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Tensor Rank and Strong Quantum Nondeterminism in Multiparty
Communication∗

Marcos VILLAGRA†a), Nonmember, Masaki NAKANISHI††b), Member,
Shigeru YAMASHITA†††c), Senior Member, and Yasuhiko NAKASHIMA†d), Nonmember

SUMMARY In this paper we study quantum nondeterminism in mul-
tiparty communication. There are three (possibly) different types of non-
determinism in quantum computation: i) strong, ii) weak with classical
proofs, and iii) weak with quantum proofs. Here we focus on the first one.
A strong quantum nondeterministic protocol accepts a correct input with
positive probability and rejects an incorrect input with probability 1. In
this work we relate strong quantum nondeterministic multiparty communi-
cation complexity to the rank of the communication tensor in the Number-
On-Forehead and Number-In-Hand models. In particular, by extending the
definition proposed by de Wolf to nondeterministic tensor-rank (nrank),
we show that for any boolean function f when there is no prior shared
entanglement between the players, 1) in the Number-On-Forehead model
the cost is upper-bounded by the logarithm of nrank( f ); 2) in the Number-
In-Hand model the cost is lower-bounded by the logarithm of nrank( f ).
Furthermore, we show that when the number of players is o(log log n), we
have NQP � BQP for Number-On-Forehead communication.
key words: multiparty communication complexity, quantum computation,
quantum nondeterminism, tensor rank

1. Introduction

Nondeterminism plays a fundamental role in complexity
theory. For instance, the P vs NP problem asks if nonde-
terministic polynomial time is strictly more powerful than
deterministic polynomial time. Even though nondetermin-
istic models are unrealistic, they can give insights into the
power and limitations of realistic models (i.e., determinis-
tic, random, etc.).

There are two ways of defining a nondeterministic ma-
chine, using randomness or as a proof system: a nonde-
terministic machine i) accepts a correct input with positive
probability and rejects an incorrect input with probability
one; or ii) is a deterministic machine that receives, in addi-
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tion to the input, a proof or certificate, which exists if and
only if the input is correct. For classical machines (i.e., ma-
chines based on classical mechanics), these two notions of
nondeterminism are equivalent. However, in the quantum
setting they can be different. In fact, these two notions give
rise to (possibly) three different kinds of quantum nondeter-
minism. In strong quantum nondeterminism, the quantum
machine accepts a correct input with positive probability. In
weak quantum nondeterminism, the quantum machine out-
puts the correct answer when supplied with a correct proof,
which could be either classical or quantum.

The study of quantum nondeterminism in the context
of query and communication complexities started with de
Wolf [1]. In particular, de Wolf [1], [2] introduced the no-
tion of nondeterministic rank of a matrix, which was proved
to completely characterize strong quantum nondeterministic
communication. In the same piece of work, it was proved
that strong quantum nondeterministic protocols are expo-
nentially stronger than classical nondeterministic protocols.
Similarly, Le Gall [3] studied weak quantum nondetermin-
istic communication with classical proofs and showed a
quadratic separation for a total function.

Weak nondeterminism seems a more suitable defini-
tion, mainly due to the requirement of the existence of a
proof, a concept that plays fundamental roles in complex-
ity theory. In contrast, strong nondeterminism lends itself to
a natural mathematical description in terms of matrix rank.
Moreover, strong nondeterminism is a more powerful model
capable of simulating weak nondeterminism with classical
and quantum proofs. The reverse, if weak nondeterminism
is strictly a less powerful model or not is still an open prob-
lem.

The previous results by de Wolf [2] and Le Gall [3]
were on the context of 2-party communication complexity,
i.e., there are two players with two inputs x, y ∈ {0, 1}n each,
and they want to compute a function f (x, y). Let rank( f ) be
the rank of the communication matrix Mf , where Mf [x, y] =
f (x, y). A known result by [4] is � 1

2 log rank( f )� ≤ Q( f ) ≤
D( f ), where D( f ) is the deterministic communication com-
plexity of f and Q( f ) the quantum exact communication
complexity∗∗. It is conjectured that D( f ) = O(logc rank) for
some constant c. This is the log-rank conjecture in commu-
nication complexity, one of the biggest open problems in the
field. If it holds, it will imply that Q( f ) and D( f ) are poly-

∗∗All logarithms in this paper are base 2.
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nomially related. This is in stark contrast to the characteri-
zation given by de Wolf [2] in terms of the nondeterministic
matrix-rank, which is defined as the minimal rank of a ma-
trix (over the complex field) whose (x, y)-entry is non-zero
if and only if f (x, y) = 1.

