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Joint Tracking of Performance Model Parameters and
System Behavior Using a Multiple-Model Kalman Filter

Zhen ZHANG†a), Student Member, Shanping LI†, and Junzan ZHOU†, Nonmembers

SUMMARY Online resource management of a software system can
take advantage of a performance model to predict the effect of proposed
changes. However, the prediction accuracy may degrade if the performance
model does not adapt to the changes in the system. This work considers
the problem of using Kalman filters to track changes in both performance
model parameters and system behavior. We propose a method based on the
multiple-model Kalman filter. The method runs a set of Kalman filters, each
of which models different system behavior, and adaptively fuses the output
of those filters for overall estimates. We conducted case studies to demon-
strate how to use the method to track changes in various system behaviors:
performance modeling, process modeling, and measurement noise. The
experiments show that the method can detect changes in system behavior
promptly and significantly improve the tracking and prediction accuracy
over the single-model Kalman filter. The influence of model design pa-
rameters and mode-model mismatch is evaluated. The results support the
usefulness of the multiple-model Kalman filter for tracking performance
model parameters in systems with time-varying behavior.
key words: performance modeling, tracking filter, multiple-model method,
queueing theory, resource management

1. Introduction

As today’s Internet-based web applications become more
complex, resource management tasks such as resource allo-
cation become increasingly difficult. One of the most com-
plex aspects of these tasks is to evaluate the performance ef-
fects of hypothetical changes in system configurations. Per-
formance models such as queueing models provide a power-
ful means of evaluating these performance effects [1]. How-
ever these models quickly become obsolete if they fail to
keep up with the changes in system parameters and behav-
ior. These changes can be common, rapid and unexpected,
especially in large scale, Internet-based systems. For ex-
ample, the (average) service time of a request, which is an
important parameter of performance models, often changes
with software updates, browsing pattern shifts, and virtual
machine migration. For this reason, performance models
must be updated in a timely manner, preferably automati-
cally and online.

Estimating performance model parameters in run-time
is not an easy task. Performance model parameters, such
as the CPU service time of a request, are very hard to
measure directly. Performance data, such as CPU uti-
lization, comes in streams of noisy data, which must be
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processed incrementally. One solution is to adapt offline
methods of estimating performance parameters, such as
regression-based methods, to online environments, using
adhoc smoothing techniques to reduce noise. This ap-
proach, however, has been shown to be viable only for rough
estimates [2].

The Kalman filter can be used as an alternative to
adapting offline methods to online systems. It is an estima-
tor specific to dynamic systems, and it has been shown to be
suitable for the tracking of performance model parameters
that vary over time [3]–[6]. The Kalman filter treats perfor-
mance model parameters such as the service time of a re-
quest as hidden states and the various types of performance
data, such as CPU utilization, as noisy measurements. It
provides accurate estimates of hidden states by combining
past estimations with current noisy measurements in an op-
timal way [7]. The Kalman filter requires three essential
inputs to encode the modeler’s knowledge of system be-
havior: a measurement model describes the effect of state
changes on the measurement; a process model describes ex-
pected trends or patterns in the state changes; and error co-
variances specify the belief of how accurate is the above
measurement and process model. For example, in one pre-
vious study a layered queueing network model was used as
the measurement model of a two-tier web application, an
autoregressive model was used as the process model to ap-
proximate the short-term trend of sinusoid changes in think
time, and a small measurement and process noise covari-
ance was used to indicate that the measurement noise and
state disturbance were low [6]. Currently, all tracking filter
solutions for the estimation of performance parameters as-
sume that these inputs are time-invariant and known to the
modeler.

In practice, a computer system may undergo both con-
tinuous changes in states and discrete changes in modes.
A mode is the true system behavior that is to be approxi-
mated by the models, including measurement model, pro-
cess model, and error covariances. For example, the ser-
vice discipline of CPU can be approximated by process
sharing (PS) discipline when the request service time is
significantly larger than the time-slice of the OS sched-
uler, but it more closely resembles a first-come first-served
(FCFS) discipline, when the service time is smaller than
the time-slice [8]. The service time of the system may
vary smoothly during normal time, but it undergoes rapid
changes during bursty time. The measurement noise is
often larger during idle time than during busy time [4]. To
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track and predict states accurately in such system, a con-
ventional single-model-based filter must be tuned to com-
promise among modes. In contrast, a multiple-model-based
filter, which is a kind of multiple-model (MM) method that
runs many different filters and combines their results, can
give good results in each mode. Such MM methods are also
useful for situations in which the mode is unknown but is
known to remain constant.

This paper makes two contributions to the knowledge
of the field: First, we investigate how to apply MM meth-
ods to the tracking of performance model (Sect. 4). We use
a particular MM method, called the interacting multiple-
model (IMM). The necessary background for IMM is pre-
sented in Sect. 3. Practical issues related to IMM are ana-
lyzed. These includes model set design, models with dif-
ferent state dimensions, and performance model lineariza-
tion. As far as we know, this is the first successful attempt
to track system behavior modes along with parameters of
performance models. Second, we illustrate the usage of
IMM using case studies in both simulated and real systems
(Sect. 5). These case studies show how IMM can be used to
model changes in different system behaviors, including per-
formance modeling, measurement noise, and process mod-
eling. The experiments show that in the presence of system
behavior change, IMM has better tracking and prediction
results than the single-model method, in a wide range of de-
sign parameters, even if mode-model mismatch exists.

