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PAPER Special Section on Formal Approach

More Precise Analysis of Dynamically Generated String
Expressions in Web Applications with Input Validation

Seikoh NISHITA†a), Member

SUMMARY The string analysis is a static analysis of dynamically gen-
erated strings in a target program, which is applied to check well-formed
string construction in web applications. The string analysis constructs a
finite state automaton that approximates a set of possible strings generated
for a particular string variable at a program location at runtime. A draw-
back in the string analysis is imprecision in the analysis result, leading to
false positives in the well-formedness checkers. To address the impreci-
sion, this paper proposes an improvement technique of the string analysis
to make it perform more precise analysis with respect to input validation
in web applications. This paper presents the improvement by annotations
representing screening of a set of possible strings, and empirical evaluation
with experiments of the improved analyzer on real-world web applications.
key words: static string analysis, input validation, web applications

1. Introduction

String analysis [1] is a static analysis targeting at dynami-
cally generated strings in a program. The string analysis
constructs a finite state automaton that approximates a set
of possible strings generated for a particular string variable
at a particular program location of interest; these locations
are called hotspots.

Several applications of the string analysis have been
proposed for the purpose of checking well-formedness of
dynamically generated strings in web applications [2]–[6].
Since these checkers perform conservative analyses, the re-
sults of the analyses contain false positives in general: be-
cause of the imprecision in the string analysis, the checkers
possibly report on an error in a hotspot where no invalid
string is generated at runtime. For example, the string anal-
ysis is often ineffective in a web application with input vali-
dation, that is a common coding technique to check validity
of an untrusted input string.

To address the imprecision, this paper proposes an im-
provement of the string analysis to make it perform more
precise analysis in respect of the input validation. This pa-
per makes the following contributions:

• A proposal of a condition-expression analysis and an
annotation insertion. The former obtains annotations
that indicate possible strings in then/else condition
branches. Our condition-expression analysis supports
built-in operations and functions including the equality

Manuscript received July 9, 2012.
Manuscript revised November 10, 2012.
†The author is with the Department of Computer Science,

Faculty of Engineering, Takushoku University, Hachioji-shi, 193–
0985 Japan.

a) E-mail: snishita@cs.takushoku-u.ac.jp
DOI: 10.1587/transinf.E96.D.1278

comparison operations with type conversion.
• A presentation of the improvement of the string anal-

ysis to compose more precise automata for a hotspot
with input validation by the condition-expression anal-
ysis and the annotation insertion.

• An implementation of the improved string analysis
with small modification in an original string analyzer.

• An empirical evaluation of our implementation on real-
world web applications.

This paper uses PHP language as the target for the
string analysis. We use a PHP program in Fig. 1 through-
out this paper to demonstrate our technique. The program,
login.php, performs login authentication in a web appli-
cation. The input validation of the user name and the pass-
word is performed at lines 2–7: a valid user name and a
valid password are a non-empty string composed of lower
case alphabetic characters and any string, respectively. The
equality comparison at line 7 may involve type conversion
from the string in $name to a boolean.

We note that this paper uses regular languages as the
first class data structure instead of finite state automata for
convenience of presentation of our technique.

Section 2 describes the string analysis. Sections 3 and
4 show our improvement technique and its implementation,
respectively. Section 5 reports an empirical evaluation. Sec-
tions 6 and 7 discuss future works and related works, respec-
tively. Section 8 concludes the paper.

2. The Static String Analysis

The string analysis [1] produces a regular language for a
hotspot in a program. The regular language is regarded as
an approximation of a set of dynamically generated strings
at the hotspot. Procedure of the string analysis is as follows:

Fig. 1 An example program, login.php.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 A string flow graph of the string analysis.

1. Control flow analysis and hotspot detection for a tar-
get program. We simply mark, in the control flow,
a hotspot as every node for a location of particu-
lar arguments of an output function call. We choose
the argument $sql of mysql_query() at line 10 in
login.php as a hotspot in this paper.

