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LETTER

Random Walks on Stochastic and Deterministic Small-World
Networks

Zi-Yi WANG†, Shi-Ze GUO††, Nonmembers, Zhe-Ming LU†, Member, Guang-Hua SONG†a), Nonmember,
and Hui LI†, Member

SUMMARY Many deterministic small-world network models have
been proposed so far, and they have been proven useful in describing some
real-life networks which have fixed interconnections. Search efficiency is
an important property to characterize small-world networks. This paper
tries to clarify how the search procedure behaves when random walks are
performed on small-world networks, including the classic WS small-world
network and three deterministic small-world network models: the deter-
ministic small-world network created by edge iterations, the tree-structured
deterministic small-world network, and the small-world network derived
from the deterministic uniform recursive tree. Detailed experiments are
carried out to test the search efficiency of various small-world networks
with regard to three different types of random walks. From the results, we
conclude that the stochastic model outperforms the deterministic ones in
terms of average search steps.
key words: complex networks, small-world networks, random walks,
search efficiency

1. Introduction

There are many models describing numerous networks. As
a typical feature of the world-wide complex networks, the
small-world phenomenon has been extensively studied in re-
cent years [1]–[3]. Two typical properties that make small-
world networks different from other complex networks are
their small average path length (APL) and large cluster-
ing coefficient [4]. The small-world network models can
perfectly match the typical properties of real-life networks,
which show that the average distance between any pair of
nodes is relatively small although the size of the whole net-
work is large, and nodes connected to one common node
have a high probability to gather into a cluster.

In 1998, Watts and Strogatz [4] introduced a network
model with small APL and large clustering coefficient,
named WS small-world model, which was a groundbreak-
ing research work on the properties of small-world net-
works. After that, many stochastic network models similar
to the WS small-world model were proposed, e.g., the NW
model by Newman and Watts [5], [6]. By calling models
above “stochastic” we emphasize that these models propa-
gate new nodes or edges by following a probabilistic rule.
While randomness is a general characteristic of complex
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networks, it more or less masks some information about how
the networks are constructed, making it difficult for us to un-
derstand the shape of the networks and distinguish nodes
that are connected to a certain node. What’s more, ran-
dom models can’t perfectly describe some real-life networks
which have fixed interconnections [7]. Therefore, more and
more research works have been carried out on generating
small-world networks in deterministic manners. In 2000,
Comellas et al. proposed the first deterministic small-world
network [8]. In 2006, Zhang et al. presented a determinis-
tic small-world network created by edge iterations [9]. Re-
cently, Guo et al. presented a tree-structured deterministic
small-world model [10], while Lu and Guo proposed a de-
terministic small-world model derived from the uniform re-
cursive tree [11]. The most evident advantage provided by
deterministic networks is that we can calculate their proper-
ties analytically.

Search strategies and techniques have taken a large part
in the research of complex networks, and they have been
widely used for finding the shortest path between two loca-
tions, and so on [12]. As a fundamental dynamic process,
the random walk is a powerful tool to study the structure
of complex networks [13]. Random walk in deterministi-
cally generated network receives increasing attention from
research fields such as physics and biology [14], [15]. Be-
cause the main factor of structure affecting the speed of dif-
fusion in deterministic network is not well understood, we
try to study the search efficiency in such networks.

In this Letter, our aim is to experimentally compare the
search efficiency between stochastic small-world networks
and deterministic ones by applying three different random
walk search strategies on them. Section 2 reviews the WS
small-world model and three deterministic small-world net-
works. Section 3 gives the experimental results and com-
pares the four small-world networks in terms of search effi-
ciency. Section 4 draws a conclusion of the whole paper.

2. Overview of Small-World Networks

In this Letter, we choose the WS small-world network as the
representative of stochastic networks. The WS small-world
network model starts from a ring lattice with n nodes and k
edges per node [4]. Each node connects to k/2 nodes on its
right-hand side and k/2 nodes on its left-hand side. Then
we rewire each edge with a probability p by holding one
terminal node unchanged and select a new node as the other
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Fig. 1 The first four steps of the iterative process of the deterministic
small-world network created by edge iterations.

