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Deterministic Message Passing for Distributed Parallel Computing
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SUMMARY The nondeterminism of message-passing communication
brings challenges to program debugging, testing and fault-tolerance. This
paper proposes a novel deterministic message-passing implementation
(DMPI) for parallel programs in the distributed environment. DMPI is
compatible with the standard MPI in user interface, and it guarantees the re-
producibility of message with high performance. The basic idea of DMPI is
to use logical time to solve message races and control asynchronous trans-
missions, and thus we could eliminate the nondeterministic behaviors of
the existing message-passing mechanism. We apply a buffering strategy to
alleviate the performance slowdown caused by mismatch of logical time
and physical time. To avoid deadlocks introduced by deterministic mecha-
nisms, we also integrate DMPI with a lightweight deadlock checker to dy-
namically detect and solve these deadlocks. We have implemented DMPI
and evaluated it using NPB benchmarks. The results show that DMPI could
guarantee determinism with incurring modest runtime overhead (14% on
average).
key words: determinism, message-passing, debugging, distributed com-
puting

1. Introduction

The message-passing programming model is widely used in
distributed parallel programs to perform inter-process com-
munication. The most common message-passing model is
the Message Passing Interface (MPI), which is developed
as a standard of message-passing [1]. For performance rea-
son, MPI allows asynchronous transmission operations and
promiscuous receiving operations. However, these opera-
tions do not guarantee reproducibility of messages, which
means the messages (message content and message order)
should be exactly the same between two different runs. Due
to this reason, a user program running on MPI is often non-
deterministic, i.e., even given the same inputs, the program
may have different execution paths and produce different
outputs in two runs. This nondeterminism brings challenges
to MPI programs in the fields of debugging, testing and fault
tolerance [2], [3]. For example, a bug may only appear in
certain message orders. Simply re-executing the program
could not reproduce the bug, since the same message order
is unlikely to occur. Hence, the traditional cyclic debugging
approach will be invalid for this circumstance.

Different from the nondeterministic message-passing
models, a deterministic message-passing model ensures the
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reproducibility of messages. Deterministic message-passing
achieves this by constraining the freedom of how messages
are sent and received. For example, Kahn’s network is a
deterministic message-passing model which leverages FIFO
pipes to make communication. This message-passing model
requires that all receiving operations should wait for a speci-
fied sending message [4], [5]. However, these models are too
strict, thus they are easy to cause performance slowdown or
introduce deadlocks if programs are not carefully designed.
Besides, there is no general-purpose implementation of such
deterministic message-passing model like MPI currently.

In this paper, we propose a novel Deterministic Mes-
sage Passing Implementation (DMPI) for distributed com-
puting. DMPI is compatible with MPI in user interface
which is well accepted by programmers, and it guarantees
the reproducibility of messages in program execution. The
basic design of DMPI is to control message transmissions
according to logical time as opposed to physical time. For
any asynchronous transmission operation, DMPI forces the
transmission of the message to finish at a specific logi-
cal time so that the process will always perceive the fin-
ishing of transmission at deterministic program point. For
any promiscuous receiving operation, DMPI orders the in-
coming messages according to logical time to solve mes-
sage races. The difficulty of this design is that each pro-
cess should see the distributed logical time consistently and
timely to make a correct and efficient decision. To overcome
this difficulty, we design a world clock and use the small-
sized control messages to propagate clock values throughout
the distributed system quickly. The constraints on sending
and receiving messages in DMPI may affect performance
and introduce deadlocks. We design two improvements to
solve these problems. First, we adopt a buffering strategy
to alleviate the performance problem introduced by the mis-
match of physical time and logical time. Second, we inte-
grate DMPI with a lightweight deadlock checker to detect
and solve extra deadlocks.

We implemented DMPI based on MPICH-2 and eval-
uated it using the NPB benchmarks. Our evaluation results
show that DMPI could guarantee determinism of message-
passing with incurring only a modest runtime overhead
(14% on average) and memory overhead (around 50%).

The rest of this paper is organized as follows. Sec-
tion 2 analyzes the nondeterministic sources of the message-
passing communication. Section 3 presents our determinis-
tic message-passing design. Section 4 describes the solu-
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tions for deadlocks and performance slowdown. Section 5
is evaluation and Sect. 6 related work.

