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PAPER

On the Numbers of Products in Prefix SOPs for Interval Functions

Infall SYAFALNI†a), Student Member and Tsutomu SASAO†b), Member

SUMMARY First, this paper derives the prefix sum-of-products ex-
pression (PreSOP) and the number of products in a PreSOP for an inter-
val function. Second, it derives Ψ(n, τp), the number of n-variable interval
functions that can be represented with τp products. Finally, it shows that
more than 99.9% of the n-variable interval functions can be represented
with � 3

2 n − 1� products, when n is sufficiently large. These results are use-
ful for a fast PreSOP generator and for estimating the size of ternary content
addressable memories (TCAMs) for packet classification.
key words: prefix sum-of-products, number of products by PreSOP, distri-
bution of interval functions, estimating the size of TCAM

1. Introduction

Packet classification [3], [8], [9] is a core function in com-
puter network components, such as routers, firewalls, net-
work address translators, and access control lists (ACL). A
ternary content addressable memory (TCAM) [14], [21] im-
plements packet classification functions. Although a TCAM
is fast, it is expensive and dissipates high power [1].

Table 1 shows an example of a packet classifier consist-
ing of five fields: source IP, destination IP, source port, des-
tination port, and protocol. In this example, both the source
IP and the destination IP are represented by 32 bits, and they
are specified by prefixes. Both the source port and the des-
tination port are represented by 16 bits, and they are speci-
fied by intervals. The protocol is represented by a value of
8 bits or ∗ (don’t care). The action has two values: permit
and deny. However, it can have more values such as deny
and log or permit and log. When each of the port fields is
specified by either ∗ (don’t care) or a single value, each rule
corresponds to one word in a TCAM. However, when a port
field is specified by an open interval such as (0, 7), then rule
expansion occurs, i.e., each rule corresponds to many words
in a TCAM [7]. If the packet header matches all the fields
of a rule, then the rule is considered to be matched. If sev-
eral rules match at the same time, the rule with the smallest
number is applied.

To represent a port field, we use an interval function.
An interval function can be represented as a sum of pre-
fixes. The expression represented by a sum of prefixes is
called a prefix sum-of-products expression (PreSOP). Note

Manuscript received September 10, 2012.
Manuscript revised January 15, 2013.
†The authors are with the Department of Computer Science

and Electronics, Kyushu Institute of Technology, Iizuka-shi, 820–
8502 Japan.

a) E-mail: infall@aries01.cse.kyutech.ac.jp
b) E-mail: sasao@ieee.org

DOI: 10.1587/transinf.E96.D.1086

that each prefix corresponds to a word in a TCAM. To rep-
resent any interval function by a PreSOP, in the worst case,
2n − 2 products are necessary [24].

A sum-of-product expression (SOP) requires no more
products than a PreSOP to represent the same function, and
in many cases, the SOP requires fewer products than the Pre-
SOP. For example to represent the interval (0, 2n − 1), a Pre-
SOP requires 2(n− 1) products, while an SOP requires only
n products [17]. Although we can obtain an exact minimum
SOP, it is often time consuming. In the design of integrated
circuits for mass production, SOPs are routinely used [5],
[20]. Their minimization cost can be amortized by many
integrated circuits. However, in the case of packet classifi-
cation, PreSOPs are used instead of SOPs.

To reduce the number of words in a TCAM for ACL,
minimization algorithms for SOPs, that are suitable for em-
bedded microprocessors, have been developed [2], [10]. It
uses a ternary trie as a basic data structure. Such an algo-
rithm is fast but produces solutions that require many more
products than the exact minimum for some classes of func-
tions [17].

Table 2 lists various methods to represent classification
functions and their TCAM sizes. In [18], [22], the number of
products needed to represent an interval function of n vari-
ables by a standard encoding in SOPs is analyzed. They
show that any interval function can be represented with at
most 2n − 4 products in an SOP. Especially, the paper [18]
shows that only two interval functions require 2n − 4 pro-
ducts in SOPs. In the paper [19], a 4-valued TCAM is pro-
posed, where inputs are encoded with a 1-out-of-4 code. In
this method, any interval function can be represented with at
most n − 1 products by a 4-valued SOP. To use this method
in packet classification, a special CAM and a 4-valued logic
minimizer are necessary. In the paper [23], a special TCAM
that performs interval matching directly by hardware is pro-
posed. In this case, each rule corresponds to just one word
in a TCAM, but we need a special TCAM which would be
expensive. In the paper [4], Gray encoding is used to reduce
the number of products. In the Gray encoding, any interval
(A− 1, A+ 2), where A is a non-negative integer, can be rep-
resented with a single product. The paper [4] showed that
any interval function can be represented with at most 2n− 4
products in a PreSOP.

