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PAPER

Robust Hashing of Vector Data Using Generalized Curvatures of
Polyline∗

Suk-Hwan LEE†a), Member, Seong-Geun KWON††b), and Ki-Ryong KWON†††c), Nonmembers

SUMMARY With the rapid expansion of vector data model applica-
tion to digital content such as drawings and digital maps, the security and
retrieval for vector data models have become an issue. In this paper, we
present a vector data-hashing algorithm for the authentication, copy pro-
tection, and indexing of vector data models that are composed of a number
of layers in CAD family formats. The proposed hashing algorithm groups
polylines in a vector data model and generates group coefficients by the
curvatures of the first and second type of polylines. Subsequently, we cal-
culate the feature coefficients by projecting the group coefficients onto a
random pattern, and finally generate the binary hash from binarization of
the feature coefficients. Based on experimental results using a number of
drawings and digital maps, we verified the robustness of the proposed hash-
ing algorithm against various attacks and the uniqueness and security of the
random key.
key words: vector data model, content hashing, design drawing, digital
map, curvature

1. Introduction

Vector data models have been widely applied to various
types of content, including digital maps for GIS (global
information systems) [1] and CAD (computer-aided de-
sign) [2] drawings for architectures, cars, shipbuilding, and
IT (information technology) hardware designs. In response
to the demand for greater security with the development of
such content based on vector data models, many watermark-
ing schemes have been presented for the copyright protec-
tion of CAD drawing designs [3], [4], GIS digital maps [5]–
[13], vector graphics [14], and 3D model [15]–[18]. On the
other hand, E.J. Delp [19] suggested the importance of con-
tent authentication, rather than copyright protection, along
with changes in the business model, as an approach toward
multimedia security in the future. Content-based hashing is
a typical technique for content authentication. The crypto-
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graphic hash functions cannot be used on digital multime-
dia because they are very sensitive to every bit of digital
data. Many researchers have presented robust and secure
hash functions for images [20], [21], videos [22], [23], and
3D models [24]–[26]. However, these functions cannot be
used for vector data models because the data structure for
the latter is different. Furthermore, there has been little in-
terest on hash functions for vector data models.

Like watermarking, content-based hashing must be de-
signed according to the data structure of the content. Images
are represented by pixel arrays of fixed position and reso-
lution, and videos are represented by a number of image
frames. Many image and video hashing schemes have been
proposed in the frequency domains [20]–[23]. 3D polygonal
models are represented by a number of vertices and connec-
tivity that can be decreased by simplification or increased
by subdivision. 3D model hashing has been proposed by
using the shape features [24]–[26]. Vector data models con-
sist of primitive entities, such as points, polylines, polygons,
circles, and text, to construct more complex objects. Espe-
cially, vector data models by AutoCAD DXF/DWG family
formats are designed by layers that have a number of prim-
itive entities. Therefore, the hash function must be suitable
to these vector data models.

In this paper, we present a robust and secure hashing al-
gorithm for vector data models of design drawings and dig-
ital maps in the AutoCAD DXF/DWG family of formats.
The main features of our algorithm are as follows. First,
we use the generalized curvature of a polyline as the base
value of our algorithm. The generalized curvature is in-
variant to re-parameterization and Euclidean transformation
and also to geometric transformation with shape preserva-
tion. Many kinds of attacks on vector data models are based
on re-parameterization, similarity transformation, and geo-
metric transformation. Therefore, this is very effective in
terms of robustness. Second, we select primary layers with
high density and clustered polylines using curve energies.
A few layers in many models have most of the primitives
and they are considered as primary layers. Our algorithm
extracts feature values from them for hashing. The objec-
tive of the clustering based on bending energy is to provide
robustness to data rearrangement and geometric transforma-
tion, and also to improve the security, since the clustering
depends on the initial parameters. Thirdly, we generate the
binary hash by thresholding feature values of matrix form.
The feature values are obtained by the combination of the
random values and the group values of the first and second
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curvatures. Therefore, they have security as well as the ro-
bustness to attacks.

Based on experimental results, we verified that the pro-
posed hash function shows robustness against various geo-
metric attacks available to vector data, uniqueness in terms
of the key and model, and high security based on differential
entropy.

The rest of paper is organized as follows. We introduce
the vector data-hashing algorithm and the theory of gener-
alized curvature in Sect. 2. We then explain the proposed
hashing scheme in Sect. 3. In Sect. 4, we evaluate the ro-
bustness, uniqueness, and security of the proposed scheme.
Finally, we conclude our paper and discuss our future work
in Sect. 5.