2. Construction of a string flow graph for the hotspot. The
flow graph captures the data flow of strings and string
operations in the program†. Figure 2 illustrates a string
flow graph for the hotspot in login.php. Edges of
the graph are directed def-use edges that represent the
possible data flow. Nodes are divided in three groups:
(1) string constants and set of strings expressed as oval
nodes with regular expressions, (2) assignment opera-
tions and other join locations as round nodes, (3) string
concatenations and the other string operations as rect-
angle nodes with operation names.

3. Regular language generation. This step comprises sev-
eral sub-steps. The regular language generated from
the string flow graph in Fig. 2 is represented by fol-
lowing Perl Compatible Regular Expression (PCRE):
/ˆSELECT FROM users WHERE name=’.*’ AND

pass=’[0-9a-f]{16}’$/. We note that the analysis
internally generates a regular language for each node
in a string flow graph. A regular language for a string
operation node is obtained by abstraction, which is a
function on regular languages; it transforms a language
for the argument of the string operation into another
language for the return value.

In order for string flow graph construction at the second
step, the string analysis leverages a data flow analysis that
ignores condition expressions in the target program. This
is a reason why the string analysis produces an imprecise
regular language for a hotspot with input validations.

3. The Improvement of the String Analysis

This paper regards a condition expression as screening of
possibly generated strings obtained by the string analysis:
(1) a condition expression for input validation of a variable
makes a smaller set of possible strings for the variable at
then- (else-) branch than a set of strings for the variable at
the entry point of the condition statement, and (2) when the
condition expression is under non-string type, the condition
expression is mapped onto string type.

As the first step of the improvement, we introduce an

annotation named sieve which indicates the screening of a
set of strings. Then, we weave tasks on the sieves into the
original string analysis as follows:

1’ Control flow analysis for a target program. Af-
ter the control-flow graph construction, a condition-
expression analysis produces sieves. Then, they are in-
serted into the control flow (Sects. 3.2 and 3.3)

2’ Construction of a string flow graph for a hotspot. This
step is performed without any modification.

3’ Regular language generation. The sieves are handled
as pseudo string operations, that is, we introduce extra
abstractions of the sieves (Sect. 3.4)

3.1 Definitions

This section defines domain of values, a type conversion
based on the section on “type juggling” in PHP manual [7]
and a control flow graph as a small language.

Definition 1 (Values): B, I, S and V denote the univer-
sal set of booleans, integers, strings and values respectively;
V ≡ B∪I∪S∪{null}. Lr denotes a regular language spec-
ified by a regular expression r††. �

Definition 2 (Type conversion): A textual representation
of integer i, and an integer represented by string s are de-
noted by str(i) and int(s) respectively. For example, str(1) =
’1’, int(’12ab’) = 12, and int(’abc’) = 0. Let T and T ′
be B, I or S. The function γT : V → T converts a given
value to a T -value. The function ΓT

T ′ is a lifting function of

γT to the set T ′. We abbreviate ΓT
V as ΓT . The function ΓT

T ′
−1

is a right inverse of ΓT
T ′ . The function NT corresponds to a

complement function: if a given set is singleton, it makes the
complement set. Otherwise it makes the universal set T .

γS(a) ≡

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a if a is a string
’’ if a is null or false
’1’ if a is true
str(a) if a is an integer

γB(a) ≡
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a if a is a boolean
false if a is 0, ’0’, ’’ or null
true otherwise

γI(a) ≡

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a if a is an integer
0 if a is false or null
1 if a is true
int(a) if a is a string

ΓT
T ′(A) ≡ {γT (a) | a ∈ A} (if A ⊆ T ′)

ΓT
T ′
−1

(B) ≡ {a ∈ T ′ | γT (a) ∈ B} (if B ⊆ T )

NT (A) ≡ ∪a∈A(T\{a}) (if A ⊆ T ) �

†In order to construct a string flow graph for a PHP program,
our string analyzer obtains a dependency graph of a hotspot, then
converts the graph to a string flow graph by replacing every non-
string constant and non-string operation to an oval node according
to its (return) type and the type conversion scheme.
††This paper uses PCRE as notation of regular expressions.
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Definition 3 (The type conversion scheme for equation):
For a given comparison operation e1==e2 and e1!=e2, the
type conversion is performed by the following two steps.