In a TCAM, a priority encoder is included to produce
a unique address among the matched data [14]. By chang-
ing the order of rules stored in a TCAM, we can often reduce
the number of products needed to represent the function [7],

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers
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Table 1 Example of rules in packet classifier.

Rule Source IP Destination IP Source Port Destination Port Protocol Action

1 66.219.40.∗ 176.31.166.∗ (−1, 65536) 6790 TCP Permit
2 ∗ 15.238.61.128 ∗ (1023, 65536) ∗ Permit
3 ∗ ∗ ∗ ∗ ∗ Deny

Table 2 Various methods to represent classification functions.

Method [Ref.] Representation Bound

Binary n-variable binary 2n − 2
Tree [24] prefixes
2-valued n-variable binary 2n − 4
MSOP [18] non-prefixes
Gray n-variable binary 2n − 4
encoding [4] prefixes
Output (n + 1)-variable binary n
encoding [16] prefixes
4-valued ( n

2 )-variable 4-valued n − 1
MSOP [19] non-prefixes
TCAM with A direct interval 1
comparator
circuit [23]

[13]. In [12], the authors presented a method to minimize
the number of TCAM words. Although this method can find
an exact minimum solution, it requires computation time
that is impractically large. In [16], an output encoding is
used to reduce the number of products. To use this method in
a real packet classification, a TCAM and an external mem-
ory are necessary.

In this paper, we show that 1) the minimum PreSOP
(MPreSOP) and the number of products in a MPreSOP to
represent an open interval (A, B) can be easily generated and
calculated, and 2) the average number of products in MPre-
SOPs for interval functions is μ(n) ≈ n− 2, and the variance
is σ2(n) ≈ n

2 + 1 †. Also, by numerical calculation, we show
that 99.9% of the functions can be represented by PreSOPs
with at most � 3

2 n − 1� products when n > 12.

2. Definitions and Basic Properties

2.1 Interval Functions

Definition 2.1: Let A and B be integers such that A < B.
An open interval (A, B) denotes the set of integers X such
that A < X < B. Note that endpoints are not included. The
size of an open interval (A, B) is C = B − A − 1.

In this paper, only open intervals are considered. Thus
from here, an open interval is simply denoted by an interval.

Definition 2.2: An n-input interval function is:

IN0(n : A, B) =

⎧⎪⎪⎨⎪⎪⎩
1, if A < X < B

0, otherwise,

where X =
∑n−1

i=0 xi · 2i, A and B are integers.

An interval function can be represented by a product
of a Greater-than (GT ) function and a Less-than (LT ) func-
tion.

Definition 2.3: An n-input GT function is:

GT (n : A) =

⎧⎪⎪⎨⎪⎪⎩
1, if X > A

0, otherwise.

An n-input LT function is:

LT (n : B) =

⎧⎪⎪⎨⎪⎪⎩
1, if X < B

0, otherwise,

where X =
∑n−1

i=0 xi · 2i, A and B are integers.

Lemma 2.1: Let −1 ≤ A < B ≤ 2n. The number of distinct
open interval functions in (A, B), is N(n) = 2n−1(2n + 1).

Proof: Let the size of an interval (A, B) be C = B−A−1. For
C = 1,C = 2, . . . ,C = 2n, the numbers of distinct interval
functions are 2n, 2n − 1, 2n − 2, . . . , 1, respectively. Thus, we
have N(n) = 2n + (2n − 1)+ (2n − 2)+ . . .+ 1 = 2n−1(2n + 1).

�

2.2 Prefix SOPs

Definition 2.4: A binary literal has a form xa, where x is
a binary variable and a ∈ {0, 1}, and

xa =

⎧⎪⎪⎨⎪⎪⎩
1, if x = a

0, if x � a.

Definition 2.5: x = x1 and x̄ = x0 are literals of a variable
x. An AND of literals is a product. An OR of products is a
sum-of-products expression (SOP).

Definition 2.6: Let F be an SOP. τ(F ) denotes the num-
ber of products in F .

Definition 2.7: A prefix SOP (PreSOP) is an SOP consist-
ing of products having the form x∗n−1x∗n−2 . . . x

∗
m+1x∗m, where

x∗i is xi or x̄i and n − 1 ≥ m.

Definition 2.8: An SOP representing a given function f
with the fewest products is a minimum sum-of-product ex-
pression (MSOP). A PreSOP representing a given function
f with the fewest products is a minimum PreSOP (MPre-
SOP). An MSOP and an MPreSOP for f are denoted by
MSOP( f ) and MPreSOP( f ), respectively.

