
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013
1299

PAPER

High-Speed Fully-Adaptable CRC Accelerators

Amila AKAGIC†a), Nonmember and Hideharu AMANO†b), Member

SUMMARY Cyclic Redundancy Check (CRC) is a well known error
detection scheme used to detect corruption of digital content in digital net-
works and storage devices. Since it is a compute-intensive process which
adversely affects performance, hardware acceleration using FPGAs has
been tried and satisfactory performance has been achieved. However, re-
cent extended usage of networks and storage systems require various cor-
rection capabilities for various CRC standards. Traditional hardware de-
signs based on the LFSR (Linear Feedback Shift Register) tend to have
fixed structure without such flexibility. Here, fully-adaptable CRC acceler-
ator based on a table-based algorithm is proposed. The table-based algo-
rithm is a flexible method commonly used in software implementations. It
has been rarely implemented with the hardware, since it is believed that the
operational speed is not enough. However, by using pipelined structure and
efficient use of memory modules in FPGAs, it appeared that the table-based
fixed CRC accelerators achieved better performance than traditional imple-
mentation. Based on the implementation, fully-adaptable CRC accelerator
which eliminate the need for many non-adaptable CRC implementations
is proposed. The accelerator has ability to process arbitrary number of in-
put data and generates CRC for any known CRC standard, up to 65 bits
of generator polynomial, during run-time. Further, we modify Table gen-
eration algorithm in order to decrease its space complexity from O(nm)
to O(n). On Xilinx Virtex 6 LX550T board, the fully-adaptable acceler-
ators occupy between 1 to 2% area to produce maximum of 289.8 Gbps
at 283.1 MHz if BRAM is deployed, or between 1.6 - 14% of area for
418 Gbps at 408.9 MHz if tables are implemented in logic. Proposed ar-
chitecture enables further expansion of throughput by increasing a number
of input bits M processed at a time.
key words: reconfigurable computing, FPGAs, cyclic redundancy checks,
adaptability, accelerators

1. Introduction

Cyclic Redundancy Check (CRC) is a well known error de-
tection scheme used to detect corruption of digital content
in digital networks and storage devices. Numerous applica-
tions use different CRC standards and algorithms for vari-
ous types of network data transmissions, data compression
(e.g. gzip and bzip2) and data encryption. However, since it
is a compute-intensive process that adversely affects perfor-
mance, it is often substituted with less efficient error detec-
tion schemes. It plays an important role in, for example, im-
plementation of iSCSI protocol in Storage Area Networks
(SANs) for detecting errors which occur between protocol
transitions. It is common practice to disable iSCSI digests
in order to decrease latency, thus the network must rely on

Manuscript received October 16, 2012.
Manuscript revised February 7, 2013.
†The authors are with the Department of Information and Com-

puter Science, Keio University, Yokohama-shi, 223–8522 Japan.
a) E-mail: amila@am.ics.keio.ac.jp
b) E-mail: hunga@am.ics.keio.ac.jp

DOI: 10.1587/transinf.E96.D.1299

other mechanisms to detect corrupted data, such as TCP and
Ethernet error detection mechanisms. Unfortunately, these
mechanisms use simple TCP checksum, which can result in
undetected data corruption. This can lead to various prob-
lems such as failed integrity check of a database. There-
fore, it is desired to (1) reduce the computational burden,
(2) make architecture generic enough to support a variety
of applications, (3) make architecture scalable so it can pro-
cess arbitrary number of data input (4) achieve significant
improvements in throughput and (5) make it area efficient.

The goal of traditional methods for designing CRC ac-
celerators is acceleration of a specific application. In such
accelerators, the resulting CRC value is determined by the
CRC standard deployed by an application, which is usually
fixed at the design time. We call these accelerators non-
adaptable. On the other hand, adaptable CRC accelerator
has ability to generate CRC for a variety of CRC standards
and thus support a wide range of applications. They elim-
inate the need for many non-adaptable CRC implementa-
tions. The fully-adaptable CRC accelerator has ability to
process arbitrary number of input data and generates CRC
for all currently defined CRC standards during run-time.

In this paper, we describe the design and implementa-
tion of fully-adaptable CRC accelerators based on a table-
based algorithm which is suited for the flexible implemen-
tation. Although the table-based algorithm has been used in
software, it has been rarely implemented in hardware as its
performance is believed to be lower than traditional imple-
mentation. We prove that this approach can be successfully
implemented on an FPGA and achieve significant perfor-
mance improvements over related work. Our contributions
in the paper are as follows:

1. A design of CRC accelerator with sufficient perfor-
mance and reasonable resource utilization using a
table-based algorithm is proposed.

2. Based on the above design, a fully-adaptable CRC ac-
celerator is proposed by integrating algorithm for gen-
erating CRCs and algorithm for generating contents
of Tables. Resulting architecture generates CRC for
any known CRC standard during run-time. It achieves
throughput of up to 418.8 Gbps, when M = 1024.

3. We modify Table generation algorithm in order to de-
crease its space complexity from O(nm) to O(n).

4. Design of our architectures guarantees scalabil-
ity/expandability by processing arbitrary number of in-
put data M at minimal area cost. In order to show ef-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



1300
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

ficiency of our architecture in terms of area utilization
and throughput, we design five implementations, where
M ∈ 64, 128, 256, 512, 1024.

The organization of this paper is as follows: we start
out with a brief overview of CRC algorithms, their imple-
mentations and related work in Sect. 2. In Sect. 3 we give
a high level overview of the new architecture and describe
its components in detail. In Sect. 4 we describe implemen-
tation on an FPGA. In Sect. 5 we present area utilization,
clock speed and throughput after synthesis, place and route
on Xilinx Virtex 6 LX550T, analyze and compare our results
with related works. We conclude the paper in Sect. 6.