2. Related Work

Woodside et al. pioneered the use of tracking filters to es-
timate performance model parameters. Specifically, they
used an extended Kalman filter to estimate the parameters
of a closed queuing network [3]. They expanded upon their
work in various ways: 1) They used the filter to track pa-
rameters in a layered queueing network model and devised
a method of determining measurement noise covariance [4],
[9]. 2) They used tracked performance models to implement
feed-forward controllers [10]. 3) They integrated autore-
gressive trending in the filter to improve the quality of the
predictions [6]. Kumar et al. investigated the convergence
problem of the filter in tracking parameters of multi-class
queueing model [5]. They addressed the problem by aug-
menting the measurement vector with a set of constraints
based on past measurements. All these studies made the
assumption that the filter inputs are fixed and known. How-
ever, previous studies have shown that the results of filter
prediction can suffer if incorrect performance models are
used [4], [6], [9]. And ad hoc compensation techniques [11]
have been used to adapt measurement noise covariance but
without success [9]. To the best of our knowledge, our study
presents the first viable solution to the problem of filter input
uncertainty.

There is a vast amount of literature covering the adap-
tation of tracking filters in domains other than performance
modeling. MM methods have been shown to be superior to
many popular methods [12], and are generally considered

the mainstream approach, especially in the field of tar-
get tracking [13]. We refer readers to Li and Jilkov [13]
for a comprehensive survey of MM methods. Among
many MM methods, IMM, first proposed by Blom and
Bar-Shalom [14], is considered to strike the best balance
between tracking accuracy and computational complex-
ity [15]. Many practical issues arise when applying IMM
to the domain of performance model tracking, in particular
the design of model set. We present our solutions to these is-
sues and evaluate the tracking results under various setting.
Although we focus on IMM, these solutions and results may
be applied to other MM methods as well.

MM methods are essentially semi-parametric estima-
tors [16], similar ideas have been successfully applied to
related areas such as control [19] and time-series fore-
cast [17]. In particular, multiple time-series models are
often combined to improve the accuracy of performance
prediction [18]. In contrast to our approach, the predic-
tion of such methods is based directly on the observable
performance metrics, thus cannot predict hidden parame-
ters of performance models, with which better prediction
can be made [6]. Moreover, MM methods provide a general
method that can combine not only multiple process models
(time-series models), but also multiple measurement models
and error covariances.

3. Background

We first present a brief introduction of the extended Kalman
filter and interacting multiple-model method. The extended
Kalman filter forms the basis of multiple-model methods.
It is assumed that the reader is aware of the general theory
of Kalman filtering. The reader is referred to Simon [7] for
more details.

3.1 Extended Kalman Filter (EKF)

The Kalman filter is used to recursively estimate discrete
time system state space models. In discrete time cases,
time is advanced in fixed intervals and indexed using a step
counter k. The system states remain stationary within a step
but may undergo changes across steps. The system state
space model can be described as follows:

xk = f(xk−1) + wk, wk ∼ N(0,Qk) (1)

zk = h(xk) + vk, vk ∼ N(0,Rk) (2)

where x is the hidden state vector, z is the measurement
vector, f is the process model of the evolution of the state
vector, and h is the measurement model of the impact of x
on z. wk and vk are the process and measurement noises,
respectively. These are assumed to be zero-mean Gaussian
white noises with covariances Q and R. For tracking the
performance model, x corresponds to performance model
parameters such as request service time, z corresponds to the
performance metrics such as CPU utilization and response
time, and h corresponds to the performance model.



ZHANG et al.: JOINT TRACKING OF PERFORMANCE MODEL PARAMETERS AND SYSTEM BEHAVIOR
1311

Table 1 EKF notations.

Notation Description
x̂k (a posteriori) state estimate at time k
Pk (a posteriori) state covariance estimate at time k
x̂−k a prior state estimate at time k
P−k a prior state covariance estimate at time k
z measurement data at time k
f process model
h measurement model
Q process noise covariance
R measurement noise covariance
Fk sensitivity matrix of f at time k
Hk sensitivity matrix of h at time k
vk measurement residual at time k
Sk measurement residual covariance at time k
Kk Kalman gain at time k

The Kalman filter is a recursive state estimator. This
means that only the state estimate of the previous time step
and current measurement data are required to estimate the
current state. EKF is a variant of the Kalman filter that deals
with measurement and process model nonlinearity [7]. This
is the case here because h is derived from the performance
model, a nonlinear function. A summary of the EKF nota-
tions is given in Table 1.

EKF has two steps. The prediction step predicts next
state of the system x̂−k using the previous state estimate x̂k−1

and the update step combines the predicted state of the sys-
tem x̂−k with the new measurement data zk in a weighted av-
erage manner, to produce the a posteriori state estimate x̂k.
The weight factor, called the Kalman gain (Kk) is updated
at each iteration to minimize the mean square errors of state
estimation. These steps can be formulated as follows:

• Prediction

x̂−k = f(x̂k−1) (3)

P−k = Fk−1 Pk−1FT
k−1 +Qk−1 (4)

• Update

Sk = Hk P−k HT
k + Rk (5)

Kk = P−k HT
k /Sk (6)

vk = zk − h(x̂−k ) (7)

x̂k = x̂−k + Kkvk (8)

Pk = (I − Kk Hk)P−k (9)

where

Fk−1 =
∂f
∂x

∣∣∣∣∣∣
x=x̂k−1

, Hk =
∂h
∂x

∣∣∣∣∣∣
x=x̂−k

(10)

Fk−1 and Hk are the sensitivity matrices of f and h around
state estimates x̂k−1 and x̂−k . A more detailed description of
the two steps can be found in Simon [7].

3.2 Interacting Multiple-Model (IMM)

To model the system with possible mode change, IMM pre-
pares a set of M models {m1, . . . ,mM} as possible candi-
dates of the true model, and a bank of elemental filters (we

Table 2 Notations specific to IMM.

Notation Description
M size of the model set
m j jth model in the model set
m j

k jth model is in effect at time k

π
j
0 initial probability of m j

π ji model transition probability from m j to mi

μ
−, j|i
k

probability of m j
k−1 given that mi

k
conditioned on zk−1

μ
j
k (posterior) probability of mi at time k

μ
−, j
k prior probability of mi at time k

x̄i
k−1 reinitialized state of mi at time k − 1

P̄i
k−1 reinitialized state covariance of mi at time k − 1
x̂k combined state estimate at time k
Pk combined state covariance estimate at time k

use EKFs in this paper), each based on a unique model in
the set. The system model at step k is one of M models.
The model switching is described by a Markov chain with
known prior probability P{mj

0} = π j
0 and transition probabil-

ities P{mi
k |mj

k−1} = π ji. A summary of the notations specific
to IMM is given in Table 2. Not included in this table are the
notations for the variables of each model, such as x̂ j

k, the x̂k

of model- j-based filter. They are similar to those given in
Table 1 except that they are given a superscript j to denote
the index of the model.

