93.39
splice 82.47 83.51 96.14 94.32 96.14 95.07 95.04
derm 82.12 55.86 97.76 76.25 96.08 95.81 96.64
dna 93.39 93.39 94.33 93.39 87.73 93.71 93.39

ionos 87.17 86.32 90.31 87.74 90.31 84.61 90.45
wine 93.25 93.25 96.62 93.82 96.62 95.50 97.19
sonar 75.48 75.48 66.82 73.07 73.55 71.15 75.48

landsat 78.40 78.40 79.65 78.75 78.90 75.30 79.70
wdbc 92.97 90.15 94.20 94.55 94.02 94.37 95.60

parkinsons 82.56 82.56 80.51 73.33 83.58 75.89 83.58
water2 80.99 74.66 84.64 81.76 83.87 84.64 84.64
spectf 68.91 70.41 71.53 78.27 79.02 64.41 77.53
vehicle 46.21 44.08 43.73 43.02 49.29 38.06 51.18

(often less than a hundred) compared to a large number of
genes (thousands or tens of thousands of genes) involved in
the experiments. However, among a large amount of genes,
only a small fraction is effective for performing a certain
task. Therefore, selecting a small number of discriminative
genes from thousands of genes is essential for successful
sample classification.

In this paper, we select three microarray data sets
which are frequently used in the studies: Colon cancer [2],
Leukemia [12], and Lung cancer [13]. The details of these
data sets are summarized in Table 9. For each data set, we
first apply all the above feature selection algorithms in com-
parison and the selected genes for each algorithm. We then
apply classifiers on each of the newly obtained data sets
(with only the selected genes), and obtain overall classifi-
cation accuracy by leave-one-out cross-validation, a perfor-
mance validation procedure due to a small sample size of
the microarray data.

Table 10 shows the number of genes selected for
mUMC with β values in the range of 0.05–0.45. All mi-

Table 8 Classification accuracy of PART classifier (In Percent).

data RSAR DMRSAR CFS CNS FCFB ReliefF mUMC
credit - - 71.3 74.1 71.3 72.6 74.1
heart 80.61 81.97 79.93 80.95 79.59 79.59 82.99
votes - - 94.33 93.33 94.33 94.06 94.78

soybean 78.5 78.5 87.947 76.22 83.38 86.97 86.31
lymp 77.7 77.02 75.67 76.35 76.35 81.75 77.7

promoters 93.39 93.39 84.9 93.39 84.9 86.79 93.39
splice 81.84 81.92 93.38 93.13 93.38 92.72 94.79
derm 73.46 55.58 95.53 63.4 94.97 90.22 96.08
dna 85.84 85.84 87.1 85.84 88.05 87.1 88.05

ionos 86.6 87.74 90.88 88.88 88.6 93.16 90.31
wine 90.44 90.44 92.69 94.38 92.69 94.38 94.38
sonar 75 75 75.96 77.4 71.63 77.88 80.76

landsat 84.2 84.2 83.25 83.55 81.85 80.1 83.6
wdbc 94.2 93.84 94.55 94.2 95.07 94.55 95.78

parkinsons 86.66 86.66 81.53 85.64 87.69 86.15 86.15
water2 81.38 75.23 82.14 78.88 80.42 80.23 85.22
spectf 78.27 79.77 77.15 79.40 79.4 79.77 82.64
vehicle 70.68 65.48 66.43 66.31 66.43 68.32 71.8

Table 9 Summary of microarray data sets.

Dataset Number of Number of Number of sample
genes samples per class

tumor normal
Colon Tumor 2000 62 40 22

ALL AML
Leukemia 7129 72 47 25

MPM ADCA
Lung Cancer 12533 181 31 150

Table 10 Number of selected genes with the value of β.