2. CRC Algorithms and Their Implementation

2.1 Overview of CRC Algorithms

CRC is calculated by performing long division operation be-
tween input message and a generator polynomial. At first, a
message M is multiplied by xw, which is equivalent to shift-
ing to left by a polynomial length (w bits). This value is then
divided by generator polynomial G(x), and the remainder is
called CRC value as shown in (1). The CRC is affixed to the
original message M and transmitted to a receiver.

CRC(M) = M(x) × xw mod G(x) (1)

An input data or a message M is treated as a polyno-
mial, where bit values are coefficients of a dummy variable
x. The coeffcients are all either 0 or 1, while the power of
x corresponds to the bit position. For example, the message
“01010100” is represented as 0 × x7 + 1 × x6 + 0 × x5 + 1 ×
x4 + 0 × x3 + 1 × x2 + 0 × x1 + 0 × x0. If the length of M is
defined as l, then M can be represented as:

M(x) = ml−1xl−1 + ml−2xl−2 + . . . + m0 (2)

where ml−1 is the most significant bit of a message M
and m0 is the least significant bit. A generator polynomial
of length w is represented in the same manner:

G(x) = gwxw + gw−1xw−1 + gw−2xw−2 + . . . + g0 (3)

Due to interference during transmission, data might be
corrupted during transport. Errors will be detected on a re-
ceiver’s side by performing similar process as a sender. At
first, a receiver will remove received CRC, then it will per-
form long division operation with the same generator poly-
nomial specified by a protocol used. Then it will compare
received CRC value and its own. Any discrepancy between
these two values indicates the presence of transmission er-
rors in the received pair. In this case, a receiver will discard
the message and request re-transmission of the data.

2.2 CRC Algorithms

In this section we overview three mostly used approaches
for generating CRC with emphasize on a newly proposed
ones [1]. We highlight major overheads of these approaches.

2.2.1 Bitwise Approach

In this approach, CRC is calculated with N shifts and XOR
operations for N-bit input message, which makes this al-
gorithm computationally intensive. Early hardware imple-
mentations were based on this algorithm, which was imple-
mented using linear feedback shift registers (LFSR) [2]. In-
put message were fed serially into a circuit, hence if imple-
mented on an FPGA throughput would be limited by operat-
ing frequency of an FPGA (e.g. 200 MHz limits throughput
to 200 Mbps, thus will not be suitable for high-speed links).
Some level of parallelism must be introduced to gain higher
throughput.

2.2.2 Table Based Approach

The main idea behind this approach is to pre-compute re-
mainders for a specific input and store them into a table.
Widely used algorithm with this approach is known as Sar-
wate algorithm [3]. This algorithm has been designed when
computer architectures supported XOR operation with only
eight bits, but it is still used today in low-performance im-
plementations. In general, to process a message M of length
l, Sarwate algorithm requires a table of 2l × (w − 1) pre-
computed remainders. Today’s processors support opera-
tions with 32 and 64 bit values, thus if this algorithm is to be
extended it would require lookup tables of 232 × (w− 1) and
264 × (w − 1) for processing 32 or 64 bit input data, respec-
tively. These tables cannot fit into a cache so their contents
have to be constantly fetched from the main memory, caus-
ing significant performance drop.

2.2.3 Multiple Tables Approach

Looking to overcome limitations of processing only 8 bits of
data at a time, two new algorithms have been proposed and
evaluated in [1]: Slicing–by–4 and Slicing–by–8. The main
advantage is that they can read and process arbitrarily large
amounts of data at the time.

The Slicing–by–4 algorithm reads and processes 32 bits
at a time, and it doubles the performance of existing imple-
mentations of Sarware algorithm. The algorithm deploys
four tables with pre-computed remainders, which are ac-
cessed in parallel by using four 8 bit slices. Each table
requires 1 KB of data in the cache (256 × 32 bits values
for 33 bit generator polynomial), thus Slicing–by–4 requires
4 KB of data in memory. This amount of data can easily fit
in today’s cache, resulting in faster execution, but it is still
limited by the speed of a processor.

Similarly, the Slicing–by–8 triples the performance of
the Sarware algorithm. It reads and processes 64 bits at a
time, and it deploys eight look-up tables accessed by eight
8 bit slices. The algorithm requires 8 KB of data in the
cache.



AKAGIC and AMANO: HIGH-SPEED FULLY-ADAPTABLE CRC ACCELERATORS
1301

Table 1 A list of parameters defined by a CRC standard shown on the
example of CRC32c standard.

Parameter Value

Name CRC-32C
Width 32
Poly 1EDC6F41
Init FFFFFFFF
RefIn True
RefOut True
XorOut FFFFFFFF
Check E3069283

2.3 CRC Standard

The content of a pre-computed table depends on the specific
parameters of a CRC standard, as well as on the position of
a byte in the input stream that is being processed. A CRC
standard is defined by 8 parameters, as shown on the exam-
ple of CRC32c standard in Table 1.

Width defines width of the algorithm. Poly defines
hexadecimal value of a generator polynomial, with top bit
omitted, since its value is always 1. Init defines initial value
of a CRC register used only in the first iteration of a CRC
algorithm. An input message is reflected before performing
long division operation if parameter Re f In is true, e.g. 8 bit
value will be processed with bit 7 being treated as the least
significant bit (LSB) and bit 0 as most significant bit (MSB).
If Re f In is false, input bits will not be reflected. Similarly,
if Re f Out parameter is defined as true, the remainder is re-
flected before writing it into the table. XorOut parameter is
defined as a hexadecimal value and it is used in a final stage
before the value is returned as the official checksum. Check
parameter is defined as hexadecimal value that represents
CRC value of the ASCII string “123456789”. It is used as
a weak validator of implementations of the algorithm. The
parameters Name and Check are not of any use for our im-
plementation, thus we omit them.