step 1: converts the null comparand(s):
e1 ← ’’ (if e1 is null)
e2 ← ’’ (if e2 is null)

step 2: follows one of the six cases:

case 1: e2 ← γB(e2) (if e1 ∈ B)
case 2: e1 ← γB(e1) (else if e2 ∈ B)
case 3: e2 ← γI(e2) (else if e1 ∈ I)
case 4: e1 ← γI(e1) (else if e2 ∈ I)
case 5: e1 ← γI(e1); e2 ← γI(e2) (else if e1 and e2

are both textual representation of integers)
case 6: otherwise, no type conversion is performed. �

Definition 4 (Control flow graph): A control flow graph
(CFG) is (N, Lbl, li, l f ): N, Lbl, li and l f are a set of nodes, a
set of labels, labels of the initial node and the final node of
the graph respectively. Node n ∈ N is defined as follows:

n ::= l:v=rhs;goto l | l:if v l l | l:exit

rhs ::= e | op(e, . . . , e)

e ::= v | c
The symbols l, v, e, op and c denote a label, a variable,
an expression, a built-in operation and a constant in V re-
spectively. A node is an assignment with a goto statement
(assignment-node), a condition branch (if-node) or the exit.
A right-hand side of an assignment statement is an expres-
sion or a result of built-in operation application. An expres-
sion is a variable or a constant.

N[l] denotes a node with label l. prev(l) and next(l) de-
note sets of labels of the previous and the next nodes of N[l],
respectively. Var and Var[l] denote a finite set of variables
appearing in a given CFG and a node N[l], respectively. �

Figure 3 shows the CFG(N, {1, . . . , 13}, 1, 13) of the
program login.php. The variable $x in the CFG is a tem-
porary variable for conditions.

Definition 5: Builtins and Filters, respectively, denote the
set of the built-in operations and ones used for the input val-
idation, which we call a filter operation.

Fig. 3 CFG for the example program login.php.

Builtins ≡ {md5, mysql_query, error, !, .} ∪ Filters
Filters ≡ {preg_match, isset, ==} �

We note that the binary operation . is the string concatena-
tion. The actual definition of Filters in our implementation
is composed of 29 filter operations [8].

3.2 The Condition-Expression Analysis

First, we define data structures utilized in our technique.

Definition 6: For an expression e and a variable v in a given
CFG, a filter-operation application a is defined as follows:

a ::= preg_match(e, v) | isset(v) | v==e | e==v
Fa is defined as the set of filter-operation applications ap-
pearing in a given CFG. For a given filter-operation appli-
cation a, if a variable w appears at an argument of a that
corresponds the position of v in the above definition, we say
that w is a target of a. �

For example, w is the target of preg_match(v, w). (How-
ever, v is not.)

Definition 7: Let a = op(e1, . . . , en) be a filter-operation
application. We call op(e1, . . . , en) and op(e1, . . . , en) con-
dition expressions of a, which mean conditions that make
a true and false, respectively. Cnd is the set of all condi-
tion expressions of filter-operation applications appearing in
a given CFG. If a variable w is a target of a and k is a condi-
tion expression of a, we say that w is a target of k. �

Though meaning of a condition expression op(e1, . . . , en) is
same as one of op(e1, . . . , en), we distinguish the two expres-
sions in their usage: the former is used as an annotation.

Definition 8: The power set Sieves is defined as follows:

Sieves

≡ {
} ∪ {K ⊆ Cnd | ∃w ∈ Var ∀k ∈ K : w is a target of k}
We call K ∈ Sieves a sieve. If a variable w is a target of
every condition expression in a sieve K, we say that w is a
target of K. The set tv(K) is composed of variables each
of which is a target of K. In addition, var(K) is the set of
variables appearing in K. The partial order , the least upper
bound operation � on S ieve and the negation K are defined
as follows:

K  

K1  K2 ⇔ K1 � 
 ∧ K2 � 
 ∧ K1 ⊆ K2

K1 � K2 ≡
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

K1 ∪ K2 if K1 � 
 ∧ K2 � 

∧ K1 ∪ K2 ∈ S ieve


 otherwise


 ≡ 

K ≡ {op(e1, . . . , en) | op(e1, . . . , en) ∈ K}

∪ {op(e1, . . . , en) | op(e1, . . . , en) ∈ K} �

Secondly, we define three data structures obtained by
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Fig. 4 Dataflow equations and releations.