2. Related Works

2.1 Vector Data Hashing

Content-based hashing algorithms [20]–[26] that generate
a binary hash by combining the feature values of content
to the random values have been presented for the robust-
ness, security, and uniqueness, which are the fundamental
requirements of hashing. Given that feature extraction is the
main process for robustness, it must be designed by con-
sidering the data structure of the content. Robustness guar-
antees that the hash is kept to the attack that preserves the
shape quality. The kinds of attacks are different for images,
videos, 3D models, and vector data models. The main dif-
ference between vector data hashing and image/3D model
hashing is how the feature vector can be extracted to be ro-
bust. The layers and objects in vector data models can be
easily modified through CAD/GIS editing tools. Therefore,
vector data hashing must be robust against layer and object
modifications. The security technique aims to guarantee that
the hash cannot be estimated without knowledge of a key.
Security can be improved using a random or permutation
key in the process of feature extraction and binarization or
using random quantization. Uniqueness aims to guarantee
that the hash generated from any model or key is unique.
Thus, hashes generated from the same model with different
keys are unrelated. Similarly, hashes generated from differ-
ent models with the same key are unrelated. Uniqueness is
affected by feature extraction and the combination of feature
and random vectors.

Vector data models in AutoCAD DXF/DWG family
formats, which are very popular formats, are designed by
a number of layers that consist of primitive entities such as
points, lines, faces, circles, and text. The layers among those
with polylines or single lines are used as the target layers for
hash extraction. The feature vector for a vector data model
can be extracted by the geometric feature in each layer. Lay-
ers and primitives are arrayed on their indices that can be
easily rearranged. Thus, the array order or index of a layer
or primitive is variable, unlike the pixel array of an image.
Therefore, the vector data-hashing algorithm must be able
to extract a feature vector that is robust to the rearrangement

of layers or primitives and other geometric modifications.
The proposed hashing scheme extracts the hash feature vec-
tor using the curvatures of the polylines, which are the main
primitive entity in design drawings and digital maps.

2.2 Generalized Curvature of Line Curve

We use the first and second curvatures, χ1, χ2, of polyline
for the hash feature vector because it is invariant to line re-
parameterization and Euclidean transformation. This prop-
erty is very important for the robustness of hash.

The following is a brief review of the theory of gener-
alized curvature [27], [28]. Let n and r be a natural num-
ber, I be a non-empty interval of real numbers, and t be
any real number in I. Then, a parametric curve Υ is de-
fined as a vector-valued function, Υ : I → Rn, that is
r times continuously differentiable in Rn, which is regu-
lar of order m; {Υ′ (t),Υ′′ (t), · · · ,Υ(m)(t)},m ≤ r, t ∈ I. The
Frenet frame of a parametric curve Υ is the set of m or-
thonormal vectors, {e1(t), · · · , em(t)}, which are called Frenet
vectors. The Frenet frame is a moving reference frame of
m orthonormal vectors, such as the curvature or torsion at
each point of Υ(t), that are used for describing a curve lo-
cally. Each orthonormal vector e j(t) can be reconstructed
from derivatives of Υ(t) using the Gram-Schmidt orthog-
onalization algorithm; e j(t) = ē j(t)/‖ē j(t)‖ where ē j(t) =
Υ( j)(t)−∑ j−1

i=1 < Υ
( j)(t), ei(t) > ei(t) and e1(t) = Υ

′
(t)/‖Υ′(t)‖.

The generalized curvature is defined as the real function,
χi(t) =< e

′
i(t), ei+1(t) > /‖Υ′ (t)‖. The Frenet frame and the

generalized curvature have differential geometric properties
of the curve, which are invariant after reparameterization.

In this paper, we obtain the first and second curvatures
of a discrete polyline using the Frenet frames. Given a poly-
line p with n + 1 vertices, {v0, · · · , vn}, which is piecewise
continuous, the Frenet vectors e j[k] for vertices vk are

e j[k] =
ē j[k]

‖ē j[k]‖ , k ∈ [0, n] (1)

where e1[k] = Υ
′
[k]/‖Υ′ [k]‖ and ē j[k] = Υ( j)[k] − ∑ j−1

i=1 <

Υ( j)[k], ei[k] > ei[k]. The first Frenet vector e1[k] is the unit
tangent vector that is defined at each point vk of a parametric
curve Υ; the second Frenet vector e2[k] is the unit curvature
vector or the unit normal vector that describes the deviance
of the curve from a straight line. The two vectors e1[k] and
e2[k] at a point vk define the osculating plane at this point.
The third Frenet vector e3[k] is the binormal vector, which is
always orthogonal to e1[k] and e2[k]. We obtain the first cur-
vature χ1[k] using e1[k] and e2[k], and the second curvature
χ2[k] using e2[k] and e3[k].