2.4 Related Work

Implementations of CRC accelerators with fixed CRC Stan-
dards are presented in [4]–[6] and [7]. In [4] authors iden-
tified a recursive formula in serial implementation from
which they derived parallel implementation, achieving max-
imum of 4.38 Gbps while processing 32 bits at a time, occu-
pying only 162 LUTs. In [5] authors design a circuit with
two parallel calculation units, capable of processing 32 and
64 bits of input in two different implementations. They op-
erate on 180 MHz in 0.35 micron technology, with maxi-
mum throughput of 5.76 Gpbs for 32 and 64 bits processed
every clock cycle. In [6] CRC is implemented in a pipeline
structure, with a number of successive multiplications and
divisions. The maximum reported throughput for process-
ing 32 bits at a time with 16 bits generator polynomial is
4.585 Gbps with clock of 153.84 MHz, and 2.838 Gbps for
processing 32 bits with 32 bits polynomial, with clock of

95.23 MHz on Altera FLEX 10KE device. In [7], the imple-
mentation of parallel LFSR-based applications on an adap-
tive DSP featuring a Pipelined Configurable Gate Array
(PiCoGA) has been presented, with Ethernet’s 32 bits CRC
as a test-case. PiCoGA is integrated in the embedded dig-
ital signal processor based on run-time recongurable tech-
nology (named DREAM), featuring a working frequency of
200 MHz. On the target architecture, CRC circuit achieves
up to 25 Gbps throughput with a parallel LFSR processing
128 bits at time.

There is relatively little work in the area of fully-
adaptable CRCs on FPGAs. We found only two other hard-
ware implementations [8], [9] that can support very limited
number of generator polynomials. The re-generation in [8]
is achieved with Galois Field Multiplication and Accumu-
lation (GFMAC) with soft-coded and hard-coded genera-
tor polynomials. Soft-coded implementation is much slower
than fixed hard-coded counterpart. The maximum through-
put of soft-coded design with 32 bit CRC is 1.3 Gbps for a
128 bit message. Unfortunately, the reconfiguration time is
not provided. The implementation [9] can process variable
number of 32 bit generator polynomials, and can be modi-
fied to support 64 bit, but cannot support both at the same
time in one circuit. The maximum throughput for process-
ing 32 bits with a 32 bit generator polynomial is 4.92 Gbps.
It is generic in its design, thus it can be scaled to 64, 128
or 256 bits, with maximal theoretical throughput of 40 Gbps
at 256 bits. The reconfiguration time is not very specific -
under 1 µs.

The mostly used software solution [1] achieves max-
imum of 3.6 Gbps for processing 64 bits at a time on In-
tel Pentium 1.7 GHz. In [10] we measured performance
of the same algorithm on the state-of-the-art Xeon 3 GHz
processor with 4 MB of L2 cache, and the throughput was
9.58 Gbps while processing 512 bits at a time, in idealized
conditions without cache misses. There is no research about
CRC circuits which support 64 bit generator polynomials.

3. Design of Fully-Adaptable Accelerator

3.1 Design Overview

In order to support variable number of CRC Standards, we
propose the structure consisting of a non-adaptable CRC
accelerator core and Table Generation Module (TGM) as
shown in Fig. 1. From the viewpoint of an application, the
total system is treated as a CRC IP Core. The accelerator
core consists of CRC Generation Module (CGM) and ta-
bles with pre-computed values. The CGM calculates CRC
for provided data input every clock cycle by accessing pre-
computed remainders stored in tables in parallel. The TGM
generates pre-computed remainders for a specified genera-
tor polynomial G, and stores them into tables. The IP Core
Interface is responsible for managing generation of remain-
ders, accessing and storing them from/into tables, and man-
aging input/output buffers. Two main modules are not exe-
cuted in parallel in order to maintain data consistency of ta-



1302
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

Fig. 1 Design overview of the non-adaptable (accelerator core) and
fully-adaptable CRC accelerators. The fully-adaptable accelerator con-
sists of two main modules: a CRC Generation Module and a Tables Gen-
eration Module (TGM), as well as supporting Tables and IP Core Interface
for communication with external devices. Control signals start, tab crc
and data in ready represent request for service, type of service (Table re-
generation or CRC generation) and availability of data input, respectively.
Control signals ref in and ref out represent values of RefIn and RefOut pa-
rameters as explained in Sect. 2.3.

bles. The fully-adaptable accelerator accepts variable width
generator polynomial G up to 65 bits, while different input
stream widths M require different FPGA implementation for
each. The most significant bit in a polynomial G is always
considered to be 1, thus the input polynomial is always G−1.
The number of tables N depends on an input data M and it
is equal to M/8.

3.2 CRC Generation Module

Figure 2. shows the architecture of CRC Generator Module
and IP Core Interface.

In the first iteration, Intermediate Address is formed by
XORing input data with initial value (Init), while in other
iterations Intermediate CRC is used instead of Init. Inter-
mediate Address is then sliced into N eight bit slices, which
are used as addresses to N Tables. The number N depen-
dents on the number of input data M and it is equal to M/8.
Then, Tables provide N Remainders, which are XORed to
form Intermediate CRC. When the end of the Input Buffer
is reached, Intermediate CRC is XORed with the final value

Fig. 2 The generic architecture of CRC Generator Module - CGM and
accompanying IP Core Interface.