Lemma 2.2: Let τm( f ) = τ(MSOP( f )) and τp( f ) =
τ(MPreSOP( f )). Since an MPreSOP is a restricted case of
an MSOP, we have τm( f ) ≤ τp( f ).

†A(n) ≈ B(n) iff |A(n) − B(n)| → 0 as n→ ∞.
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(a) MSOP (b) MPreSOP

Fig. 1 Maps for f = IN0(4 : 0, 15).

Example 2.1: Figure 1 (a) shows an MSOP: x̄0x2 ∨ x0 x̄1 ∨
x1 x̄3 ∨ x̄2x3 for the interval function f = IN0(4 : 0, 15).
Figure 1 (b) shows the MPreSOP: x̄3 x̄2 x̄1x0∨ x̄3 x̄2x1∨ x̄3x2∨
x3 x̄2 ∨ x3x2 x̄1 ∨ x3x2x1 x̄0.

Lemma 2.3: Any product in a PreSOP can be represented
by an interval function:

xan−1
n−1 xan−2

n−2 · · · xam
m = IN0(n : k2m − 1, (k + 1)2m),

where k =
∑n−m−1

i=0 am+i · 2i, and m denotes the number of
missing variables. Note that k = 0, 1, . . . , 2n−m − 1 and m =
0, 1, 2, . . . , n.

Thus, the products in the PreSOP for IN0(4 : 0, 15) are
represented as follows:

x̄3 x̄2 x̄1x0 : (0, 2) (k = 1,m = 0)

x̄3 x̄2x1 : (1, 4) (k = 1,m = 1)

x̄3x2 : (3, 8) (k = 1,m = 2)

x3 x̄2 : (7, 12) (k = 2,m = 2)

x3x2 x̄1 : (11, 14) (k = 6,m = 1)

x3x2x1 x̄0 : (13, 15) (k = 14,m = 0)

The numbers in the smaller boxes in Fig. 1 show the values
X = 8x3 + 4x2 + 2x1 + x0.

3. Number of Products in an MPreSOP

In this section, we show that, given an interval (A, B), the
PreSOP and the number of products in the PreSOP can be
generated and calculated easily. Previously, PreSOPs are
generated by using binary trees [24]. However, the PreSOP
of an interval (A, B) can be generated directly from its bi-
nary representations of the endpoints (A and B). Thus, the
PreSOP for a given interval can be generated quickly.

Definition 3.1: A vector literal has the form X�a, where
X = (xn−1, xn−2, . . . , x1, x0) and �a = (an−1, an−2, . . . , a1, a0).

X�a =

⎧⎪⎪⎨⎪⎪⎩
1, if X = �a

0, if X � �a.

It is equivalent to xan−1
n−1 xan−2

n−2 · · · xa0

0 .

Lemma 3.1: xa = x̄ · ā ∨ x · a.

Lemma 3.2: A GT function has the following MPreSOP:

GT (n : A) = (xn−1ān−1) ∨
0∨

i=n−2

⎛⎜⎜⎜⎜⎜⎜⎝
i+1∧

j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ xiāi,

where �a = (an−1, an−2, . . . , a1, a0) is the binary representa-
tion of A. τp(GT (n : A)) =

∑n−1
i=0 āi.

Proof: Appendix. �

Similarly to Lemma 3.2, we have:

Lemma 3.3: An LT function has the following MPreSOP:

LT (n : B) = (x̄n−1bn−1) ∨
0∨

i=n−2

⎛⎜⎜⎜⎜⎜⎜⎝
i+1∧

j=n−1

x
bj

j

⎞⎟⎟⎟⎟⎟⎟⎠ x̄ibi,

where �b = (bn−1, bn−2, . . . , b1, b0) is the binary representa-
tion of B. τp(LT (n : B)) =

∑n−1
i=0 bi.

Similarly to GT (n : A) and LT (n : B), an interval func-
tion IN0(n : A, B) is represented as an MPreSOP.

Theorem 3.1: Let �a = (an−1, an−2, . . . , a1, a0) and �b =
(bn−1, bn−2, . . . , b1, b0) be the binary representations of A and
B, respectively. Let s be the largest index such that as � bs,
then IN0(n : A, B) can be represented by:

0∨
i=s−1

[( i+1∧
j=n−1

x
aj

j

)
xiāi ∨

( i+1∧
j=n−1

x
bj

j

)
x̄ibi

]
. (1)

Proof: Since both GT (n : A) and LT (n : B) have at most n
products, the AND operation between GT and LT produces
at most n2 products.