IMM consists of three major steps: interaction (mix-
ing), filtering, and combination. During each time step,
IMM reinitializes each filters using a different combination
of previous model-conditioned estimates (interaction). Then
IMM performs standard EKF filtering for each model as if
this particular model is the right model at current time step
(filtering). Finally, IMM computes a weighted combination
of updated state estimates produced by all filters, yielding
a final estimate for the state and error covariance in that time
step (combination). The weights are chosen according to the
probabilities of the models, which are updated during the fil-
tering step of the algorithm. The equations for each step are
as follows:

• Step 1: Interaction (mixing)

The mixing weight is computed as follows:

μ
−, j|i
k

Δ
= P{mj

k−1|mi
k, zk−1} = π jiμ

j
k−1/ū

−,i
k (11)

where
Δ
= means “equals by definition.” μ j

k−1 is the probabil-

ity of mj at time k−1, ū−,ik =
∑

j π jiμ
j
k−1 is the predicted prob-

ability of mi, which is the normalization constant for μ−, j|ik .
Then each filter is reinitialized with mixed inputs,

which are the state and covariance estimates:

x̄i
k−1

Δ
= E(xk−1|mi

k, zk−1) =
∑

j

x̂ j
k−1μ

−, j|i
k (12)

P̄
i
k−1 =

∑
j

{
P j

k−1 + [x̄i
k−1 − x̂ j

k−1][x̄i
k−1 − x̂ j

k−1]T
]
}μ−, j|ik

(13)
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• Step 2: Filtering

For each model mi

[x̂−,ik , P
−,i
k ] = EKFp(x̄i

k−1, P̄
i
k−1, f

i,Qi
k−1) (14)

[x̂i
k, P

i
k] = EKFu(x̂−,ik , P

−,i
k , h

i,Ri
k, zk) (15)

Here, we denote the prediction and update steps
(Eq. (3)–(4) and Eq. (5)–(9)) of the extended Kalman filter
with EKFp(·) and EKFu(·). We also compute the likelihood
of the measurement for each filter as follows:

Li
k = N(vi

k; 0,Si
k) (16)

Here vi
k is the measurement residual and Si

k is the measure-
ment residual covariance for model mi in the Eq. (5). N is
the pdf of multivariate Gaussian distribution.

Then the probability of each model mi at time k is up-
dated as follows:

μi
k = ū−,ik Li

k/c (17)

Here c =
∑

i ū−,ik Li
k is a normalization constant.

• Step 3: Combination

The combined estimates for the state and covariance are
computed as follows:

x̂k =
∑

i

x̂i
kμ

i
k (18)

Pk =
∑

i

{
Pi

k + [x̂k − x̂i
k][x̂k − x̂i

k]T
}
μi

k (19)

IMM is a Bayesian suboptimal estimator. The key as-
pect of the IMM algorithm is the interaction step. This
mixing of the estimates allows the individual poor estimates
caused by model mismatching to be replaced with estimates
from better models. The whole filters bank then benefits
from these better estimates. This is especially important
when a large change in states is accompanied by a change in
system mode.

Figure 1 shows the structure of IMM estimation algo-
rithm. Note that the elemental filters run in parallel, and the
only difference from the single-model Kalman filter is that
each filter is reinitialized by the interaction component be-
fore the normal prediction-update recursion. Also note that

Fig. 1 Logic architecture of IMM. (three models, step counter k omitted)

the recursion loops between interaction component and the
elemental filters are internal to the IMM and that the final
tracked state is given by the output component.

4. Multiple-Model Method for Performance Model
Tracking

We investigate various issues that occur during the use of
IMM for the tracking of performance model.

Model set design

The first and most important job of IMM (and any MM
method), is to design a set of different but complement be-
havior models, so that together they cover all system modes.
The models can differ in performance model, process model,
error covariance, or any combination of these.

For performance models, the queueing model and its
variants are preferred because they have efficient solution
methods, which are crucial in an online environment. IMM
can be applied directly to a homogeneous model set. The
performance models in such sets have the same model
structure and share the same continuous-value parameters
i.e. states, but they have different discrete-value attributes,
whose derivatives (H) are either undefined or difficult to
calculate. The discrete-value attributes can involve service
discipline (see Case 1), number of servers per queue, and
load-dependent patterns [20]. In contrast, the models in the
heterogeneous model set may have different structures, and
the parameters and covariances in one model may need ad-
ditional transformation in order to mix with those of other
models during the interaction and combination steps. We
will discuss the heterogeneous model set in future works.

For process models, we have two candidates: The
drift model assumes the states drift independently around
previous states (the least knowledge of state changes), i.e.
x̂k = x̂k−1 + wk (where wk is the Gaussian noise) [4], [9].
The autoregressive (AR) model assumes that the states fol-
low local trend and the trend drifts randomly [6]. The sim-
plest AR model is the first-order AR model, AR(1). It can
be formulated as follows:

x̂k = gk−1 x̂k−1 + wk, gk = gk−1 + ξk (20)

Here gk−1 is the first-order AR coefficient, and wk and ξk are
the Gaussian noises.

For error covariance, it’s straight forward to form
a set of models with different Q and R. The values
of Q and R shall match different levels of state distur-
bance and measurement noise in different time. Since differ-
ent process models often assume different state disturbance,
model sets with different process models often have differ-
ent Q settings.