1.1 Contributions

In this paper, we continue the study of strong quantum non-
determinism in the context of multiparty protocols. Let
k ≥ 2 be the number of players evaluating a function
f (x1, . . . , xk) where each xi ∈ {0, 1}n. The players take turns
predefined at the beginning of the protocol. Each time a
player sends a bit (or qubit if it is a quantum protocol),
he sends it to the player who follows next. The computa-
tion of the protocol ends when the last player computes f .
The communication complexity of the protocol is defined
as the minimum number of bits that need to be transmit-
ted by the players in order to compute f (x1, . . . , xk). There
are two common ways of communication: The Number-
On-Forehead model (NOF), where player i knows all inputs
except xi, and the Number-In-Hand model (NIH), where
player i only knows xi. Also, any protocol naturally de-
fines a communication tensor T f , where T f [x1, . . . , xk] =
f (x1, . . . , xk).

Tensors are natural generalizations of matrices. They
are defined as multi-dimensional arrays while matrices are
2-dimensional arrays. In the same way, the concept of ma-
trix rank extends to tensor rank. However, the nice proper-
ties of matrix rank do not hold anymore for tensors; for in-
stance, unlike matrix rank for which there exist polynomial-
time algorithms, computing tensor rank is NP-hard [5]. See
the survey paper by Kolda and Bader [6] for more differ-
ences.

We extend the concept of nondeterministic matrices to
nondeterministic tensors. The nondeterministic tensor rank,
denoted nrank( f ), is the minimal rank of a tensor (over the
complex field) whose (x1, . . . , xk)-entry is non-zero if and
only if f (x1, . . . , xk) = 1.

Let NQNOF
k and NQNIH

k denote the k-party strong quan-
tum nondeterministic communication complexity without
prior shared entanglement for the NOF and NIH models re-
spectively.

Theorem 1: Let f : ({0, 1}n)k → {0, 1}, then NQNOF
k ( f ) ≤

�log nrank( f )� + 1, and NQNIH
k ( f ) ≥ �log nrank( f )� + 1.

This theorem generalizes previous results by de
Wolf [2]. Also, since NQNIH

k is a lower bound for exact NIH
quantum communication†, denoted QNIH

k , we obtain the fol-
lowing corollary:

Corollary 2: �log nrank( f )� + 1 ≤ QNIH
k ( f ).

The proof of Theorem 1 is given in Sect. 3. Even
though it is a generalization of the techniques of [2], it re-
quires technical insight. The proof does not generalize in a
straightforward manner and it does not yield the same char-
acterization as in the 2-player case. For example, NQNOF

k

cannot be lower-bounded in general by the tensor rank. To
see this consider the k-party equality function EQ given by
EQk(x1, . . . , xk) = 1 if and only if x1 = · · · = xk. A nonde-
terministic tensor for EQk is superdiagonal††. Thus, it has 2n

rank, and implies by Theorem 1 that NQNOF
k (EQk) ≤ n + 1

and NQNIH
k (EQk) ≥ n + 1. In particular, the communica-

tion complexity of EQk is upper-bounded by O(n) in the
NOF model. However, it is easy to show that in the NOF
model there exists a classical protocol for EQk with a cost
of 2 bits†††. Hence, the characterization for the 2-player case
does not extends to the multiplayer case. In contrast, the
lower bound on NQNIH

k (EQk) that follows from Theorem 1
is not that loose; using the trivial protocol, where all play-
ers send their inputs, we have that NQNIH

k (EQk) = O(kn).
Thus, Theorem 1 yields a tight bound for EQk whenever
k = O(1). However, whether the same phenomenon extends
to all functions in the NIH model is unknown. See below in
this section for some consequences on constructing tensors
with high rank.

A more interesting function is the generalized inner
product GIPk(x1, . . . , xk) = (

∑k
i=1

∧n
j=1 xi j) mod 2. We

know that nrank(GIPk) ≥ (k − 1)2n−1 + 1 (see Sect. 5 for
a proof). Thus, we have the following result.

Proposition 3: NQNIH
k (GIPk) ≥ n + �log(k − 1)� − 1.

In NIH, using the trivial protocol, we obtain (with Corol-
lary 2) a bound in quantum exact communication of n +
�log(k−1)�−1 ≤ QNIH

k (GIPk) ≤ (k−1)n+1. Improving the
lower bound will require new techniques for explicit con-
struction of linear-rank tensors with important consequences
to circuit lower bounds; see for example Raz [7] and the pa-
per by Alexeev, Forbes and Tsimerman [8] for state-of-the-
art tensor constructions. In general, we are still unable to
upper-bound NQNIH

k ( f ) in terms of log nrank. In this way,
we have a new log-rank conjecture for strong quantum non-
deterministic communication complexity.

Although the bounds given by Theorem 1 could be
loose for some functions, they are good enough for other
applications. For instance, we show in Sect. 4 a separation
between the NOF models of strong quantum nondetermin-
ism and bounded-error quantum communication. We do so
by applying Theorem 1 to a total function explicitly con-
structed for this task. This result could be considered as the
quantum analog of a separation previously proved in [9]–
[11] between classical nondetermistic and randomized NOF
communication.