Let ai and bi be the components of �a and �b, respec-
tively, where s + 1 ≤ i ≤ (n − 1). For every pair of products
in GT and LT functions, there exist a pair of components
(xiāi) and (x̄ibi). These components cancel each other when
s + 1 ≤ i ≤ (n − 1). The cancellation occurs for three cases:
the first case occurs when (xiāi) · (x̄ibi); the second case oc-
curs when (xiāi)·xbi

i , and the last case occurs when (x̄ibi)·xai
i .

In the first case, xi · x̄i yields 0. In the second and the third
cases, by Lemma 3.1, we have xiāi(x̄ib̄i ∨ xibi) = xiāibi = 0
and x̄ibi(x̄iāi ∨ xiai) = xiāibi = 0, respectively. Thus, IN0

can be simplified to:

IN0(n : A, B) =
(
xan−1

n−1 xan−2
n−2 · · · xas+1

s+1 xsās ∨ · · ·
∨ xan−1

n−1 xan−1
n−2 · · · xa1

1 x0ā0

)
·
(
xbn−1

n−1 xbn−2
n−2 · · ·

xbs+1

s+1 x̄sbs ∨ · · · ∨ xbn−1
n−1 xbn−2

n−2 · · · xb1
1 x̄0b0

)
.

Thus, the interval function IN0 has at most (s+1)2 pro-
ducts. Since as � bs, there are only two cases that produce
non-zero products: the first case occurs for the AND opera-
tion between a GT product xsās, and an LT product without
a x̄s literal. The second case occurs for the AND operation
between an LT product x̄sbs, and a GT product without a xs

literal.
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Fig. 2 Derivation of MPreSOP for IN0(6 : 2, 14).

By performing all AND operations for those cases,
the interval function IN0 is represented as a disjunc-
tion of the products for GT and LT functions without
xan−1

n−1 xan−2
n−2 · · · xas+1

s+1 xsās and xbn−1
n−1 xbn−2

n−2 · · · xbs+1

s+1 x̄sbs. �

Lemma 3.4: Let f (xn−1, xn−2, . . . , x1, x0) = x̄n−1 f0 ∨
xn−1 f0, where f0 = f (0, xn−2, . . . , x1, x0) and f1 =

f (1, xn−2, . . . , x1, x0). Then, MPreSOP( f ) has the form

x̄n−1MPreSOP( f0) ∨ xn−1MPreSOP( f1).

Proof: Appendix. �

Theorem 3.2: Let �a = (an−1, an−2, . . . , a1, a0) and �b =
(bn−1, bn−2, . . . , b1, b0) be the binary representations of A and
B, respectively. Let s be the largest index such that as � bs.
Then, the expression Eq. (1) in Theorem 3.1 is the MPre-
SOP, and

τp(IN0(n : A, B)) =
s−1∑
i=0

(āi + bi).

Proof: It is clear from Eq. (1). �

Example 3.1: Derive τp(IN0(6 : 2, 14)) and the MPreSOP
for IN0(6 : 2, 14). The binary representations of A = 2
and B = 14 are �a = (0, 0, 0, 0, 1, 0) and �b = (0, 0, 1, 1, 1, 0),
respectively. Since (a5, a4) = (b5, b4) = (0, 0) and a3 � b3,
we have s = 3. Thus,

τp(IN0(6 : 2, 14)) =
2∑

i=0

(āi + bi) = 4.

In Fig. 2, the top row shows products of GT (n : 2) and
LT (n : 14). The middle row shows their maps. And the
bottom row shows the MPreSOP for IN0(n : 2, 14). Note
that the largest products in GT (n : 2) and LT (n : 14) are
removed, where the grey side indicates the GT (n : 2) part

and the white side indicates the LT (n : 14) part. Thus, the
MPreSOP is IN0(6 : 2, 14) = x̄5 x̄4 x̄3 x̄2x1x0 ∨ x̄5 x̄4 x̄3x2 ∨
x̄5 x̄4x3 x̄2 ∨ x̄5 x̄4x3x2 x̄1.

Theorem 3.1 can be used to generate MPreSOPs from
binary representations of endpoints (A, B).

Lemma 3.2, Lemma 3.3, and Theorem 3.1 do not cover
the cases when endpoints are A = −1 and B ≤ 2n − 1, or,
A ≥ 0 and B = 2n, or, A = −1 and B = 2n, because they
require (n+ 1) bits to represent the interval functions. These
points are called extremal endpoints.

Lemma 3.5: In the extremal endpoints, we have GT (n :
−1) = LT (n : 2n) = IN0(n : −1, 2n) = 1, IN0(n : −1, B) =
LT (n : B), and IN0(n : A, 2n) = GT (n : A).

4. Number of Interval Functions Requiring τp Pro-
ducts

In this section, we derive the formula for a number of inter-
val functions requiring τp products in their MPreSOPs. With
this, we can estimate the size of TCAM for packet classifi-
cation [9].