χ1[k]=
<e

′
1[k], e2[k]>

‖Υ′ [k]‖ , χ2[k]=
<e

′
2[k], e3[k]>

‖Υ′ [k]‖ (2)

We then extract the feature value of a polyline by the two
curvatures, χ1[k] and χ2[k].
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Fig. 1 The process of hash generation and hash authentication in vector
data model.

3. Proposed Vector Data Hashing

Generally, lines, polylines, and polygons among primitive
entities occupy most of the vector data model. We convert
the lines, polylines, and polygons to polylines that are avail-
able to the first and second curvatures and select target lay-
ers with the highest number of converted polylines. We then
extract the feature values through the polyline curvatures in
each layer and generate the binary hash. The overall process
of the proposed hashing scheme consists of layer selection,
polyline refinement, polyline clustering, feature extraction,
and hash generation, as shown in Fig. 1.

In this paper, we consider lines, polylines, and poly-
gons to be polylines for the sake of simple notation, al-
though they are definitely different. The main notations used
in this paper are as follows. Let i be the index of layer and j
be the index of a polyline in any layer. A vector data model
M consists of N layers; M = {Li|i ∈ [1,N]}. A layer Li

consists of N(Li) polylines; Li = {pi j| j ∈ [1,N(Li)]}. A
polyline pi j has Ni j vertices; pi j = {pi j,k |k ∈ [1,Ni j]}, which
is a jth polyline in the ith layer. The feature F is the matrix
of NH × NH real numbers; F = { fn1,n2 |n1, n2 ∈ [1,NH]}. The
hash H is the matrix of NH × NH bits; H = {hn1,n2 |n1, n2 ∈
[1,NH]}.

3.1 Layer Selection

Each layer of a vector data model has its own geometric
property according to the kind of model. For example, the
road layer in a GIS digital map has a number of polylines
of the straight type and polygons of the rectangular type.
The watch layer in design drawings has a number of arcs
and curve-type polylines. The hash must be generated from
the primary layers in a vector data model for robust hash-
ing. Conventional watermarking techniques for CAD draw-
ings [3] selected primary layers based on the density of geo-
metric primitives. Our algorithm selects the primary layers

(a) (b)

Fig. 2 (a) 1:5,000 scaled digital map and (b) the ratio of the accumulated
polyline number in layers that are arranged in descending order of γρ.

using the multiple factor γiρi where γi is the ratio of the
polyline number to the total number of other primitives and
ρi is the polyline density on each layer Li.

Let N(Lk) be the number of polylines in a layer Lk

and ηi be the ratio of the accumulated polyline number,∑i
k=1 N(Lk), in i layers (i ≤ N) to the total polyline num-

ber,
∑N

k=1 N(Lk), in a model. Then, we arrange all layers in
descending order of γiρi, and select layers from the highest
to the lowest layer while ηi is above Thη. Therefore, the
selected layer L∗ is defined by

L∗ = {L1, · · · ,Li, · · · ,LNL }, (3)

∀ ηi > Thη and γiρi > γi+1ρi+1, i ∈ [1,NL]

This means that the number of polylines in L∗ is more than
Thη × 100[%] of the number of total polylines. If Thη is
small, the number of the selected layers and hash length in-
crease; however, the robustness decreases because insignifi-
cant layers are selected. In contrast, if Thη is large, a few of
the main layers are selected and the robustness increases;
however, the hash length decreases and reduces security.
Therefore, we determine Thη to be 0.7 so that the number
NL of selected layers is above 2.

Figure 2 shows a 1:5,000 scale digital map and the η
ratios in layers arranged by descending order of γiρi. This
figure illustrates that polylines are distributed intensively on
a few of the layers; in particular, 4 layers have over 70%
of the polylines of the map. As in the results above, we
confirmed that polylines are distributed largely on the main
layers in most models.