†An exact quantum protocol accepts a correct input and rejects
an incorrect input with probability 1.
††An order-k tensor is superdiagonal when T [x1, . . . , xk] � 0 if

and only if x1 = · · · = xk.
†††In the blackboard model (explained in Sect. 2) for k ≥ 3, let

the first player check if x2, . . . , xk are equal. If they are, he sends
a 1 bit to the second player, who will check if x1, x3, . . . , xk are
equal. If his strings are equal and he received a 1 bit from the first
player, he sends a 1 bit to all players indicating that all strings are
equal. In the message-passing model the same protocol has a cost
of O(k) bits.
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2. Preliminaries

In this paper we assume basic knowledge of communication
complexity and quantum computing. We refer the interested
reader to the books by [12] and [13] respectively. In this
section we give a small review of tensors and quantum com-
munication.

2.1 Tensors

A tensor is a multi-dimensional array defined over some
field. An order-d tensor is an element of the tensor prod-
uct of d vector spaces.

Definition 1 (Simple Tensor): Let |vi〉 ∈ Vni be an ni-
dimensional vector for 1 ≤ i ≤ d on some vector space
Vni . The jthi component of |vi〉 is denoted by vi( ji) for
1 ≤ ji ≤ ni. The tensor product of {|vi〉} is the tensor T ∈
Vn1 ⊗ · · · ⊗ Vnd whose ( j1, . . . , jd)-entry is v1( j1) · · · vd( jd),
i.e., T [ j1, . . . , jd] = v1( j1) · · · vd( jd). Then T = |v1〉⊗· · ·⊗|vd〉
and we say T is a rank-1 or simple order-d tensor. We also
say that a tensor is of high order if d ≥ 3.

From now on, we will refer to high-order tensors sim-
ply as tensors, and low-order tensor will be matrices, vec-
tors, and scalars as usual.

It is important to note that the set of simple tensors
spans the space Vn1⊗· · ·⊗Vnd , and hence, there exist tensors
that are not simple. This leads to the definition of rank.

Definition 2 (Tensor Rank): The rank of a tensor is the
minimum r such that T =

∑r
i=1 Ai for simple tensors Ai.

This agrees with the definition of matrix rank. The
complexity of computing tensor rank was studied by
Håstad [5] who showed that it is NP-complete for any finite
field, and NP-hard for the rational numbers.

The process of arranging the elements of an order-k
tensor into a matrix is known as matrization. Since there
are many ways of embedding a tensor into a matrix, in gen-
eral the permutation of columns is not important, as long as
the corresponding operations remain consistent; see Kolda
and Bader [6].

2.2 Strong Quantum Nondeterministic Multiparty Com-
munication

In a multiparty communication protocol there are k ≥ 3
players trying to compute a function f . Let f : Xk → {0, 1}
be a function on k strings x = (x1, . . . , xk), where each
xi ∈ X and X = {0, 1}n. There are two common ways
of communication between the players: The Number-In-
Hand (NIH) and the Number-On-Forehead (NOF) models.
In NIH, player i only knows xi, and in NOF, player i knows
all inputs except xi. First we review the classical definition.

Definition 3 (Classical Nondeterministic Protocol): Let k
be the number of players. In order to communicate, the

players take turns in an order predefined at the beginning
of the protocol. Each player sends exactly one bit to the
player that follows next. The computation of the protocol
ends when the last player computes f . If f (x) = 1 then, the
protocol accepts x with positive probability; if f (x) = 0, the
protocol rejects x with probability 1. The cost of the proto-
col is the total number of bits communicated.

Hence, the classical nondeterministic multiparty com-
munication complexity, denoted Nk( f ), is defined as the
minimum number of bits required to compute f (x). If the
model is NIH or NOF, we add a superscript NNIH

k ( f ) or
NNOF

k ( f ) respectively. Note that, the definition of the multi-
party protocols in this paper (classical and quantum) are by
message-passing, i.e., a player sends a bit only to the player
that follows next. This is in contrast to the more common
blackboard model. In this latter model, when a player sends
a bit, he does so by broadcasting it and reaching all players
immediately. Clearly, any lower bound on the blackboard
model is a lower bound for the message-passing model in
this paper.

To model NOF and NIH in the quantum setting, we
follow the work of Lee, Schechtman, and Shraibman [14],
originally defined by Kerenidis [15].

Definition 4 (Quantum Multiparty Protocol): Let k be the
number of players in the protocol. Define the Hilbert space
by H1 ⊗ · · · ⊗ Hk ⊗ C, where each Hi is the Hilbert space
of player i, and C is the one-qubit channel. To communi-
cate the players take turns predefined at the beginning of the
protocol. On the turn of player i:

1. in NIH, an arbitrary unitary that only depends on xi is
applied on Hi ⊗ C, and acts as the identity anywhere
else;

2. in NOF, an arbitrary unitary that depends on all inputs
except xi is applied on Hi ⊗ C, and acts as the identity
anywhere else.