Table 1 Result of the condition-expression analysis for login.php.

Node Cv[l] Sc[l][..] Tv[l][..] Pc[l]
l $x $name $_GET{’nm’} $name $pass

1 {} φ φ φ φ φ true
2 {$x} {preg match(’/ˆ[a-z]*$/’,$_GET[’nm’]) φ {2} φ φ true
3 {} φ φ {2} φ φ $x@2
4 {} φ φ {2} φ φ $x@2
5 {$name} φ {$name==true} {2} φ φ true
6 {$name} φ {$name==true} {2} φ φ true
7 {} φ φ {2} {6} φ $name@6
8 {$x} {isset($pass)} φ {2} {6} φ $name@6
9 {} φ φ {2} {6} {8} $name@6 ∧ $x@8

10 {} φ φ {2} {6} φ $name@6 ∧ $x@8
11 {} φ φ {2} φ φ $name@6 ∧ $x@8
12 {} φ φ {2} {6} {8} $name@6 ∨ $x@8
13 {} φ φ {2} {6} {8} true

standard (constraint based) data flow analyses. Figure 4
shows their data flow equations and relations. In addition,
Table 1 illustrates the result of the analyses of these data
structures for the CFG in Fig. 3.

Definition 9: We call a variable x ∈ Var a condition vari-
able at the entry point of a node n, if x is already defined
at the entry point and there exists a path from n to a use of
x as a condition in an if-node. Cv[l] is a set of condition
variables at the entry point of node N[l].

For a label l and a condition variable x, Sc[l][x] is a
sieve of condition expressions each of which may be stored
in x at the entry point of the node N[l]; exceptionally, if
Sc[l][x] is 
, the sieve for x is unknown.

Let a variable w be a target of a filter-operation appli-
cation that is stored in a variable x at an if-node m = (l :
if x l1, l2). If there exists a path from m to a CFG node
n, and if w is not referred to nor updated at all intermedi-
ate nodes on the path, the variable w is a target variable
from node m to node n. For a label l and a variable w,
a set of labels Tv[l][w] is defined as follows: Tv[l][w] ≡
{l′ | w is a target variable from node N[l′] to node N[l]}. �
Definition 10 (Pre-conditions): Pre-condition p at a node
n is a sufficient condition under which the control reaches to
n at runtime. Pre-condition p is defined as follows:

p ::= x@l | x@l | p ∧ p | p ∨ p | true | false

The literal x@l and x@l mean a condition variable x at node
N[l] and its negation respectively. Lit(p) is a set of all lit-
erals appearing in a pre-condition p. Pc[l] denotes a pre-
condition at the entry point of node N[l]. �

In our implementation, the pre-condition analysis is based
on a data flow analysis. A pre-condition is recorded in the
conjunction normal form, and it supports AND/OR opera-
tions, implication, and simplification with a few axioms [8].

3.3 The Annotation Insertion

In order to introduce annotations as CFG nodes, we ex-
tend the set of built-in operations, Builtins, with new pseudo
built-in operations that work only for the string analysis:

Builtins′ ≡ {op | op ∈ Filters} ∪ {op | op ∈ Filters}
∪ {union} ∪ Builtins

An annotation is an assignment-node with the pseudo oper-
ations: w = union(k1, k2, . . . , kn), which means that a vari-
able w is a target of a sieve{k1, k2, . . . , kn} at a CFG node,
and at least a condition expression ki in the sieve is true. We
note that an annotation is simplified as w = k1 in the case
where n = 1.

Figure 5 illustrates an algorithm for the annotation in-
sertion. The algorithm Weave, first, obtains the data struc-
tures by the condition-expression analysis (lines 2–5). Sec-
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Fig. 5 The sieve analysis.

ondly, the algorithm inserts every annotation for a sieve
Sc[l′][x] and/or its negation into the exit point to then/else
branch of an if-node N[l′] under a condition, which avoids
inserting a part of redundant annotations (lines 6–12). The
condition is derived from following two observations: (1) if
a target variable w does not appear at then/else branch of an
if-node n, no annotation for w is required at n. (2) if a tar-
get variable w is updated before use of w in then/else branch
of an if-node n, no annotation for w is required either. The
former reflects the test of existence of a literal in the pre-
condition in the algorithm. On the other hand, the latter is
reflected by Tv[..][..] for target variables.