Definition 4.1: Let Ψ(n, τp) be the number of n-variable
interval functions that require τp products in their MPre-
SOPs.

To derive Ψ(n, τp), we have to consider the extremal
endpoints that appeared before Lemma 3.5. Thus, the inte-
gers must be represented by (n + 1) bits for enumeration.

Definition 4.2: Let A and B be integers such that −1 ≤
A < B ≤ 2n. Let s(A, B) be the largest integer such
that as � bs. s(A, B) is called separation index, where
0 ≤ s(A, B) ≤ n. The binary representations of A and B
are �a = (an, an−1, . . . , a1, a0) and �b = (bn, bn−1, . . . , b1, b0),
respectively. A = −1 and B = 2n correspond to extremal
endpoints that require (n + 1) bits.

In deriving Ψ(n, τp), the separation index s is used as
a parameter to enumerate the number of interval functions.
Table 3 shows all IN0(4 : A, B) functions of 4 variables that
require τp = 3 products, where the upper integer denotes
A, while the lower integer denotes B. The integers at the
left side of the bits are the decimal representations of A and
B. Also, A and B are represented by n + 1 = 5bit num-
bers, the least significant s bits are separated to show the
patterns of the combinations. For example, when s = 2, two
cases satisfy the requirements. In the first case, the lower
endpoint (A) contributes

(
2
1

)
= 2 products, while the upper

endpoint (B) contributes
(

2
2

)
= 1 product. In the second case,

A contributes
(

2
2

)
= 1 product, while B contributes

(
2
1

)
= 2

products. Thus, we have
(

2
2

)(
2
1

)
+

(
2
1

)(
2
2

)
= 4.

The top four pairs in Table 3 in the column headed by
s = 2 denote all possible combinations of the least signifi-
cant s bits that produce τp = 3 products. The bottom four
pairs correspond to the repetition of the top four pairs. Note
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Table 3 List of interval functions for n = 4 and τp = 3 for different s.

s = 2 s = 3 s = 4

0: 000 | 00 0: 00 | 000 3: 00 | 011 1: 0 | 0001
5: 001 | 01 8: 01 | 000 11: 01 | 011 16: 1 | 0000
0: 000 | 00 1: 00 | 001 3: 00 | 011 2: 0 | 0010
6: 001 | 10 9: 01 | 001 13: 01 | 101 16: 1 | 0000
1: 000 | 01 1: 00 | 001 3: 00 | 011 4: 0 | 0100
7: 001 | 11 10: 01 | 010 14: 01 | 110 16: 1 | 0000
2: 000 | 10 1: 00 | 001 5: 00 | 101 8: 0 | 1000
7: 001 | 11 12: 01 | 100 11: 01 | 011 16: 1 | 0000
8: 010 | 00 2: 00 | 010 5: 00 | 101 -1: 1 | 1111

13: 011 | 01 9: 01 | 001 13: 01 | 101 7: 0 | 0111
8: 010 | 00 2: 00 | 010 5: 00 | 101 -1: 1 | 1111

14: 011 | 10 10: 01 | 010 14: 01 | 110 11: 0 | 1011
9: 010 | 01 2: 00 | 010 6: 00 | 110 -1: 1 | 1111

15: 011 | 11 12: 01 | 100 11: 01 | 011 13: 0 | 1101
10: 010 | 10 4: 00 | 100 6: 00 | 110 -1: 1 | 1111
15: 011 | 11 9: 01 | 001 13: 01 | 101 14: 0 | 1110

4: 00 | 100 6: 00 | 110
10: 01 | 010 14: 01 | 110

4: 00 | 100 7: 00 | 111
12: 01 | 100 15: 01 | 111

that, in the top four pairs, the 4th bits in A (i.e., a3) and B
(i.e., b3) are 0s, while, in the bottom four pairs, the 4th bits
are 1s.

By Theorem 3.2, we enumerate τp with respect to the
least significant s bits in the binary representations of the
endpoints. Thus, we define:

Definition 4.3: Let η(s, τp) be the number of interval func-
tions with the separation index s that require τp products in
their PreSOPs.

Lemma 4.1: η(s, τp) =
(

2s
τp

)
.

Proof: By Theorem 3.2, η(s, τp) is equal to the number of
combinations such that

s−1∑
j=0

(ā j + b j) = τp.

This number is equal to the number of ways to distribute τp

elements to 2s bins. Thus, we have
(

2s
τp

)
. �

Lemma 4.2: Let r(n, s) be the number of repetitions that
multiplies η(s, τp). Then, we have r(n, s) = 2n−s−1.