2. Nondeterminism of MPI

There are two major sources of nondeterminism in the
message-passing model of MPI: (1) the asynchronous trans-
mission operations and (2) the wildcard receiving opera-
tions [3], [6]. Asynchronous transmission operation indi-
cates the operation is nonblocking, i.e., it does not have
to wait for acknowledgement of the message receiving. In
MPI, the function names of these operations are usually pre-
fixed with ‘MPI I’, like MPI Isend, MPI Irecv, etc. For ex-
ample, the calling of MPI Isend will send a message to a
remote process. However, this function is returned once the
MPI runtime receive this request, and it does not wait for the
remote process to get the message and send back an ACK.
For the sending process, the transmission may be finished
at a nondeterministic program point depending on the tim-
ing of message transmissions. Since the finishing point of
transmission could change process states (e.g., the calling
of MPI Test will return different values), this kind of nonde-
terminism may be exposed to the user program.

The asynchronous sending operations have differ-
ent modes, like the standard mode (MPI Isend), the
buffered mode (MPI Ibsend) and the synchronous mode
(MPI Issend). The difference of them is that they apply
different buffering strategies to store the user messages.
The buffered-mode send should store the user message in
a runtime buffer and return directly once the message is
buffered. The synchronous-mode send does not use the run-
time buffer, and it must wait until the receive operation in
the remote process is posted. In the standard mode, it is the
runtime to decide whether to use a runtime buffer to store the
user message. However, all the three operations should use
testing functions to determine whether the message trans-
mission is completed. Since the user interfaces of these op-
erations are the same, they expose the same nondeterminism
to the user application. Due to this reason, they are handled
in the same way in our implementation.

The wildcard receiving operation indicates the receiv-
ing operation could accept any incoming message from
any source. In MPI, a receiving operation with the wild-
card parameter is such an operation, e.g., MPI Recv(...,
MPI ANY SOURCE, ...). Since messages from different
sources could race to arrive, a wildcard receiving opera-
tion may accept an arbitrary incoming message depending
of the timing of their arrivals. Hence, the program states af-
ter a wildcard receiving will be nondeterministic, which also
cause problem to the user program.

3. Design

The design aim of DMPI is to eliminate the two nonde-
terministic sources from MPI, thus providing a determinis-
tic message-passing mechanism for distributed parallel pro-
grams. The two sources of nondeterministic factors are both

related to physical time, which is a nondeterministic metric
as the executing environment changes (network transmis-
sion states, operating system states, hardware states, etc.).
Hence, the basic idea of DMPI is to design a deterministic
logical time to direct the message transmissions.

3.1 Design Overview

The nondeterminism of MPI is due to the fact that every
decision is made according to physical time. For example,
the wildcard receiving will accept a message which is the
first to arrive. The asynchronous sending will wait for an
uncertain period of time (depending on how fast the message
is transferred) before it knows the message is received.

Since the decision on physical time causes nondeter-
minism, the basic design principle of DMPI is to use logical
time to guide the sending and receiving of messages. Fol-
lowing this principle, we design DMPI as shown in Fig. 1.
We set a local logical clock in each process to time stamp
every message. Hence, each message could be identified by
a vector of <src rank, timestamp>. In DMPI, every decision
of message transmission is made according to logical time.
For example, the red rectangles in Fig. 1 show three deci-
sions for two asynchronous transmissions and a wildcard
receiving. In this example, we expect any asynchronous
message will be received in a certain logical time units (10
logical time units in Fig. 1), no more, no less. For the wild-
card receiving operation, DMPI will choose an unaccepted
message with the smallest logical timestamp (<rank0, msg0,
11> in Fig. 1) no matter when the message arrives.

Based on logical time, we propose two deterministic
mechanisms for the two nondeterministic sources: the de-
terministic waiting mechanism and the deterministic map-
ping mechanism. The deterministic waiting mechanism sets
a Deterministic Transmission Point (DTP) for each asyn-
chronous transmission operation. DTP is a fixed program
point in the instruction stream of a process. The position of
DTP is defined by logical time to ensure determinism. The
deterministic waiting mechanism forces the transmission of
asynchronous message to finish exactly at its correspond-
ing DTP, which hides the nondeterministic time of asyn-
chronous message transmission. The deterministic mapping
mechanism dominates the message mapping of wildcard re-
ceiving operations according to logical timestamp of mes-
sages. For each wildcard receiving operation, the deter-
ministic mapping mechanism forces it to accept the earli-
est message (message with the smallest logical timestamp
among all the unaccepted messages at now and in the fu-
ture). Therefore, no matter when the message arrives, the
wildcard receiving operation will always accept a determi-
nate message. In this way, the deterministic mapping mech-
anism resolves the nondeterminism of message races.