InsertThenAnot, first, normalizes a given sieve so that
a target variable of each equality condition in the sieve ap-
pears as the first argument. Second, it makes an annotation
from the sieve. Third, it inserts the annotation at the exit
point to the then clause of a node. We note that the anno-
tation insertion at the line 6 is abbreviated: the additional
nodes are generally required according to the definition of
CFG. On the other hand, InsertElseAnot similarly inserts
an annotation at the exit point to the else clause.

With focus on possible execution paths and their con-
ditions in a CFG, the technical report [8] proves the correct-
ness of Weave: if an annotation w = union(k1, . . . , kn) is
inserted at a branch of an if-node, and if the control reaches
to the branch, then at least one condition expression ki in the
annotation is true at runtime.

Accuracy of the pre-conditions for Pc[l] leads to pre-
cision and overhead of the improved string analysis. If a
pre-condition is necessary and sufficient condition to reach
control at a node, and if the pre-condition is simple with re-
spect to the number of literals, Weave inserts requisite min-
imum annotations. On the other hand, if a pre-condition is
not necessary, but a sufficient condition, the algorithm may
miss inserting a necessary annotation, leading to imprecise
string analysis. If a pre-condition has a redundant literal,

Fig. 6 Annotated CFG for the example program login.php.

Fig. 7 The string flow graph of the annotated CFG.

Weave may insert unnecessary annotation, which does not
affect to the improvement of the string analysis, but makes
additional overhead in the string analysis.

Figures 6 and 7 illustrate annotated CFG from the orig-
inal CFG in Fig. 3 and a string flow graph for the annotated
CFG, respectively. The annotation insertion reflects a string
flow graph generated by the string analysis: the additional
nodes m, n, o and p correspond to the input validation to the
variable $name. On the other hand, the node q corresponds
to the variable $pass. The node m represents the singleton
language of the string ’/ˆ[a-z]*$/’. The node o repre-
sents a singleton language of ’1’ that is converted from the
boolean true at line 7 in login.php.

3.4 Abstractions of the Extended Operations

This section describes each abstraction (|op|) of every ex-
tended operation op that is a part of an annotation inserted
by the algorithm Weave.

Definition 11: For given languages L, L′ ⊆ S, abstrac-
tions of extended operations are defined as following ex-
pressions.

(|union|)(L, L′) ≡ L ∪ L′

(|preg match|)(L, L′) ≡ L′ ∩ ∪r∈L(Lr)

(|preg match|)(L, L′) ≡ L′ ∩ ∪r∈L(Lr)

(|isset|)(L) ≡ L, (|isset|)(L) ≡ L ∩ {’’}
(|==|)(L, L′) ≡ L ∩ ∪6

i=1EQi(L
′)
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(|==|)(L, L′) ≡ L ∩ ∪6
i=1EQi(L

′)

where

EQ1 ≡ ΓSB ◦ ΓB ◦ ΓS
−1
, EQ1 ≡ ΓSB ◦ NB ◦ ΓB ◦ ΓS−1

EQ2 ≡ ΓS ◦ ΓB−1 ◦ ΓSB
−1
, EQ2 ≡ ΓS ◦ ΓB−1 ◦ NB ◦ ΓSB

−1

EQ3 ≡ ΓSI ◦ ΓI ◦ ΓS
−1
, EQ3 ≡ ΓSI ◦ NI ◦ ΓI ◦ ΓS−1

EQ4 ≡ ΓS ◦ ΓI−1 ◦ ΓSI
−1
, EQ4 ≡ ΓS ◦ ΓI−1 ◦ NI ◦ ΓSI

−1

EQ5 ≡ id, EQ5 ≡ NS

EQ6 ≡ id, EQ6 ≡ NS �

The abstraction (|preg match|) regards the first argu-
ment L as a set of PCREs, and obtains the set union of
regular languages for all expressions in L. The abstraction
(|isset|) is the identity function, since all non-null values
are mapped to the universal set of strings by the type conver-
sion. On the other hand, the abstraction (|isset|) obtains set-
intersections of L and the singleton set of the empty string,
because the null converted to the empty string.