Setting the design parameters

IMM requires two sets of design parameters: The first is the
per filter setting, which includes the initial state estimate x0,
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its covariance P0, Q, and R. The other is the IMM-specific
setting, which includes the initial model probability π j

0 and
the transition matrix π.

x0 can be set to match the average state values or the
current estimate based on offline estimation. P0 is often
set to a diagonal matrix with diagonal terms equal to the
square of x0. Generally, x0 and P0 have little impact on the
estimate.

Q and R are often set to diagonal matrices. Ideally, the
diagonal terms should match the expected state disturbance
and measurement noise, which are often expressed relative
to the expected state and measurement values, as follows:
Qii = (Qfac ∗ E(x(i)))2 and Rii = (Rfac ∗ E(z(i)))2. Here i is
the state or measure index, Qfac and Rfac are constants that
are used as inputs to the EKF instead of Q and R. R can
also be set to measured variances from experiments under
constant state values [4].
π0 represents the prior knowledge of model probability.

If none is available it can be set to give identical probability
to each model. For π, if the expected sojourn time in model i
is τi, then its diagonal terms can be set to πii = 1 − τ−1

i ,
and the transition probability πi j, i� j can be set to πi j, i� j =

(1 − πii)/(M − 1).

States with different dimensions

A problem develops during the IMM interaction and combi-
nation steps when the drift model is used with the AR model.
The state vector of the AR model contains extra states that
represent the previous states and AR coefficients that do not
exist in the drift model. We overcome this problem by aug-
menting the state vector of the drift model x̂ j

k−1 in Eq. (12)

and x̂ j
k in Eq. (18) with suitable states to render it compatible

with that of the AR model. These extra states are set as if
the drift model were a first order AR model with a constant
first order AR coefficient of 1. Similarly the corresponding
drift model covariances P j

k−1 in Eq. (13) and P j
k in Eq. (19)

are augmented with columns and rows of zeros.
In general, if the state vectors of models differ in di-

mension, the lower dimension state vector can be augmented
with suitable states to render them compatible. If such states
are undefined, the compatible states can be mixed during the
interaction and combination steps. This may degrade the
tracking results because errors in incompatible states cannot
be corrected during the interaction step and the overall state
estimate may lose information from the models with shorter
state vectors.

Linearization and its errors

EKF must calculate the derivatives of f and h in order to
linearize process and measurement models around the cur-
rent estimate. The derivatives of the drift and AR models
can be calculated in closed form. For performance mod-
els, derivatives of common separable queueing models are
also available in Zheng et al. [9]. In general, the derivatives
of a performance model can be calculated using numerical

differentiation:

∂h/∂xi = (h(xi + δ) − h(xi))/δ (21)

Here xi is the ith state and δ is a small change.
The linearization errors can be quite large for h when

large changes in states occur. IMM requires an EKF vari-
ant called the iterated extended Kalman filter (IEKF). This
variant iteratively linearizes h to a new state estimate [7]. In
an EKF iteration, more IEKF iterations can produce better
linearization refinement. In this work, we use 5 IEKF iter-
ations, which are sufficient to speedup the convergence of
EKF estimation.

Performance prediction

There are two ways to use a tracked performance model
for resource management: the checkout method and the
integrated method. In the checkout method, one treats
the tracked performance model at time k as the up-to-date
model, then uses a separate load predictor for performance
prediction after time k [10]. In this method, one assumes
that the performance model parameters remain stationary in
the near future, so a good tracking filter should produce ac-
curate estimate of the states. In the integrated method, the
load predictor is integrated into the tracking filter. One uses
predicted performance from the tracking filter for manage-
ment decisions [6]. In this method, the performance model
parameters may vary substantially in the near future, and the
tracking filter must focus more on the prediction accuracy.
In IMM, the combined 1-step-ahead prediction of the states
and measures are computed as follows:

x̂−k+1|k
Δ
= E(xk+1|zk) =

∑
i

x̂−,ik+1ū−,ik+1 (22)

ẑ−k+1|k
Δ
= E(zk+1|zk) =

∑
i

hi(x̂−,ik+1)ū−,ik+1 (23)

1-step-ahead prediction may not provide enough fore-
sight for tasks such as server provision which take substan-
tial time to apply. One need multi-step-ahead prediction,

i.e. x̂−k+η|k
Δ
= E(xk+η|zk) and ẑ−k+η|k

Δ
= E(zk+η|zk). They can be

obtained at time k by running the IMM recursion forward
η times. During the forward recursion, no measurement is
available, so the update steps of each elemental filters can be
skipped and the predicted state can be treated as the a poste-
riori state estimate, i.e. x̂i

k
assume
= x̂−,ik .

Convergence conditions

IMM must satisfy a set of conditions in order to con-
verge [21]. Here the convergence refers to that the estima-
tion algorithm uniquely identifies states and modes in finite
time.

First, IMM must ensure that the system is observable
for each elemental Kalman filter. This requires that the
Kalman filter meets the following rank condition [7]:
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rank[HT , . . . , (HFi)T , . . . , (HFn−1)T ] = dim(x) (24)

Here n is the number of time steps of the observable period,
and dim(x) is the number of states. When the drift model
is used as the process model, this implies that the number
of measurements is greater than or equal to the number of
states and that there is no state to which all measurements
are insensitive. When the AR model is used, there is no
need to collect extra measurements for the AR coefficients
because they are estimated across time, through the trend.
The rank condition is only approximate if either the mea-
surement model or process model is nonlinear. If the rank
condition is not met, as in the case of a multi-class perfor-
mance model, then the technique introduced by Kumar et al.
can be used to increase the number of measurements [22].

Second, the true model (or one that closely resembles
to the true model) must be in the model set and unique.
This implies that the models should cover all modes of the
system and be very separate from each other. This separa-
tion should exhibit itself in the measurement residuals, es-
pecially between the filters based on the true model and mis-
matched models. Otherwise, the IMM will not be selective
in terms of choosing the correct model. This may or may not
be a problem depending on whether the real system model
is explicitly desired. If it is, then the model set should be
redesigned or more measurements collected. However, in
most cases it is not, so IMM can be used to predict system
performance regardless of whether the most probable model
is the true model or not.