From here, we will consider the extremal endpoints that
require (n + 1) bits to represent the numbers. These cases
occur when one of endpoints is −1 or 2n. Note that the
binary representation of −1 is �a = (an, an−1, . . . , a1, a0) =
(1, 1, · · · , 1, 1) and the binary representation of 2n is �b =
(bn, bn−1, . . . , b1, b0) = (1, 0, · · · , 0, 0).

Lemma 4.3: For the interval functions with s(A, B) = n
and τp ≤ n, we have η(n, τp) = 2

(
n
τp

)
.

Proof: When s(A, B) = n, an � bn. This occurs when
A = −1 and B ≤ 2n−1, or, A ≥ 0 and B = 2n. In these cases,
one of endpoints i.e., A = −1 or B = 2n, contributes no pro-
duct. Because of that, the other endpoints must contribute

τp products. The number of ways to produce τp products is(
n
τp

)
. Thus, we have η(n, τp) =

(
n
τp

)(
n
0

)
+

(
n
0

)(
n
τp

)
= 2

(
n
τp

)
. �

Example 4.1: In Table 3, when s = n = 4 and τp = 3, the
extremal endpoints occur, and we have η(4, 3) = 2

(
4
3

)
= 8.

Lemma 4.4: For s(A, B) ≥ n and τp > n, η(s, τp) = 0.

Proof: Note that no interval function satisfies the condition.
For s = n and τp > n, the only allowable endpoints are 2n+1
and 2n. These endpoints contribute no products, and the
remaining space from another endpoint can be represented
with only n products. �

Theorem 4.1:

Ψ(n, τp) =

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
s=1

2n−s−1

(
2s
τp

)⎞⎟⎟⎟⎟⎟⎟⎠ + 2

(
n
τp

)
.

Proof: Ψ(n, τp) is given as the sum of the number of open
interval functions η(s, τp) times the repetition factor r(n, s)
for every possible s:

Ψ(n, τp) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n−1∑

s=� 1
2 τp�

r(n, s)η(s, τp)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + η(n, τp). (2)

For the separation index s(A, B), we have � 1
2τp� ≤

s(A, B) ≤ n. s(A, B) takes its maximum and minimum val-
ues in the extremal endpoints. Thus, the sum operation in
Eq. (2) is bounded from � 1

2τp� to n − 1. Moreover, since(
2s
τp

)
= 0 when 2s < τp, the lower bound can be simply 1.

From Lemmas 4.1 to 4.4 and Eq. (2), we have the theorem.
�

5. Statistical Properties

In this section, we show some statistical properties of the
number of products in PreSOPs. We assume that each func-
tion is equally likely. Therefore, the probability distribution
function of the number of interval functions with τp pro-

ducts in PreSOPs is given by Ψ(n,τp)
N(n) .

5.1 Average Number of Products

The average number of products in PreSOPs (mean) for n-
variable interval functions is given by

μ(n) =
1

N(n)

2(n−1)∑
τp=1

τp · Ψ(n, τp),

where N(n) is the total number of distinct interval functions
of n variables, and Ψ(n, τp) is the number of interval func-
tions that require τp products.

Theorem 5.1:

μ(n) ≈ n − 2.

Proof: Appendix. �
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5.2 Variance of the Numbers of Products

The variance [6] of the numbers of products in PreSOPs for
interval functions is given by

σ2(n) =
2(n−1)∑
τp=1

τ2
p

Ψ(n, τp)

N(n)
− μ(n)2.

Theorem 5.2:

σ2(n) ≈ n
2
+ 1.

Proof: Appendix. �

Lemma 5.1: (Chebyshev’s inequality [6]) Let X be a ran-
dom variable with a finite expected value μ and a finite non-
zero variance σ2. Then, for any real number k > 0, we have

Pr(|X − μ|) ≥ kσ) ≤ 1
k2
.

For k = 2, we have,

Pr(|X − μ|) ≥ 2σ) ≤ 1
4
.

Corollary 5.1: For large n, at least 75% of n-variable in-
terval functions can be represented by PreSOPs with (n −
2) +

√
2(n + 2) products.

6. Experimental Results

Although we have the formula for the number of products in
MPreSOPs, we do not have one in MSOPs. To compare the
numbers of products of PreSOPs with MSOPs [5], we gener-
ated all the interval functions for n = 1 to n = 12. To obtain
exact minimum SOPs, we used ESPRESSO-EXACT [5]. In
MSOPs, the maximums occur for IN0(n : 2n−3, 7 · 2n−3 − 1)
and IN0(n : 2n−2, 3 · 2n−2 − 1) [18]. On the other hand,
as shown in Sect. 3, in PreSOPs, the maximum occurs for
IN0(n : 0, 2n − 1).