The cost of the protocol is the number of rounds.

The initial state is a pure state |0〉 ⊗ · · · ⊗ |0〉 |0〉 without any
prior entanglement. If the final state of the protocol on input
x1, . . . , xk is |ψ〉, it outputs 1 with probability p(x1, . . . , xk) =
〈ψ|Π1 |ψ〉, where Π1 is a projection onto the |1〉 state of the
channel.

We say that T is a nondeterministic communication
tensor if T [x1, . . . , xk] � 0 if and only if f (x1, . . . , xk) = 1.
Thus, T can be obtained by replacing each 1-entry in the
original communication tensor by a non-zero complex num-
ber. We also define the nondeterministic rank of f , denoted
nrank( f ), to be the minimum rank over the complex field
among all nondeterministic tensors for f .

Definition 5 (Strong Quantum Nondeterministic Protocol):
A k-party strong quantum nondeterministic communication
protocol outputs 1 with positive probability if and only if
f (x) = 1.

The k-party quantum nondeterministic communication
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complexity, denoted NQk( f ), is the cost of an optimum (i.e.,
minimal cost) k-party quantum nondeterministic communi-
cation protocol. If the model is NIH or NOF, we add a su-
perscript NQNIH

k ( f ) or NQNOF
k ( f ) respectively. From the

definition it follows that NQk is a lower bound for the exact
quantum communication complexity Qk for both NOF and
NIH.

The following lemma, given in Lee, Schechtman, and
Shraibman [14], generalizes a previous observation made by
Yao [16] and Kremer [17] on 2-party protocols.

Lemma 4: After � qubits of communication on input
(x1, . . . , xk), the state of a quantum protocol without prior
shared entanglement can be written as∑

m∈{0,1}�

∣∣∣A1
m(x1)

〉 ∣∣∣A2
m(x2)

〉
· · · ∣∣∣Ak

m(xk)
〉
|m�〉 ,

where m� is the �-th bit in m, and each vector
∣∣∣At

m(xt)
〉

cor-
responds to the t-th player which depends on m and the
input xt. If the protocol is NOF then xt = (x1, . . . , xt−1,
xt+1, . . . , xk); if it is NIH then xt = (xt).

3. Proof of Theorem 1

3.1 Lower Bound

The arguments in this section are generalizations of a pre-
vious result by [2] from 2-party to k-party communication
for k ≥ 3. First we need the following technical lemma (see
below for a proof).

Lemma 5: If there exist k families of vectors such that
{∣∣∣Ai

1(xi)
〉
, . . . ,

∣∣∣Ai
r(xi)

〉
} ⊆ Cd for all i with 1 ≤ i ≤ k and

xi ∈ {0, 1}n given that

r∑
i=1

∣∣∣A1
i (x1)

〉
⊗ · · · ⊗ ∣∣∣Ak

i (xk)
〉
= 0 iff f (x1, . . . , xk) = 0,

then nrank( f ) ≤ r.

Now we proceed to prove the lower bound as stated in
Theorem 1.

Lemma 6: NQNIH
k ( f ) ≥ �log nrank( f )� + 1

Proof: Consider a NIH �-qubit protocol for f . By Lemma 4
its final state is

|ψ〉 =
∑

m∈{0,1}�

∣∣∣A1
m(x1)

〉
· · · ∣∣∣Ak

m(xk)
〉
|m�〉 . (1)

Assume all vectors have the same dimension d. Let S =
{m ∈ {0, 1}� : m� = 1}, and consider only the part of the state
that is projected onto the 1-state of the channel,

|φ(x1, . . . , xk)〉 =
∑
m∈S

∣∣∣A1
m(x1)

〉
· · · ∣∣∣Ak

m(xk)
〉
|1〉 . (2)

The vector |φ(x1, . . . , xk)〉 is 0 if and only if f (x1, . . . ,
xk) = 0. Thus, by Lemma 5, we have that nrank( f ) ≤ |S | =

2�−1, which implies the lower bound. �

Proof of Lemma 5: Let k ≥ 3. We divide the proof in two
cases, when k is odd and even.

Even k: There are k size-r families of d-dimensional vectors.
We will construct two new families of vectors denoted D
and F . First, divide the k families in two groups of size
k/2. Then, tensor each family in one group together in the
following way: for each family {∣∣∣Ai

1(xi)
〉
, . . . ,

∣∣∣Ai
r(xi)

〉
} for

1 ≤ i ≤ k/2 construct a new family

D =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k/2⊗
j=1

∣∣∣∣Aj
1(x j)

〉
, . . . ,

k/2⊗
j=1

∣∣∣∣Aj
r(x j)

〉⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

{
|A1(y)〉 , . . . , |Ar(y)〉

}
,

where y = (x1, . . . , xk/2). Do the same to construct F for
k/2 + 1 ≤ i ≤ k obtaining

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k⊗

j=k/2+1

∣∣∣∣Aj
1(x j)

〉
, . . . ,

k⊗
j=k/2+1

∣∣∣∣Aj
r(x j)

〉⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

{
|B1(z)〉 , . . . , |Br(z)〉

}
,

where z = (xk/2+1, . . . , xk). Thus, D and F will become two
size-r family of vectors, each vector with dimension dk/2.
Then apply the theorem for k = 2 from [2] on these two
families and the lemma follows.