(XorOut) and then stored in the Output Buffer.
For fully-adaptable implementation, the CGM must

support variable number of CRC Standards. There are four
parameters defined by a CRC Standard which affect execu-
tion of CGM: Width, Poly, Init and XorOut. We fix data-
path’s width to maximum number of bits in Width in order
to support variable width generator polynomial. CRCs with
higher degree polynomials are still not used in practice, thus
there is no need to implemented them yet. The CGM in-
directly depends on the Poly through TGM which generates
reminders in Tables (which will be discussed in the next sec-
tion). In the fully-adaptable architecture, the IP Core Inter-
face permits usage of the CGM only until Tables are ready,
thus the CGM doesn’t have to check if Tables are ready or
not.

The CGM is implemented in a pipeline with three
stages as following. In the first stage, M bits are read from
the Input Buffer and stored into a temporary register. This
value is then XORed with either Init or previous Intermedi-
ate CRC, depending on the iteration. In the second stage,
Intermediate Address is sliced into N slices and used to ac-
cess N remainders from N tables. These remainders are then
XORed to form Intermediate CRC. In the third stage, Inter-
mediate CRC is XORed with XorOut and stored into the
Output Buffer. The latency of CGM module is three cycles,



AKAGIC and AMANO: HIGH-SPEED FULLY-ADAPTABLE CRC ACCELERATORS
1303

but CRC is generated every cycle (the throughput is one cy-
cle).

Fully-adaptable CGM’s architecture has the following
aspects to provide adaptability:

• data-path is extended to maximum number of bits in
Width,
• structure of tables TN ..T1 is extended to maximum

2S lice × Width, and Tables are read-write, instead of
previously read-only,
• values in Tables and resulting CRC are aligned to right,

while in the case when G < 65 bit positions 64−(G−1)
are filled with zeros, since XORing a value with zeros
will result with the value itself,
• Init and XorOut values are programmable, instead of

hard-coded in the circuit,
• controller is modified in order to support integration

with TGM and IP Core Interface.

3.3 Tables Generation Module

For all table-based CRC algorithms tables are generated by
a separate algorithm. The results are used to form a data-set
in the program for generating CRCs. In software implemen-
tations, tables are generated sequentially and independently
from each other. In our design, we integrate these two algo-
rithms and in this section we discuss the architecture of Ta-
bles Generation Module - TGM. This architecture enables
support for a variable number of CRC Standards, as well as
processing arbitrary number of bits at a time. We provide
a pseudo-code for generating remainders in Fig. 3 based on

Fig. 4 a) A general block diagram of a single Table Generation Module - TGM; b) A schematic of
(TRi + 1)-stage pipelined architecture; c) A schematic of Overlapped pipelined architecture (preferred
design); d) Architecture of a single operation of Remainder Generator Unit called R Module. The
pipeline registers are placed after all Reflect and R Modules in both architectures.

the description in [11].
We present a general block diagram of our single TGM

in Fig. 4a). Every clock cycle, the counter generates a mes-
sage ranging from 0 to 2S lice (line 2 in Fig. 3). This message
then passes through the input reflection unit (line 4) or di-
rectly to the remainder generator (line 9 - 15), depending on
a CRC standard. The input reflection unit reflects message
bits by swapping them around its center. Prior to forwarding
a message to the remainder generator, the message is shifted
to left by Width−S lice bits (line 8), depending on the width

Fig. 3 Pseudocode for generating contents of Tables based on the de-
scription in [11]. The O f f set is the position of a byte in an input message
M that is being processed.



1304
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

of a data-path and a slice.
The remainder generator unit performs long division

operation, consisting of series of sequential operations. Op-
erations are inter-dependent from the results of a previous
operation, thus it is impossible to execute them simultane-
ously. We described a single operation and defined it as R
Module (Fig. 4d). Number of cycles required to generate
one remainder depends on the offset of a byte in input mes-
sage M. At the end, the remainder is reflected or forwarded
to output. This unit determines the speed and the area of the
circuit.

The TGM is designed to be independent of the width
of a generator polynomial, thus the TGM in Fig. 1. does not
require additional input for the width of a generator poly-
nomial. The polynomial is aligned to left, while in the case
when G < 65 bit positions from (64− (G − 1)) to 0 are filled
with zeros. This feature significantly simplified design of
TGM.

In the next two sections we will describe two possible
architectures for TGM and analyze them.

3.3.1 (TRi + 1)-Stage Pipelined Architecture

Straight-forward implementation of TGM in hardware is to
design N circuits, and generate contents for each table in
parallel. In order to generate one remainder each cycle we
consider multiplying R Modules and using pipelining to ex-
ploit the intrinsic parallelism. The schematic of this archi-
tecture is presented in Fig. 4 b).

The number of R Modules depends on the width of in-
put data M. In this paper, we explored possibility of process-
ing M ∈ 64, 128, 256, 512, 1024. Thus, the total number of
R Modules per every consecutive table i ∈ 1, 2, 3, . . . N is
calculated with the following formula:

TRi = O f f seti × S lice length, (4)

where O f f set is the position of a byte in an input mes-
sage M that is being processed. However, the space com-
plexity of this approach is O(nm) when we consider the total
number of R Modules per algorithm:

TRN =

N∑

i=1

TRi = S lice length ×
N∑

i=1

O f f seti. (5)

Consequently, the minimum required number of stages
in the pipeline for the first table is 9 stages, and every
consecutive table requires 8 additional stages (shown in
Fig. 4b). The first remainder is generated after TRi clock cy-
cles, followed by other remainders generated in every clock
cycle.

By our estimations (detailed in Sect. 4.), the architec-
ture with 64 and 128 tables couldn’t fit in a moderate size
FPGA, while the architecture for smaller number of ta-
bles would occupy substantial amount of area on a modern
FPGA. In next section we introduce the method to reduce
space complexity by overlapping specific operations.