Since every decision about message transmission is
made according to logical time instead of physical time, we
only need to ensure that the logical time is deterministic be-
tween runs. The logical time is measured by a local logical
clock in each process which is implemented by compile-
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Fig. 1 The design overview of DMPI.

time instrumentation. As the instrumented codes are stati-
cally written into the original program, the logical time will
be deterministic.

The problem of using logical time to make decisions
is that it may cause performance slowdown and deadlocks.
The performance problem is due to the reason that speed of
logical time may mismatch with the speed of physical time,
which may introduce extra wait time for processes. To pre-
serve performance maximally, we make logical time highly
relevant to physical time. Hence the decision on logical time
is similar to the decision on physical time, which preserves
performance. We also leverage a buffering strategy to allevi-
ate the wait time when logical time does not match physical
time. The deadlock problem is caused by the extra wait-
for dependencies introduced by the two deterministic mech-
anisms. We integrate DMPI with a lightweight deadlock
checker to solve this problem.

3.2 Clock and Logical Time

To maintain a deterministic logical time, We propose the
world clock which is a hybrid of Lamport clock [7] and vec-
tor clock [8], [9]. World clock is a clock vector set in each
process to monitor the time of all processes (including the
local process). Each slot in the clock vector is correspond-
ing to a process in the process network, describing the time
of the process already seen by the local process. The time
values in the vector could be divided into two parts: 1) the
local logical time which is the ith value in the clock vector
of rank i, and 2) the shadow time values which describe the
time of the remote processes. We apply different time-driven
methods for these two kinds of time values.

First, we use messages to drive the shadow time val-
ues. Each message is time stamped with the local logical
time of the sending process. The timestamp piggybacked in
the message will be used to refresh the corresponding vector
slot in the receiving process if the timestamp is bigger. Dif-
ferent from vector clock, we only store a scalar value (the
local logical time) in each message, which is implemented
by adding an 8-byte field to all kinds of MPI message pack-
ets. This design simplifies the original vector clock and re-

duces the communication overhead, which provides an effi-
cient implementation for a deterministic time metric. How-
ever, it also makes our logical time a little weaker than the
original vector clock. Since only a scalar time value is prop-
agated in a message, our logical clock cannot be used to de-
scribe the partial order of all events in a distributed system.
Nevertheless, this weakness does not affect our determinis-
tic mechanisms for message transmissions.

Second, we use local events (e.g., calling of MPI op-
erations, instruction issuing, system calls, etc.) to drive the
local logical time. The increasing of local logical time must
meet two requirements: (1) local logical time must be pre-
cise enough to distinguish messages, and (2) the speed of
local logical time should reflect the physical time of the pro-
cess execution well. The first requirement is achieved by
interposing all the MPI APIs (e.g., MPI Send, MPI Recv,
etc.). The local logical clock is increased by 1 when an MPI
function is called. By doing so, no two MPI function calls
would happen at the same logical time. Hence, each mes-
sage will be created in a different logical time, which grants
the message a unique timestamp.

The second requirement is achieved by compile-time
instrumentation and the using of empirical statistics. There
are many kinds of events in the execution of the user pro-
gram (e.g., a function call, an instruction execution or a sys-
tem call). The execution time for these events may be dif-
ferent (e.g., a load instruction may only takes a nanosecond
while a Sleep(1) call could take 1 seconds to finish). To re-
flect the physical time well, we must catch the differences
of these events and assign them a corresponding number of
logical time units. To this end, we first divide the events into
two categories: 1) the issuing of normal instructions, and 2)
the execution of system events (e.g., system calls), then we
measure them in two different ways.

Measuring normal instructions. First, we define 1
logical time as 1000 instructions issuing, which will be a
standard for the mapping between the deterministic logical
time to the nondeterministic physical time. According to
this definition, logical time of normal instruction execution
is measured by counting the number of issued instructions.
Since the execution time of normal instructions is propor-
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tional to the number of the issued instructions, our measur-
ing method could reflect the physical time well. To count
the number of issued instructions, we leverage the LLVM
compile framework [26] to instrument user programs. The
LLVM framework allows users to write their own Passes
to perform certain codes transformation. LLVM provides
the functionality of typical code analysis (e.g., CFG analy-
sis) which could be used in user’s pass. We write an LLVM
pass to instrument user programs based on the CFG analysis
provided by the LLVM framework. In the LLVM pass, we
insert into each basic block a time tick call, whose parame-
ter is set as the instruction number of that basic block. At
runtime, when the time tick function is invoked, the number
of instruction is accumulated. As a result, the local logical
clock ticks as the program runs.