Odd k: Here we can use the same approach by constructing
again two new families D and F by dividing the families
in two groups of size �k/2� and �k/2�. However, although
both families will have the same number of elements r, the
dimension of the vectors will be different. In fact, the dimen-
sion of the vectors in one family will be d′ = d�k/2� and in
the other d′ + 1. So, in order to prove the theorem we will
consider having two families {|A1(y)〉 , . . . , |Ar(y)〉} ⊆ Cd′

and {|B1(z)〉 , . . . , |Br(z)〉} ⊆ Cd′+1, both with cardinality r.
Denote the entry of each vector |Ai(y)〉 , |Bi(z)〉 by

Ai(y)u and Bi(z)v respectively for all (u, v) ∈ [d′] × [d′ + 1].
Note that, if f (y, z) = 0 then

∑r
i=1 Ai(y)uBi(z)v = 0 for all

(u, v); if f (y, z) = 1 then
∑r

i=1 Ai(y)uBi(z)v � 0 for some
(u, v). This holds because each vector |Ai(y)〉 and |Bi(z)〉 are
the set of vectors

∣∣∣At
i(xt)

〉
tensored together and separated in

two families of size �k/2� and �k/2� respectively.
The following lemma was implicitly proved by de

Wolf [2] for families of vectors with the same dimension.
However, we show that the same arguments hold even if the
families have different dimensionality (see Appendix for a
proof).

Lemma 7: Let I be an arbitrary set of real numbers of size
22n+1. Let α1, . . . , αd′ and β1, . . . , βd′+1 be numbers from I,
and define the quantities

ai(y) =
d′∑

u=1

αuAi(y)u and bi(z) =
d′+1∑
v=1

βvBi(z)v.
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Also let

v(y, z) =
r∑

i=1

ai(y)bi(z) =
d′∑

u=1

d′+1∑
v=1

αuβv

⎛⎜⎜⎜⎜⎜⎝ r∑
i=1

Ai(y)uBi(z)v

⎞⎟⎟⎟⎟⎟⎠ .
There exists α1, . . . , αd′ , β1, . . . , βd′+1 ∈ I such that for every
(y, z) ∈ f −1(1) we have v(y, z) � 0.

Therefore, by the lemma above we have that v(y, z) =
0 if and only if f (y, z) = 0. Now let |ai〉 and |bi〉 be 2n-
dimensional vectors indexed by elements from {0, 1}n, and
let M =

∑r
i=1 |ai〉 〈bi|. Thus M is a nondeterministic order-k

tensor of rank r. �

3.2 Upper Bound

The proof of the upper bound follows by fixing a proper
matrization (separating the cases of odd and even k) of the
communication tensor, and then applying the 2-party proto-
col by de Wolf [2].

Lemma 8: NQNOF
k ( f ) ≤ �log nrank( f )� + 1.

Proof: Let T be a nondeterministic tensor for f with
nrank( f ) = r. We divide the proof in two cases.

Even k: Fix two players, say P1 (Alice) and Pk (Bob). Also
fix some matrization of T , i.e., let M be such matrization
and consider it as an operator M : Hk/2+1 ⊗ · · · ⊗ Hk →
H1 ⊗ · · · ⊗ Hk/2. Thus M is a 2kn/2 × 2kn/2-matrix that maps
elements from the Hk/2+1 ⊗ · · · ⊗ Hk subspace to the H1 ⊗
· · ·⊗Hk/2 subspace. Let also M = UΣV be the singular value
decomposition of M such that U,V are 2kn/2 × 2kn/2 unitary
matrices, and Σ is a 2kn/2 × 2kn/2 diagonal matrix containing
the singular values of M in the diagonal. The number of
singular values is at most rank(M) ≤ r.

Bob computes the state
∣∣∣φ1···k/2

〉
= c1···k/2ΣV

∣∣∣x1, . . . ,
xk/2

〉
where c1···k/2 is some normalizing constant that de-

pends on x1, . . . , xk/2. Since only the first entries of Σ are
non-zero,

∣∣∣φ1···k/2
〉

has at most r non-zero entries, so the state
can be compressed using log r qubits†. Bob sends these
qubits to Alice. Alice then computes U

∣∣∣φ1···k/2
〉

and mea-
sures that state. If Alice observes xk/2+1, . . . , xk then she
puts a 1 on the qubit channel, and otherwise she puts a 0.
The probability of Alice putting a 1 on the channel is∣∣∣〈xk/2+1, . . . , xk

∣∣∣ U
∣∣∣φ1···k/2

〉∣∣∣2
= |c1...,k/2|2

∣∣∣〈xk/2+1, . . . , xk

∣∣∣ UΣV
∣∣∣x1, . . . , xk/2

〉∣∣∣2
= |c1...,k/2|2

∣∣∣〈xk/2+1, . . . , xk

∣∣∣ M
∣∣∣x1, . . . , xk/2

〉∣∣∣2
= |c1...,k/2|2 |M[x1, . . . , xk]|2
= |c1...,k/2|2 |T [x1, . . . , xk]|2 .