The abstraction of the equation comparison regards the
second argument L′ as a screening of possible strings L ac-
cording to the type conversion scheme of Definition 3, be-
cause the annotation insertion normalizes each annotation
of the equation comparison to the form of w = (w==e). The
step 1 in the type conversion scheme is performed by the
string analysis itself, i.e. the analysis converts the null value
to the empty string. Though all cases in step 2 of the type
conversion scheme have the precedence of its application,
we give approximation of the abstraction by a simple inte-
gration of the results in all cases, which correspond to the
auxiliary functions EQn() (i = 1, 2, . . . , 6).

The function EQ1() is derived from the case 1: ac-
cording to the type conversion scheme, e2 is converted to
a boolean at runtime. First, EQ1() obtains original values
from a given set of strings by ΓS−1

. Second, it converts
the original values to booleans by ΓB. Third, it converts
the booleans to strings by ΓSB. On the other hand, the func-
tion EQ2() obtains strings for e1 that can be converted to the
boolean. First, EQ2() restores booleans for e2 by ΓSB

−1
. Sec-

ond, it obtains values that can be converted to the booleans
by ΓB−1

. Third, it converts the values to strings by ΓS.
The functions EQi correspond with cases where an

equation is not satisfied. The definitions of EQi and EQi are
similar each other, but the latter involves the function NT .

We note that the auxiliary functions and the abstrac-
tion of the (not-) equality comparison are simplified by set
equation with Definition 2.

3.5 The String Analysis of the Sample Program

The string analysis produces a regular language for each
node in the string flow graph. Table 2 shows regular ex-
pressions that denote the regular languages produced by the
string analysis for nodes n, d, p, q and i.

The possible strings of the variable $name in line 10

Table 2 Regular expressions for nodes in the string flow graphs.

Node n Languages for nodes Languages for nodes
in the original graph in the improved graph

n /ˆ[a-z]*$/

d /ˆ.*$ /ˆ[a-z]*$/

p /ˆ[a-z]+$/

q /ˆ.*$/

i /ˆ[0-9a-z]+$/ /ˆ[0-9a-z]+$/

of login.php correspond to the node d and p in the orig-
inal and improved string flow graphs respectively. The ad-
ditional nodes in the improved string flow graph enhance
precision of the analysis results. The regular expression for
node p is obtained by the following set equations:

(|==|)(Lr, {’1’}) (where r = /ˆ[a-z]*$/)

= Lr ∩ ∪6
i=1EQi({’1’})

= Lr ∩ ({’1’} ∪ {’’, ’0’} ∪ {s′ | ’1’ = str(int(s′))})
= Lr′ (where r′ = /ˆ[a-z]+$/)

On the other hand, the possible strings of the variable
$pass correspond to the node i in both of the string flow
graphs. The additional nodes do not work as screening of
the possible strings in this case.

3.6 Soundness Issues

Let L1 and L2 be possible strings for a variable obtained by
the original and improved string analysis respectively. We
expect the inclusion relation L2 ⊆ L1, because the idea of
the improvement is screening of L1. However, the inclusion
relation is not satisfied, when the annotation insertion draws
additional cycle with string operations in a string flow graph;
our technique leverages the string analysis, which performs
the character-set approximation [1] for such cycles as orig-
inally proposed. As a result, the additional cycles and the
character-set approximation break the inclusion relation [8].

4. Implementation

In order to implement our technique, we utilized an original
string analyzer, which we had developed in a former work.
The original string analyzer is composed of Pixy [9], [10]
as the front-end and Java String Analyzer (JSA) [11] as the
back-end. Pixy performs dependency analysis for PHP pro-
grams. On the other hand, JSA executes the string analysis
with string flow graphs transformed from dependent graphs.