Data β Average
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Colon Tumor 3 3 3 3 3 3 3 3 3 3
Leukemia 3 3 3 3 3 3 3 3 3 3

Lung Cancer 3 3 3 3 3 3 3 3 3 3

Table 11 Number of selected genes with different techniques.

data Feature Selection Method
RSAR DMRSAR CFS CNS ReliefF FCFB mUMC

Colon Tumor 3 3 8 3 5 2 3
Leukemia 2 2 10 3 5 6 3

Lung Cancer 3 3 N/A 2 3 12 3

croarray data in Table 10 can select a gene subset with any
value of β in the range of 0.05–0.45. The subset of genes
with β values that obtain the highest predictive accuracy of
each classifier is selected to compare the performance with
other techniques. Table 11 records the number of genes se-
lected by each feature selection algorithm. We can see that
all these algorithms achieve significant reduction of dimen-
sionality by selecting only a small portion of the original
genes.

The effectiveness of these seven algorithms based on
the number of genes selected and the leave-one-out cross-
validation accuracy are reported in Table 12. For Colon
data, the classification accuracy obtained with the mUMC
approach produces more numbers of the highest accuracy
than all other methods. Meanwhile, CFS, CNS, and Reli-



FOITONG et al.: ROUGH-MUTUAL FEATURE SELECTION BASED ON MIN-UNCERTAINTY AND MAX-CERTAINTY
979

Table 12 Performance of classifiers on selected genes.

data classifiers RSAR DMRSAR CFS CNS FCFB ReliefF mUMC
Colon SVM 72.58 72.58 83.87 79.03 80.64 79.03 82.25
Tumor C4.5 77.41 77.41 75.80 82.25 85.48 85.48 87.09

NB 72.58 72.58 83.87 85.48 83.87 85.48 85.48
PART 77.41 77.41 82.25 82.25 85.48 85.48 88.70

Leukemia SVM 77.78 77.78 94.44 84.72 88.88 91.66 94.44
C4.5 93.05 93.05 84.72 88.88 95.83 93.05 97.22
NB 91.66 91.66 98.61 91.66 95.83 94.44 98.61

PART 93.05 93.05 84.72 84.72 95.83 93.05 97.22
Lung SVM 96.13 96.13 - 88.95 98.89 98.34 96.13

Cancer C4.5 97.23 97.23 - 96.13 96.13 98.34 98.34
NB 97.79 97.79 - 97.79 99.44 97.79 98.34

PART 96.13 96.13 - 96.68 96.13 95.58 97.79

efF come with the highest accuracy in one case on SVM,
NB, and NB, respectively. However, both CFS and ReliefF
come with the subset of genes that is larger than mUMC.

It is notable for Leukemia data that mUMC achieves
with the highest accuracy in all classifiers. At the same time,
CFS obtains with the highest accuracy in two cases. How-
ever, the mUMC approach can discover the gene subset with
size smaller than the CFS methods. For Lung Cancer data,
both FCFB and mUMC achieve with the highest accuracy in
two cases whereas mUMC obtains a subset of genes smaller
than FCFB. Meanwhile, ReliefF achieves in one case only
on C4.5. However, CFS fails on the Lung Cancer data as the
program ran out of memory after a period of time due to its
O(N2) space complexity in terms of the number of gene N.

It can be seen from the results reported in Table 12 that
the efficiency of mUMC outperforms RSAR and DMRSAR
in almost all classifiers for any gene expression data. In ad-
dition, the paired two-tailed t-test is used to evaluate the sta-
tistical significance (at 0.1 level) of the difference between
two average accuracy values: one resulted from mUMC and
the other resulted from one of RSAR and DMRSAR. The
results obtained from mUMC are statistically better than
those obtained from both RSAR and DMRSAR in all clas-
sifiers for Colon Tumor data. Meanwhile, on Leukemia data
the results of mUMC are statistically better with regard to
SVM and NB. It is important to demonstrate that mUMC
does tolerant to noise in data and performs with noise better
than both the RSAR and DMRSAR approaches. Further-
more, mUMC demonstrates that the subset of genes selected
is much valuable information than those extracted from the
gene expression data set by considering the information con-
tained both in the certainty and uncertainty region.