Since T [x1, . . . , xk] is non-zero if and only if f (x1, . . . , xk) =
1, this probability will be positive if and only if f (x1, . . . ,
xk) = 1. Thus, this is a nondeterministic protocol with total
cost log r + 1.

Odd k: To use the protocol given in the even case, we add
an extra degree of freedom to T .

Lemma 9: If T is an order-k tensor with rank r then,
there exists a tensor T ′ of order k + 1 with rank r where
T [x1, . . . , xk] = T ′[x1, . . . , xk, xk+1] for all xk+1.

By the above lemma we have that T ′[x1, . . . , xk xk+1] =
0 if and only if f (x1, . . . , xk) = 0 for any given xk+1. See
Appendix for a proof.

Before the protocol starts, each player knows T ′ (which
has even order) and its matrization M′. We fix two players,
P1 (Alice) and Pk (Bob), and they can now use the protocol
for even k. �

4. Some Separations for Complexity Classes

In this section we take a complexity-theoretic view of quan-
tum multiparty communication complexity. For this model
we consider as “efficient communication” when a protocol
computes a function with polylog(n) bits [19].

Definition 6: We define the following communication
complexity classes:

1. BPPcc is the class of boolean functions with a classical
bounded-error protocol of cost polylog(n);

2. BQPcc is the class of boolean functions with a quantum
bounded-error protocol of cost polylog(n);

3. NQPcc is the class of boolean functions with a quantum
strong nondeterministic protocol of cost polylog(n).

In the following we present two theorems that give
separations between the complexity classes defined above.
First, for better understanding, we start by showing a weaker
but easier to prove result, a separation between NQPcc and
BPPcc. Then we use that result to separate NQPcc from
BQPcc. Although this latter result can be proved without the
need of the former, starting with the separation from BPPcc

seems easier to understand.

Proposition 10: For NOF communication we have that
NQPcc � BPPcc whenever the number of players k =
o(log log n).

Proof: To prove this we exhibit a function f : Xk →
{0, 1} such that NQNOF

k ( f ) = O(log n) and Rε,k( f ) =

Ω(n1/(k+1)/(k22k
)), where Rε,k denotes the bounded-error

NOF communication complexity with error probability
upper-bounded by ε. This will give the separation whenever
k = o(log log n).

In particular, we analyze the following total function.
Let x1, . . . , xk ∈ X with X = {0, 1}n, then

f (x1, . . . , xk) =

{
1 if |x1 ∧ · · · ∧ xk | � 1
0 if |x1 ∧ · · · ∧ xk | = 1

, (3)

where ∧ denotes the bit-wise AND and |x| is the Hamming

†An n-dimensional vector can be encoded as a quantum
state with log n qubits by observing that a k-qubit state is a 2k-
dimensional vector. This fact was used by Raz [18] to show an ex-
ponential separation between classical and quantum 2-party com-
munication.
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weight of x. This function was previously studied by de
Wolf [2] in the 2-player case.

Upper Bound: For each i let xi = xi1 . . . xin and let T j be an
order-k tensor where T j[x1, . . . , xk] = 1 if x1 j ∧ · · · ∧ xk j = 1
and T j[x1, . . . , xk] = 0 otherwise. Note that for each j the
tensor T j has rank 1. Define the order-k tensor T by

T [x1, . . . , xk] =
n∑

j=1

T j[x1, . . . , xk] − 1.

This tensor has rank n. Also T is a nondeterministic com-
munication tensor for f since T [x1, . . . , xk] = 0 if and only
if |x1 ∧ · · · ∧ xk | = 1. Hence, by Theorem 1 the upper bound
follows.

Lower Bound: To prove the lower bound we will use, with-
out loss of generality, the sign version of Eq. (3), i.e.,

f (x1, . . . , xk) =

{
1 if |x1 ∧ · · · ∧ xk | � 1
−1 if |x1 ∧ · · · ∧ xk | = 1

. (4)

We make use of a result by Lee and Shraibman [20].
Let μα be the approximate cylinder intersection norm as de-
fined in [20], and let d̃eg( f ) be the approximate degree of a
boolean function f [21].