Time complexity

The time complexity of IMM is linear with the number of
models, and the time complexity of EKF (the elemental
filter) is dominated by the calculation of the performance
model and its derivatives. If solving a performance model
takes T , the number of states is n, and the number of IEKF
iterations is J, then one iteration of IMM takes approxi-
mately M(n + 1)JT , where the n + 1 evaluations of perfor-
mance models represent numerical differentiation. Because
there are efficient analytical algorithms for queueing models
and their extensions, the solution can be reached quickly.
In the studies presented in the next section, one iteration of
IMM takes less than 1 second, which is fast enough for com-
mon sampling intervals, such as 30 seconds [10]. IMM can
be rendered even faster by running elemental filters paral-
lelly in multiple CPU or cores during the filtering step.

In theory, the performance models are not limited to
queueing models. Any model can be used provided that it
has a well-defined sensitive matrix (H). However, stochastic
Petri nets and other state-based formalisms are not suitable
for IMM because they do not tend to scale up well and be-
cause many of them require expensive computational simu-
lation for solution [23].

5. Experiments

This section evaluates IMM in both simulated and real case

studies. The simulation case studies demonstrate 3 typical
usage of IMM. The real case study used a benchmark ap-
plication to investigate the effectiveness of IMM under real
system.

5.1 Simulation Enviroment

To simplify the presentation, we consider a web application
as shown in Fig. 2, where the application server (AS) and
the database server (DB) reside in the same node. A sin-
gle class of 50 users alternates between visiting the site
and sleeping. The system can be modeled using a closed
queueing network with a delay center representing the user
think time. Both the think time and the service time in the
queueing model are exponentially distributed. The queueing
model has two parameters which are the system states to be
tracked:

x(1) = mean user think time between requests.
x(2) =mean service time of requests in the server CPU.
The user think time can change with the variation of re-

quest arrival rates. Higher arrival rates correspond to lower
think time. The service time can change because of system
reconfiguration, changes in the type of requests, and load-
dependent behavior [20].

The performance measures include the mean system
response time, CPU utilization of the server node, and sys-
tem throughput, all of which are widely available. In the
simulation, we obtained these data from the steady-state
outputs of queueing models, which are solved analytically
using approximate MVA. We simulated the sampling errors
by adding zero-mean white Gaussian noise to the output
of queueing models. This is reasonable because the mea-
surement noise is mainly from statistical sampling errors,
which are normally distributed [9]. The covariance matrix of
the simulated noise is similar to those of assumed Gaussian
noise in elemental filters (Q and R).

Each simulation runs for 200 time steps, and both the
states and modes of the system change. The system modes
in steps (51–150) are different from those in other steps. The
modes of the system are designed to change in the perfor-
mance model, measurement noise, and process model. The
use of IMM to track these three mode changes is illustrated
in three case studies.

In each case study, we set up three tracking filters. Two
are single-model-based EKFs designed to accurately model
individual modes of the system. The third filter is a multiple-
model Kalman filter based on IMM whose elemental fil-

Fig. 2 A simple queueing model.
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ters use the same filter setting as previous two single-model
filters.

The initial model probability π0 is set to give identical
probability to all models. The model transition matrix in
IMM is as follows:

π =

[
0.99 0.01
0.01 0.99

]

This amounts to expected mode duration of 100 steps. x0 is
set to the real states and P0 is set to a diagonal matrix with
diagonal terms equal to the square of x0. Qfac and Rfac
default to 0.01, which serves as a baseline for further ad-
justment. The default Qfac is close to the default in [6]. It
describes a standard deviation of state disturbance which is
about 0.01 times the average state values. It prepares the
filter for substantial state changes, but significant less than
the average state values. The default Rfac describes a small
measurement error, which is the statistical sampling error
using the recommended sampling interval in [9].

The derivatives of process model are calculated analyt-
ically in closed form. These are identity matrices for the
drift model; the derivatives of the performance models are
calculated using numerical differentiation (Eq. (21)).

The effectiveness of the IMM is evaluated against
single-model methods using the following tracking and pre-
diction errors:

• MARE(x): mean absolute relative error between esti-
mated and real states.
• fMARE(x): forward mean absolute relative error be-

tween predicted and real states.
• fMARE(z): forward mean absolute relative error be-

tween predicted and real measures.

fMARE defaults to 1-step-ahead prediction error,
fMARE(z, η) is used to denote η-step-ahead prediction
error. For a trace of K steps, the estimation and prediction
error of ith state or measure is defined as:

MARE(xi) = 1
K

∑K
k=1 |x̂k(i) − xk(i)|/xk(i)

fMARE(xi, η) = 1
K−η
∑K−η

k=1 |x̂−k+η|k(i) − xk+η(i)|/xk+η(i)

fMARE(zi, η) = 1
K−η
∑K−η

k=1 | ẑ−k+η|k(i) − zk+η(i)|/zk+η(i)

We report the average error over all states/measures.
Note that fMARE(z) can evaluate the effectiveness of a mea-
surement model more effectively than fMARE(x), but when
the measurements are very noisy, fMARE(x) is more effec-
tive than fMARE(z).

Four questions about IMM are addressed in the follow-
ing case studies:

1. Can the method track changes in the mode of the sys-
tem?

2. How does the method compare to single-model meth-
ods in terms of tracking and prediction?

3. What is the influence of design parameters (Q, R, π)?
4. What if a mismatched model set is used? A model set is

mismatched if none of models in the set is sufficiently

accurate?