Figure 3 compares average numbers of products in
MSOPs and PreSOPs for different sizes of intervals. The
curves for MSOPs tangent to the envelope τ = log2(B − A)
and τ is the number of products in an MSOP. In Fig. 3 the
envelope is shown by the black dotted curve. The peaks of
the curves show that PreSOPs require more products (in-
cluding the maximum, τp = 2(n− 1)) when the size of inter-
val approaches to 2n − 2, and the curves drop sharply when
the sizes of intervals are 2n − 1 (τp = n) and 2n (τp = 1).
Table 4 shows the average numbers of products needed to
represent interval functions. The ratio of the numbers of
products in PreSOPs to that of MSOPs for n > 5 is about
1.05.

We calculated the probabilities of the interval functions
that can be represented with at most τp products for n =
8 to n = 16. Table 5 shows that, for n > 12, more than
98.75% of the interval functions can be represented with �n+√

2(n + 2)−2� products, and more than 99.9% of the interval
functions can be represented with � 3

2 n − 1� products.

Fig. 3 Average numbers of products in MSOPs and PreSOPs for differ-
ent sizes of intervals.

Table 4 Average numbers of products needed to represent interval func-
tions.

n N(n) MSOP PreSOP Difference Ratio

4 136 2.39706 2.47794 0.08088 1.03374
5 528 3.12879 3.27462 0.14583 1.04661
6 2080 3.94327 4.15433 0.21106 1.05352
7 8256 4.81541 5.08539 0.26999 1.05607
8 32896 5.72671 6.04672 0.32001 1.05588
9 131328 6.66450 7.02535 0.36084 1.05414
10 524800 7.62032 8.01366 0.39334 1.05162
11 2098176 8.58858 9.00732 0.41874 1.04876
12 8390656 9.56540 10.00391 0.43850 1.04584

Table 5 Probabilities of interval functions that can be represented with
at most τp products.

n τp = �μ(n) + c�
c = σ(n) c = 2σ(n) c = σ2(n)

8 95.03587% 99.67169% 99.67169%
9 94.00204% 99.44642% 99.89416%

10 93.01715% 99.17569% 99.80526%
11 92.08265% 99.68811% 99.93380%
12 91.19742% 99.54448% 99.88636%
13 90.35921% 99.37685% 99.95988%
14 89.56528% 99.18796% 99.93412%
15 88.81274% 98.98061% 99.97608%
16 88.09875% 98.75744% 99.96191%

7. Conclusions and Comments

As key contributions of this work, we

1. showed that the MPreSOP and the number of products
in the MPreSOP (τp) to represent an interval (A, B) can
be directly obtained.

2. derived the formula Ψ(n, τp) for the number of interval
functions that require τp products in PreSOPs.

3. showed by experiments that the average number of pro-
ducts in MSOPs is approximated by τ = log2(B − A).

4. showed that the average number of products μ(n)
needed to represent interval functions of an n-bit field
by PreSOPs is about n − 2, with an approximate vari-
ance σ2(n) of n

2 + 1.
5. showed by numerical computations that more than

99.9% of the interval functions of an n-bit field can be
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represented by PreSOPs with � 3
2 n − 1� products, when

n > 12.

To represent an interval of an n-bit field, a PreSOP re-
quires up to 2(n − 1) products. When both the source and
the destination ports have n = 16 bits fields, the number of
products needed to represent one rule by a PreSOP can be
up to 2(n − 1) × 2(n − 1) = 30 × 30 = 900. Theorem 5.1
shows that the average number of products needed to rep-
resent an interval is about n − 2. Thus, when the rule have
two interval fields, the average numbers of products needed
to represent one rule by PreSOP would be (n − 2)2, which
is 142 = 196 when n = 16. In the real applications, the rule
expansion is not so large. For example, the paper [24] re-
ported that the average number of TCAM entries for 12 real
packet classifiers is 6.2 times of their number of rules. This
is because, in the real applications, the distributions of the
interval functions are not uniform.
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Appendix

Proof of Lemma 3.2

Since we consider PreSOPs, we have the following:
When an−1 = 0:

GT (n : A) = xn−1 ∨ x̄n−1MPreSOP(GT (n − 1 : Â)),

where Â is the integer represented by (an−2, an−3, . . . , a1, a0).
When an−1 = 1:

GT (n : A) = xn−1MPreSOP(GT (n − 1 : Â)).

For n = 1 and n = 2, it is clear that the lemma holds. By
mathematical induction, we have the lemma. �

Proof of Lemma 3.4

In the case of SOPs, an MSOP can be found by the following
approach [20]:
1) Generate the set of all the prime implicants (PIs).
2) Among the set of PIs, select a minimum set of PIs that
covers the minterms.