Measuring system events. The above method works
well for normal instructions, but is not suitable for system
calls as their execution time is hard to predict (e.g., the call-
ing of Sleep(1) and Sleep(3) will differ much in execution
time). To reflect the execution time well, we carried out an
empirical study for the underlying hardware platform. The
empirical study is to build an approximate mapping between
typical system calls and the logical time of their execution.
In this study, we assume that the execution time of a certain
system call is stable in a certain hardware platform. This
empirical study tests the execution time of typical system
calls, and translate them into logical time based on the log-
ical time unit definition. After the empirical study, we set
a table in our runtime to describe the logical time values of
the typical system calls. For example, the calling of Sleep(1)
is corresponding to 1000 logical time unit for our experi-
ment hardware. Hence, we interpose these typical system
calls in DMPI, and increase a corresponding value of log-
ical time when such an event happens. Note that there is
a tradeoff between determinism and performance when we
want to port DMPI across different hardware platforms. If
we want better performance, we should carry out an empir-
ical study for each specific hardware platform. However, if
we want determinism over performance, we should use the
same empirical study table even in a different platform.

3.3 Deterministic Waiting

The deterministic waiting mechanism forces each asyn-
chronous operation to wait for the finishing of message
transmission at its corresponding DTP. DTP is a function
call that is dynamically inserted into a fixed code point of
the user program during runtime. We use logical time to
identify different code points so that we could determine the
positions of DTPs dynamically. For any asynchronous trans-
mission operation, the corresponding DTP is inserted at the
code point which is K logical time units after the function
call. Note that the value of K should be a constant value so
as to ensure determinism (In our implementation, K = 10,
as shown in Fig. 1).

The algorithm of deterministic waiting for asyn-
chronous receiving is show in Fig. 2 as an example. DMPI

Fig. 2 The deterministic waiting algorithm for asynchronous receiving.

enforces that the transmission of message be finished right
at its corresponding DTP. When an asynchronous request
is sent (e.g., MPI Irecv), DMPI first adds a DTP for that
request (line 1). If the message arrives earlier, DMPI post-
pones the declaration of its arrival until the process reaches
the DTP (line 7-9). Therefore, the issued testing function
(e.g., MPI Test and MPI Probe) before the DTP could not
perceive the arrival of the message. On the contrary, if a
message is late, DMPI forces the process to wait at the DTP
until the message arrives (line 3-5) and declares the arrival
of the message (line 10-11). Therefore, the testing function
after the DTP will always detect the message. The DTP is
removed once the process has received the message (line 6
and line 13). Note that the design of DTP only constrains
the declaration of the finishing of message transmissions,
and the underlying transmission is not affected. In this way,
DTP creates a deterministic environment for the upper ap-
plications.

3.4 Deterministic Mapping

The deterministic mapping mechanism requires that the in-
coming messages are ordered according to logical time as
opposed to physical time, and only the earliest message can
be accepted by the wildcard receiving (as shown in Fig. 1).

When a message arrives, DMPI tries to map it with
a posted receiving request. If the receiving request is not
a wildcard receiving, normal mapping mechanism is used.
Otherwise, we check if this message is the earliest by its
timestamp. The earliest message is the unaccepted incom-
ing message that has a smaller timestamp than any other un-
accepted incoming messages (including the incoming mes-
sages that is on the way or have not been sent). We first
choose an incoming message with the smallest timestamp
among all the messages that have arrived, then we leverage
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the world clock to determine whether this is the earliest mes-
sage currently. The world clock records the logical time of
all processes, thus DMPI simply compares the timestamp of
the message with the values in the clock vector. If the times-
tamp is smaller than or equal to all the values in the clock
vector, the message is considered to be the earliest and it is
accepted directly. However, if the timestamp is larger than
at least one time value in the clock vector, indicating there is
a potential message which may be earlier than this message,
the wildcard receiving must wait until the earliest message
appears. Since the world clock only refreshes time values
of other processes upon messages arrivals, the time values
seen by the local process may be out-of-date, which may
cause a wildcard receiving to be blocked for a long time. To
mitigate this problem, we introduce the small-sized control
message to exchange information between MPI processes.