5.2 Case 1: Performance Model Changes

We consider the changes in the performance model, specif-
ically the changes in the approximate service discipline for
modeling server CPU. Two widely used service disciplines,
PS and FCFS, are considered. The choice of discipline
within a performance model has been shown to depend on
the relative size of request service time and the OS schedul-
ing time-slice [8]. As the request service time changes, the
close-to-truth service discipline may also change. This mo-
tivates us to simulate a system that runs in one of the follow-
ing two modes at different times:

1. PS mode: The service discipline of the server is PS.
The service time is 10 ms and sleep time is 1 s.

2. FCFS mode: The service discipline of the server is
FCFS. The service time is highly variable, and the
squared coefficient of variation (SCV) is 10. The ser-
vice time is 5 ms and sleep time is 0.5 s.

Rfac of simulated noise in both modes is set to 0.01, which
matches the default Rfac setting for filters and describes an
enviroment with low noise level. Note that the queueing
model of FCFS mode does not have a product form solution.
We solve it using the MAP-AMVA method [24].

We assume at first the modes are known to the modeler,
so we model these two modes using exactly the same per-
formance models as those used to generate simulation data.
We also used the drift process model. Table 3 summarizes
the IMM configuration.

Mode tracking

IMM’s ability to track system mode changes can be eval-
uated using the posterior probabilities of its elemental fil-
ters. Figure 3 (a) shows that the estimated M-FCFS prob-
abilities match expected FCFS mode probabilities closely.
Even though the initial M-FCFS probability is 50%, it drops
to nearly zero at the end of first step. Then IMM identifies
the changes in modes after a delay of only a few steps (one
step to switch to M-FCFS, and three steps to switch back to
M-PS).

State tracking

While the system mode is being tracked, IMM can track
the changes in states adaptively using different performance
models. We show the service time tracking error of various
filters in Fig. 3 (b). IMM tracks the real states of the sys-
tem significantly better than the single-model filters. Further

Table 3 Settings of IMM elemental filters and their corresponding
single-model filters in Case 1.

Filter f Qfac h Rfac
M-PS

Drift 0.01
PS queue

0.01
M-FCFS FCFS queue (SCV = 10)



1316
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

(a) M-FCFS probabilities of IMM (b) Tracked service time error (c) Predicted response time error

Fig. 3 The system with performance model changes (Case 1).

Table 4 IMM state tracking errors in MARE(x)(%) of Case 1 when Qfac
and Rfac vary.

Qfac
Rfac

0.01 0.02 0.05 0.1 0.2 0.5 1
0.01 0.82 4.79 6.31 8.68 12.70 19.64 21.68
0.02 0.81 0.87 5.15 6.20 7.74 14.24 18.55
0.05 1.22 0.99 0.81 1.48 2.94 8.54 13.07
0.1 1.28 1.22 0.86 0.87 2.00 6.87 10.03
0.2 1.30 1.28 1.16 0.83 1.90 6.41 8.33
0.5 1.30 1.30 1.27 1.22 2.10 6.27 7.26
1 1.30 1.30 1.29 1.28 2.35 6.36 6.90

investigation has shown that the states of the single-model
filters converge to the wrong states when there is a model
mismatch. When system mode and states changes together
(step 51 and 151), the tracking error spikes. This is expected
because IMM need to adjust the state estimates first before
it can switch to a better model.

While both the states and modes are being closely
tracked, IMM can give better performance prediction than
the single-model filters can, as shown in Fig. 3 (c).

Influence of design parameters

In a single-model filter, smaller Q can make the filter more
conservative thus less affected by noise, while smaller R can
make the filter more aggressive thus react to changes faster.
The behavior of a filter is determined by the relative ratio
of R to Q, rather than their absolute values [4]. However,
in the case of multiple-model filter, from the Eq. (16) we
can see that Q and R have additional effect on the model
likelihood. Larger values of Q and R can make the pdf of
Gaussian noise more spread out thus make a mismatched
model more probable.

To investigate the actual influence of Q and R on track-
ing results, Qfac and Rfac are varied over two orders of mag-
nitude. Results are shown in Table 4. Above the diagonal of
the table, the error increase steadily as Rfac/Qfac increases.
The error can become large when Rfac/Qfac is 100. Below
the diagonal, the error is much smaller and does not varies
much. Along the diagonal, where ratio of Q to R is identi-
cal, the tracking error is nearly the same with Rfac from 0.01

to 0.2, but when Rfac > 0.2 the tracking error triples. After
investigating the posterior probability of M-FCFS in FCFS
mode, we find that when Qfac = Rfac = 0.5, the probability
converges to 27% instead of one. The large tracking error
caused by model mismatch is treated as measurement noise,
which prevents IMM from switching to the better M-FCFS.

We also investigate the influence of the transition ma-
trix π on state tracking. We use identical diagonal terms in π,
and repeat the tracking experiments with the transition prob-
ability (πi j, i� j) range from 0.5 to 0.0001. The results show
the tracking accuracy is not sensitive to the transition prob-
ability setting when the modes can be well approximated
by the models in the model set. When a model mismatch
exists, the large transition probability causes IMM to set-
tle into a new model mixture more quickly at the cost of
slightly higher tracking error in the mode in which no model
mismatch exists.

Mismatched model sets

Often the accurate performance model of the system is un-
known, thus here we consider the impact of mismatch be-
tween mode and model. The elemental filter M-FCFS is
modified to have different SCV from the actual one. The
impact of incorrect SCV settings on tracking and predic-
tion is summarized in Table 5. We also list the results of
a single-model filter (EKF) in the first two rows. Note that
the performance of a PS queue is similar to that of a FCFS
queue with SCV = 1. When SCV = 10, M-FCFS can match
FCFS mode exactly, so the tracking and prediction error is
minimal. When SCV = 5 or 15, in FCFS mode, IMM still
switches to M-FCFS with a probability of one. This is the
model that most closely resembles the real mode. The track-
ing and prediction results suffer, but tend to remain better
than those of the single-model filters. Because the perfor-
mance of real FCFS mode is somewhere between that of
M-PS and M-FCFS when SCV = 15, a better estimate can
be obtained by mixing their results more evenly. When IMM
is configured with Qfac = Rfac = 0.2, M-FCFS probability
converges to 73.74%, and the tracking and prediction re-
sults are good, close to the case of SCV = 10. However,
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when Rfac > 0.2, IMM begins to treat the model mismatch
as measurement noise and uses mismatched models in the
output combination. This causes the accuracy of tracking
and prediction to deteriorate.