We have implemented the improved string analyzer as
follows: (1) we retrofitted inline expansion, redundant CFG
node elimination, the condition-expression analysis and the
annotation insertion into Pixy, and (2) we installed the new
abstractions into JSA. We note that the inline expansion is
limitedly applied, when input validation is coded as user-
defined functions in a given CFG. On the other hand, the re-
dundant CFG node elimination [8] simplifies complex con-
dition branches in a CFG produced by Pixy for a condition
expression with boolean AND/OR operations. The imple-
mentation required no drastic change for source codes in
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Table 3 The target web applications and the experimental result.

Name Version Main Lines Hotspots Improvement status CFG of Analyses Time of Analyses (s)
Files same included corrupt original improved original improved

Ajchat 0.10 16 3,412 28 23 5 0 3,296 3,327 98.5 106.8
aphpkb 0.95.4 20 8,964 39 29 10 0 8,878 9,145 225.7 241.7
BaconMap 0.7.0 32 33,066 195 153 42 0 47,349 46,585 531.7 727.4
Cacti 0.8.7a 28 70,947 1,955 919 884 152 290,033 294,257 202,433.8 239,985.1
Chipmunk Pwngame 1.0 13 887 22 22 0 0 714 714 58.0 60.7
Easy Banner Free 4 648 21 17 4 0 2,054 2,440 44.2 57.1
Jetbox CMS 2.1 12 42,738 204 155 33 16 44,211 42,845 9,315.5 25,983.0
jurpopage 0.2.0 27 97,430 158 0 158 0 21,167 21,164 248.3 282.1
MyEasyMarket 4.1 10 2,565 148 54 94 0 2,539 3,762 111.4 176.2
PHP Bible Search 0.99 1 314 4 2 2 0 148 148 7.7 9.9
phpCheckZ 1.1.0 20 25,788 42 6 32 4 30,176 29,105 428.1 647.3
RiotPix 0.61 7 1,331 25 19 6 0 1,046 989 62.6 64.5
sendcard 3.4.1 2 11,172 9 9 0 0 4,537 4,801 78.3 83.3
smbind 0.4.8 14 1,963 259 239 11 0 8,046 8,227 188.8 212.3
TigerPhpNewsSystem 1.0b 3 6,846 157 132 25 0 11,564 11,010 11,312.0 13,283.6
TinyBB 1.2.4 2 4,089 72 65 7 0 1,105 1,060 52.9 60.6
Utopia Newspro 1.4.0 18 5,953 206 132 74 0 15,487 19,648 221.2 231.5
WSN Guest 1.24 20 7,656 39 34 4 1 68,973 70,064 1,384.5 1,707.3

the original string analyzer, since our technique keeps the
framework of the original string analysis.

Our original and improved string analyzers are limited
by Pixy in respect of the syntax of PHP language. First, Pixy
supports only the syntax of PHP4. Second, the dependency
analysis in Pixy does not support a part of PHP syntax: class
and object, dynamic definitions of user-defined functions,
variable variables and so on. If the analysis failed, Pixy does
not analyze the dependency analysis correctly. These limi-
tation directly affects both of the string analyzers.

Though this paper uses regular languages as the first
class data structure, JSA obtains finite state automata in-
stead of regular languages. We leveraged the automaton
package of JSA for the implementation of the new abstrac-
tions. In addition, we implemented int() in (|==|) with a finite
state transducer in order to parse textual representation of
integers. Our implementation of (|preg match|) simply per-
forms union of automata for each PCRE string accepted by
a given automaton. If the given automaton accepts infinite
strings, the abstraction makes the automaton accepting any
string. Our PCRE parser is based on the regular expression
parser provided by the automaton package that does not sup-
port almost all of the extension in PCRE syntax [8].

5. Empirical Evaluation

For an empirical evaluation, we selected 18 real-world web
applications. These applications have several main program
files as the entry points of web access. We set the analysis
target to all of them except ones written in PHP5 syntax: we
excluded a main file from the target, if our string analyzer
terminated because of PHP5 syntax usage, since Pixy only
supports PHP4 syntax. Moreover, because of the limitation
of Pixy, our string analyzer often fails to identify an includ-
ing file whose name is specified by an expression rather
than a string constant in a target program. To address this
problem, we carefully replaced such expression with a static

string. The experiment was performed on a 2.56 GHz Xeon
with 48 GB RAM running Linux. In the experiment, we fo-
cus upon function calls to send SQL queries as hotspots of
the string analysis. We evaluate the original and improved
string analyzers by the size of control flow graphs, the ex-
ecution time and comparison of finite state automata in re-
spect of the inclusion relation of accepted languages.