Fig. 2 The first four steps of the iterative process of the tree-structured
deterministic small-world network.

terminal. When 0 < p � 1, the WS network has a small
average path length as well as a large clustering coefficient,
which obviously reveals the small-world properties [4].

Now let us turn our hands to introducing some deter-
ministic small-world networks. The deterministic small-
world network created by edge iterations is derived from
a triangle whose three nodes connect one another [9]. This
initial state is called N(0) and we denote the network after
t steps of evolution by N(t). For t ≥ 1, N(t) is obtained
from N(t − 1) by adding for each edge created at step t − 1
a new node and attaching it to both end nodes of the edge.
Figure 1 shows the first four steps of the iterative process.
The analytical results show that, for infinite t, the average
node degree approximately equals a small value 4 and the
clustering coefficient approaches a constant value 0.6931,
which reveals that the network is a sparse graph with a high
clustering coefficient. What’s more, the average path length
increases more slowly than ln(Nt), where Nt represents the
number of nodes after t steps of iteration. Thus, this model
is a deterministic small-world network.

Another deterministic small-world network proposed
by Guo et al. [10] focuses on the iteration of a binary-tree
structure. At each iteration, after adding two new branches
from each node in the last layer as the usual binary-tree
structure, we additionally add links between each pair of
brother nodes and links between each grandfather node and
its four grandson nodes. We add these links in order to trans-
form the binary tree with a zero clustering coefficient into
a network with a high clustering coefficient structure. Fig-
ure 2 shows the first four steps of the iterative process. After
quantitative analysis of this network model, as the iteration
goes on, the clustering coefficient approaches a high con-
stant value 0.7333. The growth speed of the diameter has
a linear relationship with the natural logarithm of the num-
ber of nodes. With these properties, this model matches the
definition of small-world networks.

Apart from the specific iterative rules mentioned above,
small-world networks can also be constructed by altering the

Fig. 3 The first four iterations of the growth process of the DURT based
small-world network.

existing complex networks. The small-world network de-
rived from the deterministic uniform recursive tree is a typ-
ical example [11]. At each iteration, this model adds some
edges to the deterministic uniform recursive tree (DURT)
with a simple rule in order to get a high clustering coeffi-
cient. Figure 3 shows the network obtained after the first
four iterations, where the dashed arcs denote the links gen-
erated by the extra operation at each iteration. Analytical
results show that it is a sparse network with a high cluster-
ing coefficient and a small diameter, satisfying the necessary
properties of small-world networks.

3. Experimental Results

Deterministic small-world network models can be used to
describe many real-world nonrandom networks, such as
electronic circuits and communication networks [7]. So it
is worthwhile to study the search efficiency of these deter-
ministic networks. In many cases, it is impossible to pro-
vide global information about how the nodes connect to each
other. In other words, the search strategies should be based
only on the local information such as the identities and node
degrees of the neighbors. Thus, the random walk process
can accurately simulate this situation. Assuming that each
node only knows those nodes connecting to it, to find the
target node, we can adopt three types of random walks as
follows:

(1) Unrestricted Random Walk (URW): at each step,
the walker randomly selects one of the neighbors of the cur-
rent node as the next destination with equal probability. This
procedure is repeated until it finds any neighbor of the target
node.

(2) No-retracing Random Walk (NRRW): at each step,
the walker randomly selects one of the neighbors of the cur-
rent node, excluding the one that has been visited at last step,
as the next destination with equal probability. This process
is repeated until it finds any neighbor of the target node.

(3) Self-avoiding Random Walk (SARW): at each step,
the walker randomly selects one of the neighbors of the cur-
rent node, excluding all the nodes that have been visited in
previous steps, as the next destination with equal probabil-
ity. This process is repeated until it finds any neighbor of
the target node.