5.3 Case 2: Changes in Measurement Noise

We here consider the case of changes in measurement noise
caused by variations in the load. Here the measurement
noise is mainly statistical sampling error, and it is higher
when system throughput is low [9]. The simulated system
runs in one of the following two modes at different times:

1. Noisy mode: The service time is 5 ms and sleep time
is 1.5 s. System throughput is low, so level of measure-
ment noise is high, and Rfac of simulated noise is set
to 0.1.

2. Noise-free mode: The service time jumps to 15 ms and
sleep time to 0.5 s. System throughput is rather high,
so level of measurement noise is low, and Rfac of sim-
ulated noise is set to 0.01.

In IMM, we use two filters with different Q and R settings.
The one with high level of measurement noise responds con-
servatively to changes in states and is used to model the
noisy mode. The one with low level of measurement noise
reacts aggressively to changes in states and is used to model

Table 5 The impact of model mismatch on state tracking and perfor-
mance prediction of Case 1. M-FCFS in IMM uses various SCV and the
FCFS mode uses SCV = 10. Qfac and Rfac default to 0.01.

(M-FCFS) M-FCFS MARE(x)(%) fMARE(z)(%)
Type

SCV prob(%)
PS FCFS PS FCFS

mode mode mode mode
EKF 1 - 0.73 13.64 1.58 12.82

10 - 16.59 0.46 11.82 1.36
10 99.01 1.03 0.60 1.63 1.30
5 99.01 1.02 6.48 1.98 10.21

IMM 15 99.50 1.09 4.56 1.81 7.69
15a 73.74 1.09 1.44 1.90 2.29
15b 56.60 2.64 3.36 4.04 2.66

aQfac = Rfac = 0.2
bQfac = Rfac = 0.5

(a) M-LowR probabilities of IMM (b) Tracked service time error (c) Predicted throughput error

Fig. 4 The system with changes in measurement noise (Case 2).

the noise-free mode. Their levels of process noise also have
different values. These two models are therefore well sepa-
rated. Various Q and R settings are discussed elsewhere in
this section. Table 6 summarizes the IMM configuration.

Mode tracking

We investigate the estimated M-LowR probabilities
(Fig. 4 (a)). The probabilities do not match the expected
noise-free mode probabilities exactly. However, during the
steps when changes in states occur (steps 51 and 151),
IMM quickly switches to M-LowR, which allows IMM to
track large changes in states in a timely manner. After step
152, IMM quickly switches back to M-HighR and remains
mostly in M-HighR afterwards. This enables IMM to fil-
ter more noise in the noisy mode. We note that the spikes
of M-LowR probability in the noisy mode occurs when the
measurement noise happens to be small for several steps;
the low probability of M-LowR after step 52 occurs because
the actual states remain constant during the noise-free mode.
As shown later, in both scenarios, the expected model fit the
data well (has small tracking error), but the other model fits
equally well or even better.

State tracking

Figure 4 (b) shows that IMM has optimal tracking results de-
spite the discrepancy between estimated and expected model
probabilities. During the noisy mode, the level of measure-
ment noise is high, and M-LowR overreacts to the changes
in performance measures and fails to reduce the noise. The
tracked states fluctuate greatly with the noise (large MARE
oscillates around 20%). In contrast, IMM continues to re-
duce noise by switching to the more conservative M-HighR.
The spikes in M-LowR probability do not increase MARE

Table 6 Settings of IMM elemental filters and their corresponding
single-model filters for Case 2.

Filter f Qfac h Rfac
M-HighR

Drift
0.01

PS queue
0.1

M-LowR 0.1 0.01
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because at those moments M-LowR also has low MARE.
In steps 51 and 151, large changes in states occur. How-
ever, M-HighR is too sluggish to keep up with rapid changes
(MARE remains large for many steps). In contrast, IMM
can track the large changes in states by switching to the
more aggressive M-LowR. We note here that the interaction
step is crucial after step 151. A separate experiment (not
reported here) showed that MM methods without this step,
such as the autonomous MM [13], also switch to M-HighR
but the states of M-HighR remain uncorrected, which causes
inaccurate state estimation. From step 52 to 150, IMM un-
expectedly switches to M-HighR, but this do not increase
MARE because it is beneficial to trust the process model
when the states remain constant. Figure 4 (b) suggests that
as long as the model set covers the system modes well, IMM
can have optimal tracking results.

We further investigate the performance prediction re-
sults in Fig. 4 (c). After the state changes in steps 51
and 151, the predicted throughput of M-HighR deviates
from measurements greatly (fMARE remains large for many
steps). This is because M-HighR fails to change the service
time to the real one in a timely manner. In the noisy mode,
M-LowR cannot follow the random changes in performance
measures due to noise, its prediction always lags one step
behind. This causes an inaccurate and unstable prediction
(fMARE peaks at nearly 80%). In contrast, the prediction
of IMM is both timely and stable.

We summarize the tracking and prediction results
quantitatively in Table 7. In addition to the single-model
filters and IMM, we included an optimal single-model filter
(M*). This filter was tuned through experiments with dif-
ferent combinations of Qfac and Rfac from 0.01 to 1. As
shown in the table, by combining two inaccurate elemental
filters, M-HighR and M-LowR, IMM becomes even more
accurate with respect to state tracking and prediction than
the optimal single-model filter whose Q and R settings are
not known ahead of time.

Influence of design parameters

Through repeated experiments similar to those in Case 1,
we find that the transition probability (πi j, i� j) has little influ-
ence on tracking. The tracking errors in terms of MARE(x)
remain below 3% when transition probability ranges from
0.0001 to 0.1. However, starting at 0.2, errors begin to grow
but remain smaller than those of the optimal single-model

Table 7 State tracking and prediction errors of IMM comparing with its
elemental filters and an optimal single-model filter in Case 2.