Control messages are sent and received by the run-
time, and they are transparent to the user programs. To
implement control message, we add a new packet type
PKT CONTROL in MPICH, and associate it with a han-
dling function PacketHandler ControlMessage. When we
send a control message, we tag the type of the message
as PKT CONTROL. When the message arrives at the re-
mote process, the underlying transmission engine of the
process will handle the message. If the transmission en-
gine discovers that it is a control message, it will call the
PacketHandler ControlMessage callback function. Since
the work in PacketHandler ControlMessage is done in an
independent thread, it does not block the user program.

The typical use of control message is to update clock
vectors. We design an on-demand strategy to minimize
communication overhead. The on-demand strategy works
as follows. If the checking of the earliest message fails be-
cause of a smaller value in the clock vector, the process will
send a Request (a control message used to ask for the log-
ical time of another process) to the corresponding process
to refresh its time. The process that receives the Request
will schedule an Answer based on the local logical time. As
the Request contains the expected logical time, the replying
process only needs to send the Answer when its logical time
is greater than the expected value.

4. Improvement

The two deterministic mechanisms in DMPI could ensure
deterministic message-passing. However, it may also bring
performance problem and correctness problem to the user
program. This section discusses these two problems and
presents our improvements of DMPI.

4.1 Performance

DMPI decreases performance due to the additional wait
time caused by the deterministic waiting mechanism and
the deterministic mapping mechanism. Theoretically, DMPI
could not totally eliminate the wait time as logical time
could not be the same fast as physical time. Otherwise, log-

ical time will be nondeterministic as physical time. In other
words, wait time is an inevitable overhead for determinism
that can only be mitigated.

In DMPI, most of the wait time is caused by the wild-
card receiving operations which requires identifying the
smallest logical time globally. Our idea is to use buffering to
reduce this determinism-induced wait time. We maintain an
additional accepting buffer in the MPI runtime. The accept-
ing buffer stores incoming messages which cannot be ac-
cepted by the user application due to the deterministic map-
ping mechanism. Once a message is stored in the accepting
buffer, we claim that the message is successfully accepted
(although it has not be seen by the user application). Our
runtime acts as a proxy to store this message temporarily
for the user application. Hence, the runtime could send an
acknowledgement message to the sender so as to release the
sending process. Afterwards, when this stored message is
copied by the user application, we delete the message from
the accepting buffer. In our current implementation, each
process maintains a 16 MB accepting buffer, which could
store most blocking messages. However, it is possible that
a message is too big to be stored in the accepting buffer. In
this case, the message should wait until it can be stored in
the buffer provided by the user application.

This buffering strategy brings two advantages. First, it
decreases the wait time caused by the deterministic map-
ping mechanism, which improves performance. Second,
this strategy also mitigates the deadlock problems caused by
deterministic mapping, which we discuss in the next subsec-
tion.

4.2 Deadlock

As our deterministic mechanisms (the deterministic waiting
mechanism and the deterministic mapping mechanism) put
constraints on normal message transmissions, they may in-
troduce extra deadlocks. These determinism-inducing dead-
locks are caused by the extra wait-for dependencies en-
forced by DMPI, which should be eliminated to enable prac-
tical use.

4.2.1 Typical Deadlocks

One typical deadlock situation caused by the deterministic
waiting mechanism is shown in Fig. 3. These codes are
from a real world application (the BT benchmark in the
NPB suite). In this implementation, each process will issue

Fig. 3 A typical deadlock caused by the deterministic waiting mecha-
nism.
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Fig. 4 A typical deadlock caused by the deterministic mapping mecha-
nism.

an asynchronous receiving operation before sending a mes-
sage to others. Since the asynchronous receiving will not
block the process, and the message will be sent eventually,
all the receiving operations will be satisfied with messages.
Therefore, these codes will not cause deadlock with the nor-
mal MPI. However, if DMPI happens to insert a DTP for
MPI Irecv before MPI Send, then the program will wait at
the DTP for a message which will be sent in the future. This
will cause the waiting in the DTP cannot be satisfied, result-
ing in a deadlock.

Another kind of deadlock is caused by the determin-
istic mapping mechanism. If the receiving message is a
rendezvous message, which should be stored directly in the
buffer provided by the user program, the wildcard receiv-
ing may block a sending process, which in turn blocks other
process, finally resulting in a deadlock. We show a typical
situation of this kind of deadlock in Fig. 4. In this situation,
the wildcard receiving of Process 3 cannot accept the mes-
sage from Process 2 because Process 1 has a smaller log-
ical time. Hence the deterministic mapping mechanism of
Process 3 blocks the sending procedure of Process 2. Mean-
while, Process 2 blocks Process 1 because it cannot move
on to send a message to Process 1. In turn, Process 1 blocks
Process 3 as it cannot increase its logical time. As a result,
the cyclic dependence causes a deadlock.