Table 3 shows the 18 web applications and the experi-
mental result: the name and the version, the number of main
files and total lines, the number of hotspots, the improve-
ment status, the total number of nodes (size) in generated
control flow graphs, and total execution time. The improve-
ment status is divided in three parts: “same” means the num-
ber of hotspots where the two string analyzers obtain same
automata, “included” means the number of hotspots where
the improved string analyzer obtains more precise result
than the original analyzer, and “corrupt” means the num-
ber of hotspots where the improve string analyzer obtains
imprecise result because of the character set approximation.
The sub-columns “original” and “improved” mean the size
of CFGs and the total time of the original and the improved
string analyzers, respectively.

The analysis result in respect of the improvement status
is improved in 16 applications. On the other hand, our tech-
nique does not work fine in the two applications, Chipmunk
Pwngame and sendcard. The improved string analyzer con-
trarily obtains worse results for 173 hotspots in four ap-
plications: the imprecision in the 169 hotspots arose from
the character-set approximation with our improvement. The
other four results involved broken dependent graphs gener-
ated by Pixy.

The CFG size increases and decreases among the ex-
periment of each application, because of inline expansion
and the redundant node elimination. The growth rate on the
CFG size by the improvement is from 94.6% to 148.2%.
The total execution time is increased by the improvement:
the growth rate is from 103.1% to 278.9%. The technical
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report [8] of this paper illustrates more information on exe-
cution time: it shows that the time of data flow generation
occupies the total time of the analyses, while the time of
the condition-expression analysis and annotation insertion
do not occupy the total time in the experiment.

6. Future Works

Section 3.3 described that the improvement technique lever-
ages a pre-condition analysis, which affects the precision
and the overhead of the improvement. A study on a suit-
able pre-condition analysis is a future work.

The function int() in Definition 2 converts the longest
number prefix of a given string to an integer. However, it
does not support the textual representation of an integer with
an exponent like “1e0”, and one in the hexadecimal format
like “0x1”. For precise analysis of an equation like “1e0 ==
0x1”, (1) int() should support both of the textual represen-
tation format in PHP, and (2) EQ5 in Definition 11 should
support the equation whose comparands are converted to in-
tegers. Both of them are future works.

Static single assignment (SSA) simplifies our tech-
nique, because the data structures Cv[], Sc[][] and Tv[][]
would not depend on node labels. However, if an implemen-
tation of the string analysis requires SSA form of a given
CFG, our technique has to restore a modified CFG into SSA
form again after the annotation insertion [8]. The restoration
of SSA form with our technique is a future work.

7. Related Works

Minamide proposed another string analysis that composes
context free grammars [12]. Wassermann and Su applied
his technique to a static analysis to find the SQL injection
vulnerability [13]. In the paper, they touched upon an anal-
ysis of input validations by intersection of a regular expres-
sion and intermediate data structure. In contrast, Ono et al.
proposed an analysis of a program including input valida-
tions [14]. Their analyzer constructs constraints of security
labels for a target program, then obtains regular language of
a hotspot by constraint solver.

Compared with their analyses, our technique is based
on the framework of the string analysis, and enhances it
by small modification. Our technique, moreover, supports
the type conversion involved in the equality comparison
operations. We note that the sample program login.php
in this paper is a model of a snippet in paper [13], which
Wassermann’s technique did not work fine in their experi-
ment.

8. Conclusions

This paper described an improvement of the string anal-
ysis in respect of input validations in web applications.
We described the improvement and its implementation by
small modifications of an original string analyzer with the
condition-expression analysis and the annotation insertion,

and reported an experiments with the real world web ap-
plications. The experimental results indicate that our im-
proved analyzer mostly produces more precise automata in
most case.
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