3.2 Polyline Refinement and Clustering

The foremost three vertices of the polyline must be used for
the initialization of the second curvature in Eq. (2). We re-
fine the short polylines with three or less vertices to be thrice
differentiable polylines by the linkage of nearest polylines.
Let the short polyline be ps

i j = {vi j,1, · · · , vi j,Ni j },Ni j < 4.
The refinement process links ps

i j virtually to short polylines
that are the nearest to the start vertex vi j,1 and the end vertex
vi j,Ni j within the range of the average length of ps

i j. If ps
i j has

no polylines within the range of the average polyline length,
ps

i j will not be selected to the curvature. Figure 3 illustrates
an example that a current line ps

i j is refined by the sequential
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Fig. 3 An example of polyline refinement of ps
i j to link between the near-

est polylines and ps
i j.

linkage of left and right nearest polylines, ps
i j−1 and ps

i j+1.
The layers and primitive entities in the vector data are

searched by their indices. However, the index of each layer
or entity is variable. Therefore, layers and primitive entities
can be rearranged by the random permutation of indices. If
the relation between a hash bit and a polyline is one-to-one,
a number of hash bits will be produced, although the hash
cannot be extracted without knowledge of the polylines in-
dices. Thus, the hash can be easily broken by the rearrange-
ment of layers or polylines without degrading the quality.
Our algorithm clusters polylines using their curve energies
and generates a hash bit for each cluster. As a result, the
hash is extracted directly in the rearranged vector data and
is robust against geometric attacks, although its length is re-
duced.

In the clustering process, we first calculate the bend-
ing energies [29] of all the polylines in the selected layer Li.
For a smooth curve Υ(t), defined in some parameter interval
[a, b], the linearized bending energy (cubic spline energy)

is defined by E(Υ) =
∫ b

a
‖Υ(2)(t)‖2dt. Here, Υ(2) denotes

the second derivative vector of the curve Υ(t) with respect
to the curve parameter t. A polyline pi j as a discrete curve
possesses a discrete linearized bending energy E[pi j], which
is called “bending energy” for short.

E[pi j] =
Ni j−1∑
k=2

‖Δ2vi j,k‖2, (4)

Δ2vi j,k = vi j,k−1 − 2vi j,k + vi j,k−1

We then cluster all polylines into NH groups, which is the
length of hash, using the normalized bending energy E[pi j]

Ē[pi j] =
E[pi j]∑N(Li)

j=1 E[pi j]
(5)

We denote the set of NH groups as Gi = {Gi,n|n ∈ [1,NH]}.
Polylines can be clustered by many algorithms such as
k-means/k-means++ clustering [30], fuzzy c-means clus-
tering [31], expectation-maximization (EM) clustering [32],
[33], quality-threshold (QT) clustering [34], and spectral
clustering. Our algorithm uses Gaussian mixture model
(GMM)-based EM clustering because of its sensitivity to
initial values, which enable it to improve the security of
hash.

Fig. 4 The initial 3 vertices and the vertices that are available to Frenet
vectors in a polyline pi j = (vi j,1, · · · , vi j,Ni j ).

Let the distribution of Ē[pi j] be the sum of Gaussian

distributions weighted by ωn; {φ(μn,
∑

n)}NH

n=1, where μn is
the mean and

∑
n is the covariance. A weight ωn has the

property of ωn > 0 and
∑NH

n=1 ωn = 1. Let θn be pa-
rameters of weight, mean, and covariance of nth group;
θn = (ωn, μn,

∑
n). We randomly select NH initial parameters

{θ(0)
n }n∈[1,NH ] in the selected layer Li and obtain NH GMM-

based groups by finding parameters {θn}n∈[1,NH ] that maxi-
mize the log-likelihood of the normalized bending energy.

Gi,n = {pi j : Pr(Ē[pi j]θn) > Pr(Ē[pi j]θn′ ), (6)

∀n′ � n ∈ [1,NH]}
This set of parametersΘ = {θn}n∈[1,NH ] is stored to extract the
hash. All polylines in a layer Li are clustered to NH groups;
{Gi,n}n∈[1,NH ].

3.3 Hash Feature Value

3.3.1 Polyline Curvature

The average of the first and second curvatures, χ1(pi j) and
χ2(pi j), of polylines in the selected layer Li are calculated
from the following equation derived from Eq. (2).

χ1(pi j) =
Ni j∑
k=3

χ1[k]
Ni j − 3

, χ2(pi j) =
Ni j∑
k=3

χ2[k]
Ni j − 3

(7)

As shown in Fig. 4, we use the three vertices, vi j,1, vi j,2, vi j,3,
for the initial points because the third Frenet vector e3[k]
is to be thrice differentiable. The second and third Frenet
vectors, e2[k] and e3[k] at a vertex vi j,k(k ∈ [3,Ni j]) can be
obtained as follows;

e2[k] =
ē2[k]
‖ē2[k]‖ , e3[k] =

ē3[k]
‖ē3[k]‖ (8)

where ē2[k] = Υ(2)[k]− < Υ(1)[k], e1[k] > e1[k], ē3[k] =
Υ(3)[k] −∑2

j=1 < Υ
( j)[k], e j[k] > e j[k].