We solve the deadlock problem in two levels. First, we
alleviate the deadlock problem by using message buffering
and removing unnecessary DTPs, which we call the mit-
igating strategy. The mitigating strategy filters out most
of the determinism-inducing deadlocks. Second, we use a
lightweight deadlock checker (LW-DC) to detect and solve
the rest of the determinism-inducing deadlocks which can-
not be avoided by the mitigating strategy.

4.2.2 Mitigating Strategy

Our deadlock-mitigating strategy works for the two deter-
ministic mechanisms respectively. First, we reduce the num-
ber of inserted DTPs for the deterministic waiting mecha-
nism. We do not insert DTPs in arbitrary program points.
Instead, we only insert DTPs in testing functions (e.g.,
MPI Test, MPI Probe, etc.). If there is no testing function,

meaning the user program does not care when the message
is transmitted, we do not need the waiting codes. As testing
functions are added by the programmers to expect the arrival
of messages, it is unlikely that the messages have not been
sent at these points. In our tests, this improvement could
prevent all the deadlocks of this kind. Second, the buffering
strategy described in Sect. 4.1 could be used to avoid dead-
locks induced by the deterministic mapping. In the deadlock
example of Fig. 4, the problem is that Process 3 cannot ac-
cept the rendezvous message from Process 2 (the red line in
Fig. 4), because Process 3 cannot decide whether this mes-
sage is the earliest message in logical time. Our mitigating
strategy solves this problem by buffering this message and
telling Process 2 that the message is successfully accepted
by the user codes (in fact, it will be accepted in the future).
Hence, Process 2 will continue to execute, which breaks the
deadlock.

The mitigating strategy could avoid most of the
determinism-inducing deadlocks. However, there are some
special deadlocks which may pass the mitigating strategy.
For example, it is possible that a programmer test the com-
ing of messages before sending it, though it does not make
any sense. Meanwhile, if there are too many wildcard re-
ceiving operations, it may run out of buffering memory,
which is still possible to cause a deadlock. Therefore, we
rely on our lightweight deadlock checker to solve these
deadlocks totally.

4.2.3 Deadlock Checker

Different from existing general-purpose deadlock detec-
tors [10]–[13], LW-DC is supposed to be a special dead-
lock detector for deadlocks introduced by our two determin-
istic mechanisms only. Hence, LW-DC is lightweight and
fast. LW-DC is a hybrid approach of timeout deadlock de-
tector and dependency analysis detector. Since each wild-
card receiving in DMPI will accept a determinate message,
it greatly simplifies the design of LW-DC [10].

LW-DC makes each process start to check for deadlock
when the process stops for a while (100 ms in our implemen-
tation). Then LW-DC will collect the wait-for dependency
using control messages. Once LW-DC detects a cyclic de-
pendency, it simply relaxes the deterministic mechanism to
break the deadlock. Note that the deadlocks are solved in a
deterministic manner.

The procedure for checking deadlock is as follows.
First, the stopped process (A) checks for its stopping reason
and its dependent process (B). Then A sends a request to its
dependent process B to confirm this dependence. If B is still
running, which means it may release the dependence, then
B will send a cancel message (a type of control messages)
to A. Otherwise, it is possible that there is a deadlock, so
B will send a confirm message to A. When the dependence
A→B (A is dependent on B) is confirmed, A stores this in-
formation in the dependent list and updates all its dependent
information to B. This procedure is repeated, and the depen-
dent information is propagated. Once a process (C) detects
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a dependence cycle in its dependent list, it finds out a dead-
lock candidate. This deadlock is a candidate because there
may be some cancel messages on the way. Therefore, C will
send a deadlock confirm message to all the processes in de-
pendent cycle to confirm that deadlock. If the deadlock is
confirmed by all (all the cancel messages are flushed), the
process will propagate the information of the dependent cy-
cle to all other processes in the cycle to declare the deadlock.