3.3.2 Overlapped Pipelined Architecture

We noticed that we can reduce number of R Module per
table to only 8 modules, by forwarding last non-reflected
value from the R8 Module as an input to the R1 Module in
the next TGM. The concept is illustrated in Fig. 4c). Doing
so, we significantly reduced number of R Modules, and we
simplified architecture of TGMs from 2 to N. Architecture
of the first TGM was modified to output non-reflected value
from R8 Module, and corresponding logic was added to con-
nect this value to the following TGM. First non-reflected
value can be forwarded in TRi clock cycle, just before out-
put reflection. This also means that the second TGM can
start processing one clock cycle before the first table out-
puts its first remainder. Initial reflection is not necessary for
tables 2 to N, since the counter value was reflected in the
first table. We keep counters in other generators to generate
addresses for corresponding remainders. Thus, TGM 1 has
nine pipeline stages, while other TGMs have only eight. The
input reflection is not needed due to the forwarding of non-
reflected values from TGM 1. Thus, the latency of TGM 1 is
nine cycles, while the latency of TGM 2 to 8 is eight cycles.

Any additional table will add the latency of 8 cycles to
a number of cycles from the start of calculation. The total la-
tency is the same as in (TRi +1)-stage pipelined architecture,
but the amount of resources used is significantly reduced.

In this architecture, the total number of R Modules per
algorithm is calculated with:

TRN = N × 8, (6)

where N ∈ 8, 16, 32, 64, 128. Thus, the space complexity is
reduced from O(nm) to O(n).

3.4 Effects of Architecture’s Scalability

As we mentioned earlier, we explored possibility of process-
ing arbitrary number of input data M ∈ 64, 128, 256, 512,
1024 bits and in this section we discuss effects on our ar-
chitecture. The first series of Table generations read M =
64 bits (Slicing–by–8) and require eight TGMs. Every other
extension in the number of processed bits doubles the num-
ber of required TGMs. In order to keep resource utilization
at minimum, we decided to re-use these eight modules for
other implementations. The basic idea is shown in Fig. 5.
Clock cycles are presented as numbers on the left side from
a table, while numbers inside the tables represent position of
the remainder in a table. For the second series of Table gen-
erations (Slicing–by–16), which read 128 bits, we modified
TGM 1 to accept non-reflected values from TGM 8. This is
essentially forwarding non-reflected values again to TGM 1.
The only problem is that TGM 1 can start generating remain-
ders for Table 9 after 264 clock cycles, while TGM 8 gen-
erates first non-reflected value in cycle 64. This means that
non-reflected values cannot be forwarded directly to TGM
1. Thus, we decided to introduce a temporary table for TGM



AKAGIC and AMANO: HIGH-SPEED FULLY-ADAPTABLE CRC ACCELERATORS
1305

Fig. 5 All five implementations use only eight TGMs for generating con-
tents of 1 - 128 Tables.

8’s non-reflected values - Table X. TGM 1 will start generat-
ing remainders for Table 9 just after it finishes generation of
remainders for Table 1. In order to generate remainders for
Table 9, TGM 1 will read input values from Table X (shown
with line 1 in Fig. 5.) instead from the counter shown in
TGMs basic architecture. All the following tables will start
executing with 8 clock cycles latency compared to a previ-
ous table.

For the third series of Table generations, which read
256 bits, we had to introduce another temporary table - Ta-
ble Y. TGM 8 generates new non-reflected values for Table
9. before TGM 1 reads all the values from the first tempo-
rary table, thus these values will be temporarily stored in
Table Y. Then, Table Y will be used for generation of Ta-
ble’s 17 remainders (line 2), while Table 24 will store its
non-reflected values in Table X (line 3). Input into Table 25
will be non-reflected values stored in Table X (line 4), and
so forth. Table Y will be lastly re-used by Table 120, in or-
der to calculate remainders for total number of 128 tables for
Slicing–by–128. This will be 7th usage of this table during
re-generation of tables for Slicing–by–128 implementation
(line 7).

Table X and Table Y are implemented as dual-port

BlockRAMs, thus there are no pipeline stalls in any TGM.
Due to its pipelined design, TGM 1 can start reading first
non-reflected value from Table X in 257 cycle, instead of
319 cycle. Thus, the first value in Table 9 is generated in
cycle 265. This technique also applies to remaining tables.

In order to support this idea, data-path and controller
of each of these series of Table generations is significantly
different from each other. Resource utilization is therefore
kept minimal, as will be discussed in Sect. 4. This architec-
ture enables further expansion of throughput with minimal
resource utilization.

3.5 The IP Core Interface

When an application requests CRC IP Core service, the re-
quest is first delivered to the IP Core Interface (as seen in
Fig. 2). The Interface is connected with external process-
ing systems through the PCI Express bus. It consists of a
PCI Express Controller, command buffer, completion buffer,
input buffer and output buffer. A command request is deliv-
ered to the CRC IP Core through the command buffer. There
are two types of command request: Table re-generation and
CRC generation. After the command is processed, a com-
pletion result is delivered to the host CPU through the com-
pletion buffer. The input buffer is used to store data fetched
from the main memory by DMA. Similarly, output buffer
is used to store data that will be transferred into the main
memory by DMA.

When a user invokes a routine in the CRC IP Core de-
vice driver, it creates a command request corresponding to
the user’s request and stores it into the command buffer. The
IP Core Interface then reads the command request and per-
forms operations corresponding to the request. After the re-
quest is processed, the IP Core Interface creates the com-
pletion result and stores it in the completion buffer. The IP
Core Interface then interrupts the host CPU to report com-
pletion of a request. The CPU reports the result to the user
program.