The first derivatives of the first and second Frenet vec-
tors, e

′
1[k] and e

′
2[k], can be calculated by Frenet-Serret for-

mula [22],[
e
′
1[k]

e
′
2[k]

]
=‖Υ(1)[k]‖

[
0 χ1[k]

−χ1[k] 0

][
e1[k]
e2[k]

]
(9)

As described above, we calculate pairs of the first and sec-
ond average curvatures, (χ̄1(pi j), χ̄2(pi j)), of all polylines in
each group.
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(a)

(b)

Fig. 5 (a) Polylines group in each layer and (b) extraction of the feature
vector using two curvature vectors and two random vectors.

3.3.2 Feature Matrix of Group

We define the values for representing a group as two aver-
ages of the first and second curvatures, which are called the
first group value and the second group value. Thus, the first
group value x{1}i,n and the second group value x{2}i,n in a group
Gi,n are defined as follows.

x{1}i,n =

Ni,n∑
j=1

χ̄1(pi j)

Ni,n
, x{2}i,n =

Ni,n∑
j=1

χ̄2(pi j)

Ni,n
, (10)

for pi j ∈ Gi,n

where Ni,n is the number of polylines in a group Gi,n.
Since the number of selected layers is NL and all poly-

lines in a layer are clustered to NH groups, the number
of groups of all selected layers is NL × NH , as shown in
Fig. 5 (a). Thus, the first and second group values in all
selected layers can be written as matrices X{1},X{2} of size
NL × NH , as shown in Fig. 5 (b).

X{1} = {x{1}i,n |i ∈ [1,NL], n ∈ [1,NH]}, (11)

X{2} = {x{2}i,n |i ∈ [1,NL], n ∈ [1,NH]},
We generate two Gaussian random matrices, R1, R2 with
mean mR and varianceσ2

R of size NL×NH , and then calculate
the group feature matrix F of size NH×NH , which is defined
by the products of [X{1}]T and R1 and of [X{2}]T and R2.

F = [X{1}]TR1 + α[X{2}]TR2 (12)

The feature value is written as

fn1,n2 =

NL∑
i=1

x{1}i,n1
r1,i,n2 + α

NL∑
i=1

x{2}i,n1
r2,i,n2 (13)

∀n1, n2 ∈ [1,NH]

[X]T is the transposed matrix of X. The intensity α equal-
izes the dynamic range of x{1}i,n and x{2}i,n .

α = max{x{1}i,n }/max{x{2}i,n } (14)

3.4 Hash Generation

The binary hash H is generated from the binarization of the
group feature value F.

hn1,n2 =

{
0, fn1,n2 < Thh

1, fn1,n2 ≥ Thh
(15)

The threshold Thh is determined for the binary hash as a
Bernoulli distribution with Pr[hn1,n2 = 1] ≈ Pr[hn1,n2 = 0] ≈
0.5, as follows.

1) Select an initial threshold Th(0)
h randomly in the dy-

namic range of fn1,n2 .
2) Classify feature values to two groups G1, G2 using

Th(t)
h (t ≥ 0), G1 = { fn1,n2 | fn1,n2 ≥ Th(t)

h }, G2 = { fn1,n2 | fn1,n2 <

Th(t)
h }.

3) Update Tht
h = (m1+m2)/2 where m1,m2 are average

feature values in each group.
4) Perform iteratively until Th(t)

h ≈ Th(t−1)
h . If Th(t)

h is
converged, Thh is set to Th(t)

h .

3.5 Hash Authentication

As shown in Fig. 1 (b), the proposed hashing algorithm ex-
tracts the hash H′ in the received vector data model M′ from
a process similar to that of hash generation, and determines
the authentication of M′ using the normalized Hamming
distance d(H,H′)

d(H,H′) =
1

N2
H

NH∑
n1

NH∑
n2

|hn1,n2 − h
′
n1,n2
| (16)

M′ →
{

Auth. d(H,H′) < ε
NotAuth.d(H,H′) ≥ ε (17)

d(H,H′) converges to 0 if the two models are perceptually
identical and to 0.5 if they are perceptually different.