5. Conclusions

The comparison of mUMC with the RS dependency-based
methods has shown that the mUMC method is a good start-
ing point for further work based on information measure
both in the lower approximation (certainty region) and the
boundary region (uncertainty region) for exploring the vari-
able precision rough set. The classification accuracy results
have shown to be very well to those of the RS dependency-
based approaches which are outstanding for noisy data and

data in which a granular of each attribute is inconsistent.
When applied to high-dimensional data such as microarray
data, mUMC proved the efficiency of classification accuracy
in most cases compared with other algorithms. Selecting a
subset of attributes with mUMC, maximizing information of
the certainty region while minimizing that of the uncertainty
region at the same time, leads to an impressive improvement
of the accuracy over various data sets when compared with
the RS dependency-based approaches. Therefore, it is clear
that a subset of attributes obtained from mUMC contains
much valuable information than those obtained using the
dependency function alone and also using the information
gathered from both lower approximation dependency value
and distance metric which is a distance of the objects in the
boundary region to those in the lower approximation (the
idea of DMRSAR).

In this paper, we have used mutual information to eval-
uate the goodness of a subset on the training data partitioned
by using VPRS. The difference amount of information be-
tween the information contained in the certainty region and
uncertainty region is used to guide the search for the best
feature subset. The value of parameter β varying from 0.05
to 0.45 is the parameter used to control the noise effect. In
addition, an outlier in data is easy to handle with parame-
ter β. Therefore, noisy information has little influence on
the subset of features that were produced by mUMC al-
gorithm. However, both noisy sample and outliers have
great influence on the RS dependency-based FS methods.
Those approaches based on the RS dependency are unsuc-
cessful when applied to the inconsistent data, e.g., splice
data, whereas the results obtained by mUMC have shown to
be very well. The proposed method, differing form the exist-
ing RS-based FS, presents a novel feature selection method
which leads to the power of extracting much valuable subset
in data. In addition, parameter β is used to control the ratio
of samples in all minority classes over the whole sample set
of the equivalence class in the feature spaces.

We have presented a forward greedy strategy for
searching feature subsets to minimize the information of mi-
nority classes and maximize the information contained in
the majority class. We compared the proposed method with
some classical algorithms, e.g., CFS, CNS, FCFB, and Re-
liefF. The results show that the proposed algorithm is effec-
tive when dealing with discrete data and numerical data. We
have shown the phenomenon of effectiveness on classifica-
tion accuracy and efficiency of subset size which occur in
gene selection on gene expression data. Although mUMC
does need to be predefined the value of β that is suitable
with the classifier, the value of β is specified without us-
ing domain knowledge. Furthermore, it can be seen that
the idea of mUMC leads to an impressive improvement of
the classification accuracy over various data sets when com-
pared with the RS dependency-based FS approaches. To
increase the efficiency and effectiveness on the selected fea-
tures, the wrapper-based postpruning method is necessary
for an optimal subset selection. When considering the num-
ber of selected features and the corresponding classification
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performance on classifiers, mUMC suits better for applying
to wrapper-based postpruning.

It is more difficult or impossible to apply an exhaustive
search due to time complexity when dealing with huge fea-
ture data such as microarray data. Greedy search guided by
some heuristics is more feasible because a suboptimal fea-
ture subset could be archived with reasonable computational
costs. However, the mUMCREDUCT algorithm that works
on the idea of greedy search can produce more than one sub-
optimal subset with β value in the range of 0.05–0.45. More-
over, each value of β may begin searching in feature space
with a different starting feature. Therefore, these suboptimal
subsets are expected to increase the opportunities that lead
to near-optimal subset or a globally optimal subset. In addi-
tion, from our experiments on all data sets we discover that
the feature evaluation function E is monotonic. To avoid
a suboptimal subset of greedy search and an optimal sub-
set with running exhaustive search, other search techniques
can be used with the feature evaluation function E (such as
branch and bound (B&B) [32], [45], floating search [40], or
GAs [34], [49] etc.).
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