The lightweight deadlock checker could quickly iden-
tify a determinism-inducing deadlock. Then it solves the
deadlock without affecting determinism. To solve the dead-
lock, we first find out all the non-normal dependency in the
dependent cycle. Non-normal dependency means the depen-
dency is caused by our deterministic mechanism: waiting at
DTPs set for asynchronous operations or being blocked by
the deterministic mapping mechanism. We choose the non-
normal blocking process with the smallest rank ID as the
breaker to release the deadlock. If the breaker is blocked by
DTP of an asynchronous operation, we postpone this wait-
ing to the next DTP. This could solve the deadlocks caused
by our DTP constraints. If the breaker is blocked by the
deterministic mapping mechanism, we match the wildcard
receiving with the existing earliest incoming message. This
could solve the deadlocks caused by our deterministic map-
ping mechanism.

5. Evaluation

This section evaluates DMPI on determinism, runtime over-
head and memory overhead.

5.1 Methodology

We implemented DMPI based on MPICH2 (version
1.4) [14]. Our evaluation hardware consisted of 2 AMD
servers connected with a 1 GB/s switch. Each server has
a 2.2 GHz CPU with 4 cores, 1 GB memory and a 1 GB/s
Ethernet card, running Fedora 12 with Linux kernel ver-
sion 2.6.31.5. We used the NPB3.2 benchmarks [15] to
test DMPI. Since the benchmarks in NPB3.2 do not use
testing functions, we also add two other benchmarks: mpi-
Graph and mpiTest in our experiment. mpiGraph is a band-
width benchmark from the Phloem suite [27], while mpiTest
is a synthesized program which performs a stress test for
MPI Irecv and MPI Test. Among these applications, mg and
lu are nondeterministic due to the using of wildcard receiv-
ing operations, while mpiTest and mpiGraph are nondeter-
ministic due to the using of asynchronous operations and
testing functions. Each benchmark is configured with 8 pro-
cesses which are equally distributed among the two servers.

We verified the determinism of DMPI by (1) examin-
ing the outputs of programs, (2) checking the return value
for each testing function, and (3) checking the accepted
message for each wildcard receiving. We ran each bench-
mark 100 times, and recorded the above information. We
compared the results of different runs for each benchmark.
Note that although DMPI ensures deterministic execution

Fig. 5 The execution time of DMPI compared with the normal MPI li-
brary.

Table 1 The detailed information of programs running with DMPI. WC
indicates the number of wildcard receiving operations. DL indicates the
number of deadlocks.

DMPI profiling Normal message Control message
APP DTP WC DL Num Size Num Size

(KB) (KB)
bt 0 0 0 2436 283918 0 0
cg 0 0 0 1683 46658 0 0
ep 0 0 0 9 0.7 0 0
ft 0 0 0 40 201330 0 0
is 0 0 0 128 92358 0 0
lu 0 510 13 31661 122780 789 3

mg 0 714 9 867 32057 622 2
sp 0 0 0 4836 493724 0 0

mpiGraph 35000 0 0 48698 573655 0 0
mpiTest 32768 0 0 65536 262114 0 0

avg 6776 122 2.2 15589 210859 141.1 0.5

of MPI programs, it does not ensure deterministic perfor-
mance. Meanwhile, DMPI does not address the nondeter-
ministic events caused by system calls (e.g., gettimeofday).
Therefore, when comparing the normal program outputs, we
ignored the time-related data.

To evaluate the performance, we setup a baseline ex-
ecution which is the performance of the original MPICH2.
We compared the performance of DMPI with the baseline
execution to show the overhead of DMPI. For each bench-
mark, we ran it 10 times to collect the mean value as the
final result.

5.2 Performance

The performance overhead of DMPI is shown in Fig. 5.
We divide the execution time of each benchmark into three
parts: (1) the application time which is the execution time of
normal program codes; (2) the instrument overhead, which
is the execution time of the instrumented codes for logical
time; (3) the determinism overhead, which is caused by the
enforcing of our deterministic mechanisms. Overall, the av-
erage overhead of DMPI is small (below 14%).

In Table 1, we provide the detailed profiling data of
programs running under DMPI, including the number of in-
serted DTPs (Column 2), the number of wildcard receiving
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operations (Column 3) and the number of additional dead-
locks (Column 4). We also show the information of control
messages compared with normal application messages (Col-
umn 5-8). Note that DMPI incurs little overhead for applica-
tions that do not trigger the two deterministic mechanisms.