We performed a test of the hypothesis based on the re-
ceiver operating characteristic (ROC) for determining the
authentication threshold ε. The test extracted 5,000 hashes
in 50 models using 100 keys, and calculated d(H,H′) be-
tween the original and attacked hashes and measured the
true positive (TP) and false positive (FP) rates while vary-
ing ε from 0 to 0.5 in steps of 0.05. TP is the probability
pT P = Pr[d(H,H′) < ε] that the hash H′ of attacked model
M′ is authenticated to the original model M, and FP is the
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Table 1 The number of layers and polylines, differential entropy, and processing time of typical
vector data models.

Fig. 6 ROC plot on the authentication threshold ε.

probability pFP = Pr[d(H,H′) < ε] that the former is au-
thenticated to a different model Mk. As shown in Fig. 6, the
ROC plot illustrates that TP achieves a maximum of 0.95
and FP reaches a minimum of 0.04 when ε is 0.15. There-
fore, we determine ε to be 0.15.

4. Experimental Results

Our experiment used 50 vector data models provided by the
AutoCAD software [35] in autodesk and NGII [36] for eval-
uating the robustness, uniqueness, and security of our algo-
rithm. We set the number of polyline groups to NH=15 and
the bit length of the hash to NH × NH=225, although the
numbers of layers and polylines are different in each model.
Table 1 shows the number of layers and polylines of a typ-
ical vector data model. From this table, we see that most
of polylines are distributed in a few of layers in the design
drawings and digital maps and the selected layers contain
more than 70% of the total polylines.

4.1 Robustness Evaluation

We attacked test vector data models using various editing
functions in AutoCAD S/W to evaluate robustness using the
false detection probability as the evaluation measure.

pFD(δ,H,H′) = 1 − Pr[d(H,H′), ε|δ] (18)

(a) (b)

(c) (d)

(e) (f)

Fig. 7 False detection probabilities in attacks of (a) cropping, (b) copy-
ing, (c) trimming, (d) breaking, (e) extending, and (f) polyline simplifica-
tion.

pFD is the probability that d(H,H′) of an original hash H
and an attacked hash H′ at any attack intensity δ is above
the threshold ε. We calculated pFD by iteratively performing
random key generation and hash extraction until d(H,H′) >
ε,(ε = 0.15) at the attack intensity δ. The experimental re-
sults of the robustness evaluation are shown in Fig. 7.

4.1.1 Similarity Transform and Rearrangement

The polyline curvature of the feature value is invariant to
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rotation and translation but is linearly variable to scaling.
Our algorithm estimates the scaling factor s by comparing
the bending energy E of the original model and the bending
energy E′ of the scaled model, and then rescales the scaled
model so that E′ is 1/s. From this rescaling process, we
confirmed that the hash could be detected without error in
an arbitrary scaled model in which pFD is 0. Layers and
geometric primitives can be rearranged easily by permuta-
tion of their own indices while the quality of the model is
not degraded at all. However, our algorithm is unaffected
by the rearrangement because of the selection of a target
layer based on the polyline density and polyline clustering
by the bending energy. Therefore, pFD is 0 in the rearranged
model.

4.1.2 Object Cropping and Copying

The geometric primitives of a vector data model can be
cropped or copied without being related to each other. We
cropped and copied about 10–50% of the total primitives
in a model. Figure 8 shows the front of the first floor in
the Hummer Elevation drawing and in a drawing in which
30% of the primitives were cropped or copied. The cropped
drawing shows that the main layers are left intact but other
parts are cropped. The copied drawing shows that the right
portions of the main layers are copied repeatedly.

Figure 7 (a) and 7 (b) illustrate the results of cropping
and copying. The pFD is very low from 6×10−4 to 4.2×10−2

up to 50% cropping of the data and 1.5 × 10−4 to 2.9 × 10−3

up to 50% of copied data, which is lower than the pFD of
cropping. The first and second group values in Eq. (10) have
not been affected by a few cropped polylines because they
are computed by the average of the curve energies of the
polylines. However, if a number of polylines is cropped,
these group values will be strongly affected or not exist.
Our hashes are generated by the feature values in Eq. (13),
which are the combination of the group values of all the
groups. Therefore, though any groups will be strongly af-

(a)

(b)

(c)

Fig. 8 The front of first floor of (a) Hummer Elevation drawing, (b) 30%
data cropped drawing, (c) 30% data copied drawing.

fected or not exist as a result of the cropping, our hashes can
be preserved with the values of the remaining groups. Fur-
thermore, copied polylines do not affect the group values
strongly because they are repeated. These results verified
that the hash has robustness to cropping and copying.