4. FPGA Implementation

We designed a prototype implementation using the Xilinx
Virtex 6 LX550T device (xc6vlx550t-2ff1760). The design
was written in VHDL and Xilinx’s ISE 12.4 design envi-
ronment was used for all parts of a design flow including
synthesis, mapping and place and route. The behavioral cor-
rectness of each circuit has been manually checked through
a series of simulatios in Xilinx ISim 12.4. The advantage
of implementing table-based CRC architecture on an FPGA
comes from FPGA’s ability to access look-up tables in par-
allel, thus by increasing number of processed bits at a time
we can maintain increase in throughput of an architecture.

After the implementation of TGMs on an FPGA, we
came to the conclusion that (TRi + 1)-stage pipelined archi-
tecture is area consuming, when we consider re-generating
remainders for 32, 64 or 128 tables in parallel. We mea-
sured number of resources for a single R Module which is



1306
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

8 slices or 32 LUTs. Then, we implemented two versions
of this architecture with M = 64 and M = 128, with 8
and 16 TGMs/Tables, respectively. We also roughly esti-
mated number of resources used for R Modules in M ∈
64, 128, 256, 512, 1024 architectures. The results are pre-
sented in Table 2. The estimated resources were very close
to the measured resource utilization, thus we concluded that
the majority of resources were used for R Modules. Most
likely, architectures with M = 512 and M = 1024 would not
fit on this fairly large FPGA chip, while architecture with
M = 256 would occupy substantial amount of resources -
39% on the Xilinx Virtex 6 LX550T.

For implementation of TGM, Overlapped pipelined ar-
chitecture is used. Maximum of eight TGM’s are used in all
five implementations, where M ∈ 64, 128, 256, 512, 1024.
This feature ensured minimal resource usage for a number
of input bits at a time, and also enabled further expansion of
the architecture.

Number of tables grow proportionally with the number
of bits processed at a time, thus it is important to choose
storage elements with fastest access time. To measure per-
formance of this architecture, we implemented Tables in a)
BRAM and in b) logic. Tables are read-write, but writing

Table 2 Resource utilization of R Modules in (TRi + 1)-stage pipelined
architecture for M ∈ 64, 128, 256, 512, 1024. Column three represents
roughly estimated resources utilization based on the resources required by
a single R Module, while column four represents actual resource utilization
on the Xilinx Virtex 6 LX550T.

Xilinx Virtex 6 TGMs LUTs LUTs
LX550T (Tables) est.

M = 64 bits 8 9.2k (2%) 10.5k (3%)
M = 128 bits 16 34.8k (10%) 37.6k (10%)
M = 256 bits 32 135k (39%) -
M = 512 bits 64 532k (154%) -
M = 1024 bits 128 2113k (614%) -

Table 3 Resource utilization of non-adaptable Slicing–by–N32 and Slicing–by–N64 algorithms on
the Xilinx Virtex 6 LX550T, where N = M/8, M ∈ 64, 128, 256, 512, 1024, and “32” and “64” represent
the width of a resulting CRC value (related to 33 and 65 generator polynomial). Tables are implemented
in BRAM.

Slicing–by–N32 Slicing–by–N64
Xilinx Virtex 6 LX550T M = 64 M = 128 M = 256 M = 512 M = 1024 M = 64 M = 128 M = 256 M = 512 M = 1024

LUTs (max 343680) 205 404 676 916 1180 540 780 1186 1328 2230
Fully used LUT-FF pairs 159 359 493 714 979 458 698 849 946 1824
BRAM (max 632) 8 16 32 64 128 8 16 32 64 128
Max. operating freq. (MHz) 469.14 431.86 332.92 332.92 347.98 468.02 430.91 332.36 332.36 347.37
Throughput (Gpbs) 29.32 53.98 83.23 166.46 347.98 29.25 53.86 83.09 166.18 347.37

Table 4 Resource utilization of fully-adaptable CRC accelerator, where N = M/8 and M ∈
64, 128, 256, 512, 1024. We present two implementations with Tables implemented in a) BRAM and
b) in logic on the Xilinx Virtex 6 LX550T.

a) Slicing–by–N [BRAM] b) Slicing–by–N [logic]
Xilinx Virtex 6 LX550T M = 64 M = 128 M = 256 M = 512 M = 1024 M = 64 M = 128 M = 256 M = 512 M = 1024

LUTs (max 343680) 3398 3405 3949 5119 6774 5571 9151 14861 26114 48756
Fully used LUT-FF pairs 3082 2977 3481 3604 3617 3306 5084 6185 10839 17218
BRAM (max 632) 8 16+1 32+2 64+2 128+2 – – – – –
Max. operating freq. (MHz) 352.37 345.31 337.93 321.31 283.1 443.9 417.8 414.61 415.14 408.9
Throughput (Gpbs) 27.8 44.2 86.50 164.51 289.8 28.41 53.47 106.14 212.6 418.8

and reading operations are not overlapped in order to main-
tain consistency of Tables. For implementation a) Tables are
implemented as RAM modules in Block RAM.

5. Evaluation

5.1 Non-adaptable CRC Accelerator Core

First of all, we evaluated the performance and resource us-
age of the CRC accelerator core when it is used as a fixed
non-adaptable one. In Table 3, Slicing–by–N32 and Slicing–
by–N64 show the case when the resulting CRC value is 32
and 64, respectively.

As shown later, the throughput achieved is superior or
comparable to the traditional LFSR implementation. Thus,
it appears that the accelerator with table-based algorithm
achieved enough performance with reasonable cost.

5.2 Fully-Adaptable CRC Accelerator

5.2.1 Throughput and Resource Usage

In Table 4, the performance and resource usage of fully-
adaptable CRC accelerators are shown. In this implemen-
tation, Overlapped pipelined architecture is used in TGM,
and Tables are implemented in: a) BRAM and b) logic. Note
that the fully-adaptable architecture is capable of generating
remainders for any known CRC standard, up to 65 bits of
generator polynomial, during run-time. Its usability is much
broader than non-adaptable architecture.