Lemma 11: Let fn : {0, 1}n → {−1, 1} be a symmetric†
function, and let F f : ({0, 1}n)k → {−1, 1} be a function (not
necessarily symmetric) defined by F f (x1, . . . , xk) = f (x1 ∧
· · · ∧ xk). Let α > 1/(1 − 2ε) and set c = 2e(k − 1)22k−1

, then

R1/4,k(F fn ) = Ω(log μα(F fn )) = Ω

⎛⎜⎜⎜⎜⎝ d̃eg( fm)
2k

⎞⎟⎟⎟⎟⎠ ,
where n =

(
c/d̃eg( fm)

)k−1
mk.

Note that Lemma 11 is a generalization of [20, Corol-
lary 6.1] to symmetric functions. However, as pointed by
the authors of [20], this generalization is straightforward and
can be easily proved by following the proof of [20, Corol-
lary 6.1], and it is therefore omitted from this paper.

Define the following Hamming weight function:

w(x) =

{
1 if |x| � 1
−1 if |x| = 1

.

This way we can write Eq. (4) as f (x1, . . . , xk) = w(x1 ∧
· · · ∧ xk). Also note that w is symmetric and we can ap-
ply Lemma 11. Together with the characterization given by
Paturi [22] of the approximate degree of symmetric func-
tions we have that

log μα( f ) = Ω

(
n1/(k+1)

k22k

)
. (5)

�

Theorem 12: For NOF communication we have that
NQPcc � BQPcc whenever the number of players k =
o(log log n).

Proof: To prove this we rely again in Eq. (4) and the
fact that NQNOF

k ( f ) = O(log n). Here we show that

Qε,k( f ) = Ω(n1/(k+1)/(k22k
) − k), where Qε denotes the

bounded-error NOF communication complexity with error
probability upper-bounded by ε.

Note that to prove Proposition 10 we derived a lower
bound on μα, i.e., Eq. (5). We can use the same lower bound
to prove the separation for BQPcc. In order to do that we
make use of the following two results by Lee, Schechtman,
and Shraibman [14]. Let γα be the approximate quantum
norm as defined in [14].

Lemma 13: Let T be an order-k sign-tensor, then
Qε,k(T ) = Ω(log γα(T )).

Lemma 14: For every order-k tensor T , γ(T ) ≤ μ(T ) ≤
Ckγ(T ), for some absolute constant C.

Thus, by these two lemmas above and Eq. (5) we have

log γα( f ) = Ω

(
n1/(k+1)

k22k
− k

)
.

�

5. Nondeterministic Rank Lower Bound of GIP

In this section we give a lower bound on the nondetermin-
istic rank of the Generalized Inner Production (GIP) func-
tion. Remember that for k ≥ 2 players GIPk(x1, . . . , xk) =
(
∑k

i=1
∧n

j=1 xi j) mod 2.

Lemma 15: nrank(GIPk) ≥ (k − 1)2n−1 + 1.

Proof: First, we start by generalizing the concept of rows
and columns for tensors. Define a fiber to be a vector ob-
tained by fixing every index except by one. In general, a
mode-i fiber is a vector obtained by fixing all except the ith

index. Thus, a matrix column is a mode-1 fiber, and a row is
a mode-2 fiber. For order-3 tensors, we have columns, rows
and tubes, and so on for higher order tensors. In the same
way we define a slice to be a two-dimensional section of T
obtained by fixing all but two indices.

Here we will consider a particular form of matrization.
Let T ∈ Cn1×···×nk be an order-k tensor, with ni = 2n for
every i. The i-mode unfolding of T , denoted T(i), is the
matrix obtained by arranging the i-mode fibers as columns.
The permutations of the columns of T(i) is not important, as
long as the corresponding operations remain consistent; see
Kolda and Bader [6]. Define the i-rank of T as ranki(T ) =
rank(T(i)). It is trivial that ranki(T ) ≤ rank(T ) for every i;
see Lathauwer, de Moore, and Vandewalle [23].

Now we proceed with the proof. Let T be the order-k
nondeterministic communication tensor for GIPk. Let MIPn

be the boolean communication matrix for GIP2 on n bits,
i.e., the 2-party inner product function on n bits. It is well
known that rank(MIPn ) = 2n − 1; see Example 1.29 in

†A function is called symmetric if it only depends on the num-
ber of 1s in the input.
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Kushilevitz and Nisan [12]. The same holds even if MIPn

is defined over C.
Let 1 denote the string of length n with only 1s in it,

and let T ′ be the (x′3, . . . , x
′
k)-slice of T where x′i = 1 for i =

3, . . . , k. In this way T ′[x1, x2] � 0 whenever 〈x1| x2〉 = 1
and hence rank(T ′) = rank(MIPn ) = 2n − 1.

Let x(i) denote the string x with the ith bit flipped. For
i = 3, . . . , k consider the (x′3 . . . x′k−1x′(i)k )-slice of T denoted
T ′i where x′k(i) is the string 1 with the ith bit flipped to 0.
Then

T ′i [x1, x2] � 0 whenever 〈x1| x2〉 − x1i x2i = 1. (6)

Note that the non-zero entries of T ′i for any i agrees with
the non-zero entries of MIPn−1 , where MIPn−1 is obtained by
deleting the ith bits of x1 and x2 in MIPn for all x1, x2. Thus,
rank(T ′i ) = 2n−1 − 1 for all i = 3, . . . , n.