4.1.3 Trimming and Breaking

The trimming process trims the corners of polylines or con-
tinuous polylines or polygons on any point. The breaking
splits a polyline into two sub-polylines or removes the end
of one side. It removes the part between the user-defined
points in a polyline. Our experiment selected randomly 10–
50% of the polylines and trimmed any line or broken on
these polylines. Figure 9 (a) shows an area of a 1:5,000 scale
map, and Fig. 9 (b) shows that of a map for which 50% of
the polylines were trimmed. Figure 9 (a) shows the bottom
of the original Db drawing, and Fig. 9 (b) shows that of a Db
drawing in which 30% of the polylines were broken.

The result of polyline trimming and breaking, as shown
in Fig. 7 (c) and 7 (d), reveal that pFD is very low from 6.0×
10−4 to 4.3 × 10−2 with 10–30% of the polylines trimmed
and 7.5 × 10−4 to 2.9 × 10−2 with 10-30% of the polylines
broken. But it is somewhat high from 1.1 × 10−1 to 2.1 ×
10−1 with 40–50% trimmed and broken. Trimmed or broken
polylines can be allocated to other groups because of the
change in their normalized bending energy, as in Eq. (5). In
addition, their first and second curvatures can be changed
slightly or not. These affect the first and second group values
of both the origin group and the reallocated group and then
affect slightly the feature values, which are a combination
of the group values, according to the number of trimmed or
broken polylines. From experimental results, we see that
our hashing has a pFD of less than 4.3% with up to 30% of
the polylines trimmed and broken, and has good robustness

(a) (b)

(c) (d)

Fig. 9 An area of 1:5000 scaled (a) original map and (b) map with 50%
trimmed polylines and the bottom of (c) original Db drawing and (d) Db
drawing with 30% broken polylines.
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(a)

(b)

Fig. 10 The rear of (a) original Hummer Elevation drawing and (b) draw-
ing with 20% extended polylines.

up to 30% trimming and breaking.

4.1.4 Extending

The extending process extends any polyline for being con-
nected to the corner of a user-defined polyline. In an ex-
tending experiment, we selected 10–50% of the polylines as
candidate and reference polylines, and extended the former
up to the corners of the latter. Figure 10 (a) shows the rear of
the Hummer Elevation drawing, and Fig. 10 (b) shows that
of a drawing for which 20% polylines were extended.

The result of the extending, as shown in Fig. 7 (e), re-
veals that the pFD is very low from 1.4 × 10−4 to 8.5 × 10−3

with 10–50% of the polylines extended. Since extending in-
creases the length of the polyline while preserving the shape,
it does not affect the first and second curvatures, which de-
pend not on the length but on the curve. Accordingly, we
verified that our hash is robust to extending up to 50%.

4.1.5 Simplification

Simplification, which is used mainly for data compression,
reduces the vertices that preserve the shape of an object. In
an experiment, we reduced 10–50% of the vertices in all
polylines using the subsample. The result of the simplifica-
tion, as shown in Fig. 7 (f), reveals that the pFD is low from
1.6 × 10−3 to 2.5 × 10−2 with 10–50% of the polylines sim-
plified. The simplification causes the curve to lack smooth-
ness, while preserving the shape of the polylines. It some-
what affects the first and second curvatures but affects less
the normalized bending energy and the group values. Ac-
cordingly, we verified that our hash is robust at up to 50%
of simplification.

From the above results, we see that our algorithm is
robust up to the test range of data cropping and copying, ex-
tending, and simplifying, and robust up to a specific range of
trimming and breaking, which are the most common func-
tions in vector data editing tools. In addition, our algorithm
is not affected by similarity transformation of rotation, scal-
ing, translation (RST), and data rearrangement.

Table 2 Results of uniqueness evaluation.

4.2 Uniqueness Evaluation

The uniqueness of a hash can be evaluated by models and
keys. Model uniqueness refers to the fact that two hashes
H1, H2 generated in different models M1, M2 with the same
key K are statistically very different.

Pr[H1 � H2] ≈ 1 (19)

where H1 = hash(M1,K),H2 = hash(M2,K)

Key uniqueness refers to the fact that two hashes H1, H2

generated in different keys K1, K2 with the same model M
are statistically very different.

Pr[H1 � H2] ≈ 1 (20)

where H1 = hash(M,K1),H2 = hash(M,K2)

Thus, the normalized Hamming distance d(H1,H2) of two
hashes, in model and key uniqueness experiments, must ap-
proach 0.5.