The search efficiency of networks closely relates to
search strategies and network topology. Average search
steps can generally characterize the efficiency, which can be
defined as follows: in a network with N nodes, we randomly
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Fig. 4 Log-Log chart of average search steps versus the number of nodes
for WS small-world networks.

choose a node vi as the source node for N times. At each
time, we apply the random walk from the source node vi to
any other node v j, obtaining the number of search steps Ti j.
Then the average search steps between arbitrary two nodes
can be written as:

T̄ =
1

N(N − 1)

∑

i, j

Ti j (1)

Now we turn to studying the performance of average
search steps when we apply above three types of random
walks on the four types of small-world models reviewed in
Sect. 2. We first generate 10 WS small-world networks with
a constant rewiring probability p = 0.1, which is a typical
value for the model to reveal the properties of small-world.
We set the numbers of nodes to be 8, 16, 32, 64, 128, 256,
384, 512, 768, and 1024, respectively. Figure 4 compares
the results of three types of random walks on these 10 WS
small-world networks. Here, the number of average steps
is the average result over N(N − 1) runs. We can see that
URW and NRRW have almost the same growth curve, while
SARW has a significant improvement in search efficiency.

For the deterministic small-world network created by
edge iterations, we create 10 networks corresponding to the
first 10 iterations, with the numbers of nodes being 3, 6, 12,
24, 48, 96, 192, 384, 768 and 1536, respectively. Figure 5
compares the results of three types of random walks on these
10 deterministic small-world networks. We can see that the
curve is similar to Fig. 4.

For the tree-structured deterministic small-world net-
work, we take the first 9 iterations to generate 9 networks,
with the numbers of nodes being 3, 7, 15, 31, 63, 127, 255,
511 and 1023, respectively. We show the chart of average
search steps versus the number of nodes in Fig. 6, which is
similar to Fig. 5.

For the small-world network derived from the deter-
ministic uniform recursive tree (DURT), we iterate 10 times
to generate 10 networks with the numbers of nodes being 2,
4, 8, 16, 32, 64, 128, 256, 512 and 1024, respectively. We
show the chart of average search steps versus the number
of nodes in Fig. 7, from which we can find that the curves

Fig. 5 Log-Log chart of average search steps versus the number of nodes
for deterministic small-world networks created by edge iterations.

Fig. 6 Log-Log chart of average search steps versus the number of nodes
for tree-structured deterministic small-world networks.

Fig. 7 Log-Log chart of average search steps versus the number of nodes
for DURT small-world networks.

for DURT small-world networks have the upward tendency
similar to Figs. 5 and 6.

Now it is time to put all of the above results together
and make a comparison. Here, we only compare the results
under the SARW strategy among different kinds of small-
world networks. As shown in Fig. 8, we put four curves
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Fig. 8 Comparisons of search efficiency among four kinds of small-
world networks under the SARW search strategy.

in the same coordinates. From bottom to up, we first meet
the curve of WS small-world networks (labeled as “WS”),
which means that the WS network requires the fewest av-
erage search steps, i.e., it has the highest search efficiency
under the SARW strategy. Then we come to the curve of
deterministic small-world networks created by edge itera-
tions (labeled as “EI”), which shows that EI-based network
is the best model among three types deterministic small-
world networks. However, it takes almost twice as many
average search steps as the WS model at the network size
1000. Finally, we reach the two curves for the other two
networks, i.e., the tree-structured deterministic small-world
network (labeled as “TSD”) and the DURT small-world net-
work (labeled as “DURT”). They stand at the top of the chart
and overlap nearly all the way up. At the network size 1000,
they need almost triple as many average search steps as the
WS small-world network. After the crosswise comparison,
we can conclude that the stochastic WS small-world net-
work has the most efficient search structure among all net-
works, while the deterministic small-world network created
by edge iterations has the fewest average search steps among
all deterministic networks.

4. Conclusions

In this Letter, we have experimentally studied the search ef-
ficiency of three types of random walks on the WS small-
world network and three deterministic small-world net-
works. From the experimental results, we can make the
conclusion that the stochastic WS small-world network out-
performs three deterministic small-world networks in term
of search efficiency. In the future, our work will concentrate

on proposing more practical deterministic small-world net-
works with optimized search efficiency compared to the WS
network.
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