The 1-mode unfolding of T is obtained by fixing every
index except x1. Thus

T(1) =
[
T ′ T ′3 · · · T ′k · · ·

]
,

with 2(k−1)n columns, where the right part (after T ′k) of T(1) is
filled with the slices from T that are different to T ′ and T ′i for
all i = 3, . . . , n. We know that T ′ and T ′i for each i = 3, . . . , k
have (2n − 1) and 2n−1 − 1 linearly independent columns re-
spectively. Also, each of these columns are pair-wise lin-
early independent. To see this, just take any two slices T ′i
and T ′j for any i � j, fix one column in each and com-

pute the inner product according to Eq.(̇6). Thus, rank(T ) ≥
rank1(T ) ≥ 2n − 1 + (k − 2)(2n−1 − 1) = (k − 1)2n−1 + 1. �

6. Concluding Remarks

In this paper we studied strong quantum nondeterministic
communication complexity in multiparty protocols. In par-
ticular, we showed that i) strong quantum nondeterminis-
tic NOF communication complexity is upper-bounded by
the logarithm of the rank of the nondeterministic commu-
nication tensor; ii) strong quantum nondeterministic NIH
communication complexity is lower-bounded by the loga-
rithm of the rank of the nondeterministic communication
tensor. These results naturally generalize previous work by
de Wolf [2]. Moreover, the lower bound on NIH is also a
lower bound for quantum exact NIH communication. This
fact was used to show a Ω(n + log k) lower bound for the
generalized inner product function.

We also showed that NQPcc � BPPcc and NQPcc �

BQPcc when the number of players is o(log log n). It re-
mains as an open problem to prove the same separations
with an increased number of players.

In order to prove strong lower bounds using tensor-rank
in NIH, we need stronger construction techniques for ten-
sors. The fact that computing tensor-rank is NP-complete
suggests that this could be a very difficult task. Alternatives
for finding lower bounds on tensor-rank include computing
the norm of the communication tensor, or a hardness result
for approximating tensor-rank.
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Appendix: Proofs of Technical Lemmas

A.1 Proof of Lemma 7

If f (y, z) = 0 then v(y, z) = 0 for all αu, βv. If f (y, z) � 0
there exists (u′, v′) such that v(y, z) � 0. Here we use the
same arguments given by [2], i.e., we show that v(y, z) = 0
happens with small probability. In fact, having families of
vectors with different dimensions does not affect the argu-
ment. Consider the situation where all αu and βv were cho-
sen except αu′ and βv′ . Write v(y, z) in terms of these two
coefficients

v(y, z) = c0αu′βv′ + c1αu′ + c2βv′ + c3,

where c0 =
∑r

i=1 Ai(y)u′Bi(z)v′ � 0. If we fix αu′ then, v(y, z)
is a linear equation with at most one solution for each αu′ .
Therefore, we have at most 22n+1 + 22n+1 − 1 = 22n+2 − 1
ways of choosing αu′ and βv′ such that v(y, z) = 0. Thus

Pr[v(y, z) = 0] <
22n+2

(22n+1)2
= 2−2n.

By the union bound

Pr[∃(y, z) ∈ f −1(1) s.t. v(y, z) = 0]

≤
∑

(y,z)∈ f −1(1)

Pr[v(y, z) = 0] < 22n · 2−2n = 1.

The following is a probabilistic method argument. Since
the above probability is strictly less than 1, there exists sets
{a1(y), . . . , ar(y)} and {b1(z), . . . , br(z)} such that for every
(y, z) ∈ f −1(1) we have v(y, z) � 0.

A.2 Proof of Lemma 9

Let T =
∑r

i=1

∣∣∣vi
1

〉
· · · ∣∣∣vi

k

〉
for some family of d-dimensional

vectors. Define the tensor T ′ =
∑r

i=1

∣∣∣vi
1

〉
· · · ∣∣∣vi

k

〉 ∣∣∣vi
k+1

〉
where

each
∣∣∣vi

k+1

〉
is the all-1 vector. Thus, component-wise we

have that

T [x1, . . . , xk] =
r∑

i=1

vi
1(x1) · · · vi

k(xk),

and

T ′[x1, . . . , xk, xk+1] =
r∑

i=1

vi
1(x1) · · · vi

k(xk)vi
k+1(xk+1),

where vi
k+1(xk+1) = 1 for all i and for all inputs

xk+1. Then T ′[x1, . . . , xk, xk+1] =
∑r

i=1 v
i
1(x1) · · · vi

k(xk) and
T ′[x1, . . . , xk, xk+1] = T [x1, . . . , xk] for any xk+1.
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