We evaluated the normalized Hamming distances of
hashes generated in 50 models with the same key, and those
of hashes generated in a model with 1,000 keys. Table 2
shows the results of model and key uniqueness experiments,
which are classified into three categories. Pr[d(H1,H2) ≥
0.5−ε] indicates that the two hashes are statistically very dif-
ferent, and Pr[d(H1,H2) < ε] indicates that the two hashes
are statistically very similar. In the results for model unique-
ness, Pr[d(H1,H2) ≥ 0.5 − ε] is 0.95 and Pr[d(H1,H2) < ε]
is 10−6. Thus, there is a 95% probability that the hashes
in different models using the same key are different from
each other. In the results for key uniqueness, Pr[d(H1,H2) ≥
0.5 − ε] is 0.98 and Pr[d(H1,H2) < ε] is 0. Thus, there is
a 98% probability that the hashes in different keys using the
same model are different from each other.

4.3 Security Analysis

Swaminathan [16] presented an analysis and evaluation of
hash security based on differential entropy. Following this
evaluation, we model the probability density function p( f )
of the group feature value and calculate the differential en-
tropy H( f ) = − ∫

F
p( f )log( f )d f . fn1,n2 can be rewritten as

the sum of two variables, A =
∑NL

i=1 x{1}i,n1
r1,i,n2 and B =

α
∑NL

i=1 x{2}i,n1
r2,i,n2 , in Eq. (13). Given that two random values

r1, r2 for the first and second group, x{1}i,n and x{2}i,n , are (m1, σ
2
1)

and (m2, σ
2
2), the two variables A, B are normally distributed,

(mA, σ
2
A) = (

∑NL

i=1 x{1}i,n1
m1,
∑NL

i=1(x{1}i,n1
)2σ2

1). Therefore, p( f ) is
normally distributed with a mean mf and a variance σ2

f
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Fig. 11 Processing time of test models.

mf =

NL∑
i=1

x{1}i,n1
m1 +

NL∑
i=1

x{2}i,n1
m2 (21)

σ2
f =

NL∑
i=1

(x{1}i,n1
)2σ2

1 +

NL∑
i=1

(αx{2}i,n1
)2σ2

2 (22)

The differential entropy H( f ) of p( f ) is

H( f ) =
1
2

log(2πeσ2
f ) (23)

=
1
2

log(2πe(
NL∑
i=1

(x{1}i,n1
)2σ2

1 +

NL∑
i=1

(αx{2}i,n1
)2σ2

2)).

If the two random values are the same as (mR, σ
2
R), H( f )

will be H( f ) = 1
2 log(2πeσ2

R)(
∑NL

i=1(x{1}i,n1
)2 +
∑NL

i=1(αx{2}i,n1
)2).

We used the normal distribution of (1,1) for the two ran-
dom variables and calculated the average, maximum, and
minimum H( fn1,n2 ) of the group feature values, as shown
in Table 1. The differential entropy varies according to the
number of layers and polylines as well as the curvatures; it
ranges from 9.03 to 12.46 on average.

4.4 Processing Time

To evaluate the algorithm complexity, we measured the pro-
cessing time experimentally, instead of the operation count.
In our experiments, we used a computer whose system was
Intel Core Duo CPU, 1.2 GHz, 1 GB RAM. Our algorithm
takes time to process 1) the layer selection for all layers,
and 2) the refinement/clustering and the hash generation by
feature matrix for selected layers. The latter process takes
a much longer time than the former. The processing time
is affected by the number of polylines in each layer and the
number of vertices in each polyline, which are different in
vector models. The processing times [ms] for test models
are shown in Table 1, on the right. It is from 0.65 to 9.81 s
in typical test models. Figure 11 illustrates the processing
time for the number of polylines (N) in the selected lay-
ers. These results verify that the processing time is close
to O(N log2(N)) complexity and our algorithm is somewhat
effective in terms of the processing time.

5. Conclusions

We presented a vector data-hashing algorithm using poly-
line curvature for authentication and copyright protection of
a vector data model. In the proposed hashing scheme, we
clustered polylines into selected layers according to their
curve energies and calculated group values for the average
curvatures of the first and second type. We then obtained
the feature values through a combination of the group and
random values, and generated the final hash from the bina-
rization of the feature value. Experimental results verified
that the proposed hashing algorithm is robust against RST,
cropping/copying, breaking, trimming, extending, and sim-
plifying, The algorithm also has security and uniqueness due
to random keys. Therefore, the proposed hashing scheme
can be very useful in security techniques for CAD drawings
and GIS digital maps.

In future work, we intend to adapt the scheme to vari-
ous geometric primitives, such as arc and circle, which are
the main primitives in Watch design. We also intend to adapt
it to additional information besides polylines and polygons
such as text, and to model the mutual relationships among
robustness, security, and uniqueness.
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