The throughputs of four implementations of non-
adaptable and fully-adaptable CRC accelerators are shown
in Fig. 6. The maximum throughput was achieved with
fully-adaptable architecture with Tables implemented in
logic (Table 4b). It is 418.8 Gbps when M = 1024, and it



AKAGIC and AMANO: HIGH-SPEED FULLY-ADAPTABLE CRC ACCELERATORS
1307

is up to 31% higher than adaptable architecture with Tables
implemented in BRAM. Compared to non-adaptable CRCs,
the configuration of BRAM was changed from read-only to
read-write, thus the total critical path was increased to ap-
proximately 1.78 ns, and between 0.512 to 0.696 ns of rout-
ing delay. This is why fully-adaptable CRCs with BRAM
show decrease in throughput, but they can still support most
demanding applications. Slicing–by–N32 and Slicing–by–
N64 exhibit almost the same trend in throughput, because
their architecture is not noticeable different. We show that
each time we double number of processed bit at a time, ar-
chitecture’s throughput also doubles in all four implemen-
tations. Thus, when choosing a type of accelerator, the
trade off is between flexibility/adaptability, throughput and
resource utilization.

Even though fully-adaptable architecture a) exhibits
highest throughput among all implementations, it also
exhibits highest resource utilization on Xilinx Virtex 6
LX550T board. It occupies between 1.6% and 14.2% of
LUTs resources, while the architecture b) occupies only 1-
2% of LUTs resources. LUTs resource utilization of non-
adaptable accelerators is around 1% on the same device.
Resource utilization is kept at minimum in each implemen-
tation with different M’s, as explained in Section 3.4. Every

Fig. 6 Throughputs of four implementations of non-adaptable and fully-
adaptable CRC accelerators.

Table 6 A summary of different CRC designs from Related Work and our implementations on the
Xilinx Virtex 6 LX550T: a) fully-adaptable CRC with Overlapped architecture with Tables in BRAM
and b) Tables in logic; c) non-adaptable Slicing–by–N32 CRC and d) non-adaptable Slicing–by–N64
CRC.

Design Polynomial M Adaptable Re-generation time Technology Area Throughput

[1] 32 32, 64
√

N/A Pentium 1.7 GHz (90 nm) - 1.4, 3.6
[4] 32 32 – N/A 350 nm (1̃37 MHz) 162 LUTs 4.38

[5] 32 32, 64 – N/A 350 nm AMS (180 MHz) 7.73 mm2 5.76
[6] 16, 32 8, 16, 32 – N/A FLEX10KE ALTERA family 149 - 1849 LC 1.1 (8b) - 4.6 (32b)
[7] 32 128 – N/A 90 nm ST CMOS (200 MHz) N/A ∼25
[8] 8, 32 128 –/

√
N/A 180 nm (200 MHz) N/A 1.3 - 3.7

[9] 32 32 (64)
√

< 1 µs 130 nm UMC standard cell 0.15 mm2 4.92 (9.84)
Our a) up to 64 64-1024

√
0.91-7.46 µs Virtex 6 LX550T 3398 - 6774 LUTs 27.8 - 289.8

Our b) up to 64 64-1024
√

0.72-5.17 µs Virtex 6 LX550T 5571 - 48756 LUTs 28.41 - 418.8
Our c) 32 64-1024 – N/A Virtex 6 LX550T 205 - 1180 LUTs 29.32 - 347.98
Our d) 64 64-1024 – N/A Virtex 6 LX550T 540 - 2230 LUTs 29.25 - 347.37

consecutive implementation in a) adds insignificantly more
resources, while in b) most resources are occupied by con-
tents of Tables. We think that resource utilization is still
acceptably low, especially for fully-adaptable architecture
a).

5.2.2 Time for Re-Generation of Tables

It’s important to consider time required for regeneration of
content in Tables. This happens only when CRC standard
changes. In Table 5. we present number of cycles and time
required for each algorithm we implemented. We consider
this to be reasonably quick and not noticeable by a user.

5.3 Comparison to Related Work

Table 6. provides a summary of related works for generat-
ing CRC implemented on a different technologies. Although
it is difcult to compare performance and area parameters
for different technologies, some valid comparisons can be
made.

Compared to all non-adaptable hardware designs, [7]
achieves the best throughput, but our circuit is more than 2x
faster (M=128). Unfortunately, the area used in this design
is not provided. When compared with fastest software solu-
tion [1], our design is 8x faster with further ability to extend
number of bits processed at a time. In [4], [5] and [6] the
throughput is significantly lower than our implementations
and the circuits have to be taken off-line in order to support
other CRC Standards.

There are only two adaptable hardware implementa-

Table 5 Number of clock cycles and time required for re-generation of
Tables when generator polynomial changes.

Clock BRAM logic
Input data Tables Cycles (µs) (µs)

M = 64 bits 8 320 0.91 0.72
M = 128 bits 16 576 1.67 1.38
M = 256 bits 32 1088 3.22 2.62
M = 512 bits 64 1600 4.98 3.85
M = 1024 bits 128 2112 7.46 5.17



1308
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

tions with limited support for a number of generator poly-
nomials [8], [9]. They differ from our implementation in
that they require separate implementation for every gener-
ator polynomial, while our circuits support variable num-
ber of CRC standards with only one implementation. Our
fully-adaptable Slicing–by–16 (M=128) implementation is
41x faster than [8] soft-coded design with 32 bit CRC and
14.5x faster than hard-coded design. Unfortunately, the
reconfiguration time and area utilization are not provided.
[9] is generic in its design, thus it can be scaled to pro-
cess 64, 128 or 256 bits, with maximal theoretical through-
put of 40 Gbps at 256 bits. It is 6x slower compared with
our adaptable Slicing–by–8 implementation, and 5x slower
compared with adaptable Slicing–by–16. The reconfigura-
tion time is not very specific - under 1 µs, just as our adapt-
able Slicing–by–8. It uses different implementation technol-
ogy, thus it is very difficult to compare area used.