Let PI( f ) be the set of all the PIs for f . Then, we have
the following relation [15]

PI( f ) = x̄n−1PI( f0) ∪ xn−1PI( f1) ∪ PI( f0 · f1).

In the case of PreSOPs, an MPreSOP can be found by
a similar approach, but the first step should be modified as
follows:
1’) Generate PrePI( f ), the set of all the PIs for f having the
form x∗n−1x∗n−2 · · · x∗m. Note that PrePI( f ) can be written as

PrePI( f ) = x̄n−1PrePI( f0) ∪ xn−1PrePI( f1).
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Since functions are represented by PreSOPs, all the pro-
ducts have the form x∗n−1x∗n−2 · · · x∗m. Thus, we do not have
to generate PrePI( f0 · f1). This implies that to obtain the
MPreSOP( f ), we can minimize the subfunctions indepen-
dently as follows: MPreSOP( f ) = x̄n−1MPreSOP( f0) ∨
xn−1MPreSOP( f1). �

Corollary A.1: Let f (xn−1, xn−2, . . . , x0) = x̄n−1 f0 ∨ xn−1 f1,
where f0 = f (0, xn−2, . . . , x0) and f1 = f (1, xn−2, . . . , x0).
Then,

τp( f ) = τp( f0) + τp( f1).

Lemma A.1:
n∑

i=1

i

(
n
i

)
= n2n−1.

n∑
i=1

i2
(
n
i

)
= n(n + 1)2n−2.

Lemma A.2:
n∑

i=1

i2i = 2n+1(n − 1) + 2.

n∑
i=1

i22i = 2n+1(n2 − 2n + 3) − 6.

Proof of Theorem 5.1

The average number of products in PreSOPs is

μ(n) =
1

N(n)

2(n−1)∑
k=1

kΨ(n, k)

=
1

N(n)

2(n−1)∑
k=1

k
n−1∑
s=1

2n−s−1

(
2s
k

)
+

2
N(n)

2(n−1)∑
k=1

k

(
n
k

)

=
1

N(n)

2(n−1)∑
k=1

k
n−1∑
s=1

2n−s−1

(
2s
k

)
+

n2n

(2n + 1)2n−1
.

The second term is negligibly smaller than the first term. For
the first term, by Lemmas A.1 and A.2, we have

2(n−1)∑
k=1

k
n−1∑
s=1

2n−s−1

(
2s
k

)

=

n−1∑
s=1

2n−s−1
2(n−1)∑

k=1

k

(
2s
k

)
=

n−1∑
s=1

2n−s−1s22s

=

n−1∑
s=1

s2n+s−1 = 2n−1
n−1∑
s=1

s2s

= 2n−1(2n(n − 2) + 2) = 22n−1(n − 2) + 2n.

Thus,

μ(n) ≈ 22n−1(n − 2) + 2n

N(n)
≈ 22n−1(n − 2)

22n−1
= n − 2.

Hence, we have the theorem. �

Proof of Theorem 5.2

The variance of the numbers of products in PreSOPs is

σ2(n) =
1

N(n)

2(n−1)∑
k=1

k2Ψ(n, k) − μ2(n)

=
G

N(n)
− μ2(n).

Note that by Theorem 4.1, we have

G =
2(n−1)∑

k=1

k2Ψ(n, k)

=

2(n−1)∑
k=1

k2
n−1∑
s=1

2n−s−1

(
2s
k

)
+ 2

2(n−1)∑
k=1

k2

(
n
k

)
.

The first term in G is equal to

n−1∑
s=1

2n−s−1
2(n−1)∑

k=1

k2

(
2s
k

)

=

n−1∑
s=1

2n−s−12s(2s + 1)22s−2

=

n−1∑
s=1

2n+s−1(s2 +
s
2

)

= 2n−1
n−1∑
s=1

s22s + 2n−2
n−1∑
s=1

s2s.

The second term in G is negligibly smaller than the first
term, so we can ignore it. Thus, from Lemma A.2, G is
approximated by

2n−1(2n((n − 1)2 − 2(n − 1) + 3) − 6) + 2n−2((n − 2)2n)

or,

22n−1((n − 1)2 − 2(n − 1) + 3) + 22n−2(n − 2).

Thus, we have

G
N(n)

≈ 22n−1((n − 1)2 − 2(n − 1) + 3)
22n−1

+
n − 2

2

≈ (n − 1)2 − 2(n − 1) + 3 +
n − 2

2
.

Hence,

σ2(n) ≈ G
N(n)

− (n − 2)2

≈ (n − 1)2 − 2(n − 1) + 3 − (n − 2)2 +
n − 2

2

≈ n + 2
2
.

Thus, we have the theorem. �
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