5.3 Memory Footprint

DMPI also consumes more memory than the original MPI
implementation. The memory overhead comes from two as-
pects: (1) the buffering strategy allocates memories to store
messages that cannot be accepted by the deterministic map-
ping mechanism temporarily and (2) the control messages
that are used to propagate logical time and detect dead-
locks consume memories. We tested the memory footprint
of DMPI using the NPB benchmarks and show the memory
overhead in Fig. 6. As we can see, DMPI introduces around
30% overhead in memory allocation and 70% overhead in
peak memory usage compared with the normal MPI imple-
mentation.

5.4 Scalability

We also test how DMPI scales as the number of processes
increases. We totally choose 6 benchmarks (as shown in
Fig. 7) to stress the two deterministic mechanisms in DMPI.

Fig. 6 Memory overhead for different benchmarks. ‘alloc’ indicates the
totally allocated memory. ‘peak’ indicates the peak memory in use.

Fig. 7 The runtime and memory overhead as the number of processes increases.

Each of the benchmark is configured with 1, 2, 4, 8, 16, 32
and 64 processes respectively. We record both the runtime
overhead and the memory overhead of the benchmarks. The
results are shown in Fig. 7. As we can see, most programs
(cg, ft, mpiGraph, mpiTest) incur a stable runtime overhead,
while the programs that triggers the deterministic mapping
mechanism (lu and mg) will incur a relatively large runtime
overhead as the number of processes increases. The reason
is that the deterministic mapping mechanism requires each
wildcard receiving operation to wait for the smallest logical
time of all processes, thus this overhead becomes large as
the number of processes increases. The memory overhead
is also highly affected by the deterministic mapping mech-
anism (see mg and lu in Fig. 7 (b)) as the number of pro-
cesses increases. The reasons is that memory overhead is
mostly caused by control message processing and message
buffering, and both of them are related to the deterministic
mapping mechanism. Hence, we conclude that the scalabil-
ity of DMPI is limited by its deterministic mapping mech-
anism currently. This problem could be solved by dividing
processes into communication groups, which is our future
work.

6. Related Work

Record & replay is a typical method to eliminate the nonde-
terminism of MPI [2], [3], [6], [16]–[19]. These approaches
record the nondeterministic effects of messages, and de-
terministically replay the MPI programs according to the
recorded logs. Order-replay [6], [19] and data-replay [18]
are two different ways to achieve this aim. Order replay
records the nondeterministic message order in the record-
ing phase. In the replaying phase, order-replay regenerates
messages and forces these messages to follow the order in
the recorded logs. Data-replay, on the other hand, records
the contents of messages instead of their orders. Therefore,
each process could regenerate messages directly from the
recorded logs. A hybrid method MPIWiz [3] could achieve
better performance and smaller log size. Distinct from these
works, we provide a solution for determinism without any
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external supports (e.g., logs), which is efficient in perfor-
mance and is convenient to deploy.

Deterministic Multi-threading has been introduced in
the shared-memory multi-processing field to facilitate the
debugging of multi-threaded programs [20], [21]. They
eliminate the nondeterminism of thread concurrency of par-
allel programs on shared-memory architecture. Unlike these
works, DMPI is to address the nondeterministic problem of
the message-passing mechanism in the distributed environ-
ment.

Some deterministic message-passing programming
models are designed to ensure determinism of parallel pro-
grams. They achieve determinism by using a restricted
message-passing model. For example, the SHIM lan-
guage [5], [22], [23] leverages FIFO pipes to pass messages
between processes, and prevents the using of asynchronous
messages and wildcard receiving operations. However,
these programming models are usually domain-specific.
Unlike these works, DMPI is compatible with the well-
defined MPI in user interface, which makes it a general-
purpose solution for parallel programs.

The systems of PDES (Parallel Discrete Event Simula-
tion) are often used for performance simulation and debug-
ging [24], [25]. Different from these works, DMPI is used as
a debugging tool for correctness.

7. Conclusion and Future Work

This paper designed and implemented a deterministic
message-passing system (DMPI) for distributed parallel
computing. DMPI could be used to facilitate debugging,
testing and fault tolerance. DMPI ensures determinism by
using logical time to control the finishing points of asyn-
chronous transmissions and the accepted messages of wild-
card receiving operations. Further, we design a lightweight
deadlock checker to avoid deadlocks caused by DMPI, and
a buffering strategy to mitigate the performance slowdown.
We implemented and evaluated DMPI to demonstrate its
practicality. The evaluation results on the NPB benchmarks
show that the runtime overhead of DMPI is practical and low
for small-scale applications. In the future, we will use spec-
ulation and process grouping mechanisms to further miti-
gate the performance impact of DMPI and test it in large-
scale distributed environment.
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