As can be seen from Table 6., there is no much research
about CRC circuits that support 64 generator polynomial, so
we cannot compare our implementation to any other in that
terms.

6. Conclusions

In this paper we presented a methodology for designing non-
adaptable and fully-adaptable CRC accelerators based on
a table-based algorithm intended for software implementa-
tion. We reduced computational burden by offloading pro-
cessing of CRC on an FPGA. Both architectures process ar-
bitrary number of data input and exhibit significant improve-
ments in throughput over related works. They are very effi-
cient in area utilization, especially non-adaptable and fully-
adaptable architectures with Tables implemented in BRAM,
which occupy 1-2% of resources on Virtex 6 LX550T. Our
fully-adaptable architecture supports any known CRC stan-
dard, up to 65 bits of generator polynomial, during run-time.
The architecture is able to re-generate contents of Tables
very fast while occupying minimum amount of resources.
The usability of non-adaptable CRC architecture is limited,
but it exhibits significant increase in throughput.

We accomplished efficient area utilization by modify-
ing Table Generation algorithm in order to decrease its space
complexity from O(nm) to O(n). We also explored possibil-
ity of processing arbitrary number of input data M, where
M ∈ 64, 128, 256, 512, 1024 and we discussed effects of this
scalability. This enabled further expansion in a number of
input bits processed at a time, and thus higher throughput.
Our accelerators are between 1.65 to 41x faster than related
work, depending on a number of bits processed at a time.

References

[1] F.L. Berry and M.E. Kounavis, “A systematic approach to build-
ing high performance software-based CRC generators,” ISCC ’05:
Proc. 10th IEEE Symposium on Computers and Communications,
pp.855–862, IEEE Computer Society, Washington, DC, USA, 2005.

[2] C. Borrelli, IEEE 802.3 Cyclic Redundancy Check,
http://www.xilinx.com/support/documentation/application notes/

xapp209.pdf
[3] D.V. Sarwate, “Computation of cyclic redundancy checks via table

look-up,” Commun. ACM, vol.31, no.8, pp.1008–1013, 1988.
[4] G. Campobello, G. Patane, and M. Russo, “Parallel CRC realiza-

tion,” IEEE Trans. Comput., vol.52, no.10, pp.1312–1319, Oct.
2003.

[5] T. Henriksson and D. Liu, “Implementation of fast CRC calcula-
tion,” Proc. Asia and South Pacific Design Automation Conference
(ASP-DAC) 2003, pp.563–564, Jan. 2003.

[6] F. Monteiro, A. Dandache, A. M’sir, and B. Lepley, “A fast CRC im-
plementation on FPGA using a pipelined architecture for the poly-
nomial division,” Proc. 8th IEEE International Conference on Elec-
tronics, Circuits and Systems, ICECS 2001, vol.3, pp.1231–1234,
2001.

[7] C. Mucci, L. Vanzolini, I. Mirimin, D. Gazzola, A. Deledda, S.
Goller, J. Knaeblein, A. Schneider, L. Ciccarelli, and F. Campi,
“Implementation of parallel LFSR-based applications on an adaptive
DSP featuring a pipelined configurable gate array,” Design, Automa-
tion and Test in Europe, 2008, DATE ’08, pp.1444–1449, March
2008.

[8] H.M. Ji and E. Killian, “Fast parallel CRC algorithm and implemen-
tation on a configurable processor,” IEEE International Conference
on Communications (ICC) 2002, vol.3, pp.1813–1817, 2002.

[9] C. Toal, K. McLaughlin, S. Sezer, and X. Yang, “Design and imple-
mentation of a field programmable CRC circuit architecture,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol.17, no.8, pp.1142–
1147, Aug. 2009.

[10] A. Akagic and H. Amano, “An FPGA implementation of CRC
slicing-by-N algorithms,” IEICE Technical Report, RECONF2010-
42, Nov. 2010.

[11] M.E. Kounavis and F.L. Berry, “Novel table lookup-based algo-
rithms for high-performance CRC generation,” IEEE Trans. Com-
put., vol.57, no.11, pp.1555–1560, Nov. 2008.

[12] A. Akagic and H. Amano, “Performance evaluation of multiple
lookup tables algorithms for generating CRC on an FPGA,” Inter-
national Symposium on Access Spaces (IEEE-ISAS 2011), pp.164–
169, June 2011.

[13] A. Akagic and H. Amano, “High speed CRC with 64-bit generator
polynomial on an FPGA,” International Workshop on Highly Effi-
cient Accelerators and Reconfigurable Technologies (HEART), Im-
perial College, London, UK, June 2011.

Amila Akagic received Dipl. el. Ing.
and M.Sc. in Computer Science from Faculty
for Electrical Engineering, University of Sara-
jevo, Bosnia and Herzegovina in 2006 and 2009,
respectively. She is currently a Ph.D. student
with Amano Lab at Keio University, Yokohama,
Japan. Her research interests include computer
architectures, reconfigurable computing and ac-
celeration of algorithms in hardware.

Hideharu Amano received Ph.D. degree
from the Deparment of Electronic Engineering,
Keio University, Japan in 1986. He is currently
a professor in the Department of Information
and Computer Science, Keio University. His
research interests include parallel architectures
and reconfigurable systems.