MARE(x)(%) fMARE(x)(%)
Filter Noisy Noise-free

Overall
Noisy Noise-free

Overall
mode mode mode mode

M-HighR 11.65 5.07 8.36 12.81 6.65 9.72
M-LowR 14.00 0.77 7.39 15.12 2.03 8.54

M*a 8.49 0.79 4.64 15.52 1.63 8.54
IMM 4.26 0.25 2.26 5.34 1.79 3.57

aOptimal single-model filter, Qfac = Rfac = 0.01

filter (4.64%). When the transition probability is large, IMM
frequently alternates between models in the noisy mode,
which can slightly interfere with the noise reduction. In the
noise-free mode, the large transition probability causes the
M-LowR probability to fluctuate around a constant of about
50% instead of 100%. This does not degrade the tracking
results by much.

In Case 2, the only difference between two elemental
filters is Q and R, so their impact on tracking can be said to
be related to the problem of mismatched model sets, which
is discussed as follows.

Mismatched model sets

The default R values of the two elemental filters in Case 2
are the same as those of corresponding simulated noise. In
practice, the process noise and (to a lesser extent) the mea-
surement noise can only be approximated. It is important to
understand the impact that setting these noise covariances
incorrectly in the elemental filters can have on tracking.

We fix the Qfac of M-HighR and Rfac of M-LowR
to a low value (here 0.01), and vary other covariance fac-
tors from 0.01 to 1. The tracking experiments were per-
formed and MARE(x) is given in Table 8. We find that
IMM provides more accurate state tracking than the opti-
mal single-model filter (whose MARE(x) is 4.64%) in 25
out of a total of 49 settings. The optimal tracking results
(in bold) are produced when the Rfac of M-HighR is within
50–200% of the real Rfac and Qfac of M-LowR is not too
small. The worst case occurs in the upper right corner,
where M-HighR blindly trusts the process model (too con-
servative) and M-LowR does not trust measurement enough
(not aggressive enough).

This experiment suggests that the model set design
should avoid including a filter with a large Rfac/Qfac ratio
and always include a filter with a small Rfac/Qfac ratio.
The filter with large Rfac/Qfac tends to overtrust the pro-
cess model, so the inclusion of such filter can cause IMM
to respond slowly to the sudden change in states. The filter
with small Rfac/Qfac is very sensitive to the state changes,
so the inclusion of such filter can serve as a defensive strat-
egy against rapid changes.

Table 8 The state tracking errors in MARE(x)(%) of Case 2 when IMM
uses a M-HighR with varying Rfac and a M-LowR with varying Qfac. Rfac
of M-LowR and Qfac of M-HighR fixed at 0.01. Optimal regions are shown
in bold.

Qfac of Rfac of M-HighR
M-LowR 0.01 0.02 0.05 0.1 0.2 0.5 1
0.01 4.64 3.70 3.77 6.69 14.78 18.73 32.01
0.02 5.64 3.70 3.16 5.40 14.69 18.77 32.23
0.05 6.76 4.63 2.38 2.36 2.60 19.55 26.93
0.1 7.24 5.91 2.92 2.26 2.32 6.55 27.48
0.2 8.10 7.04 2.88 2.63 2.43 4.15 4.58
0.5 8.44 7.33 2.79 2.70 2.76 6.00 4.19
1 8.34 7.02 2.89 2.72 2.83 4.21 7.52
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5.4 Case 3: Process Model Changes

We consider two process models: Drift and AR. AR models
excel in the prediction of short-term state, but they have
a significant limitation. The state trends must continue for
one the order of steps in order to enable stable tracking [6].
In contrast, the drift model can track large state changes sep-
arated by just a few steps, but it cannot predict trends [3]. We
show that IMM can combine the strength of these two mod-
els for tracking time-varying system. We simulate a system
that has the following two modes:

1. Smooth mode. The system states undergo a slow sinu-
soid variation. The service time is 10 ms and sleep time
is 2 s.

2. Chaotic mode. The system states drift randomly, but
keep system utilization below 80%.

Rfac of simulated noise in both modes is set to 0.02, which
describes a slightly more noisy enviroment. Such noisy en-
viroment needs a better process model to filter noise. The
state changes are illustrated in Fig. 5.

We use two filters with different process models in
IMM: one filter had a first-order AR model and a low pro-
cess noise level for the state changes in the smooth varying

Fig. 5 Real states.

(a) M-Drift probabilities of IMM (b) Tracked sleep time AR coefficient (c) 3-step-ahead utilization prediction error

Fig. 6 The system with process model changes (Case 3).

region, the other filter had a drift model and a high process
noise level for the chaotic region. Table 9 summarizes the
IMM configuration.

Mode tracking

As in Case 1, the M-Drift probabilities match the expected
chaotic mode probabilities closely (Fig. 6 (a)). In particu-
lar, after the AR model learns the trend in the first few
steps of the smooth mode, IMM quickly identifies the AR
model as the more probable model. After the system goes
into the chaotic mode and the trend oscillates, IMM quickly
switches to the drift model, which fits the state changes bet-
ter. During the chaotic mode, IMM occasionally tries to
switch to the AR model (M-Drift probabilities drop) when
the state changes trend happens to be consistent in sev-
eral steps, which means IMM is agile enough to utilize AR
model for better state prediction in a short stable period.

State tracking

Because the measurement noise is quite small, the state
tracking error is also quite small for all models, MARE is
around 1%. The AR model has extra states that correspond
to the state changes trend. We investigate the estimated
trend of single-model M-AR filter and that of elemental fil-
ter M-AR in IMM (Fig. 6 (b)). During the smooth mode, be-
cause IMM switches to the AR model, the trend estimated
is the same as that estimated using the single-model AR fil-
ter (around 0.98 when the sleep time is decreasing and 1.02
when it is increasing). During the chaotic mode, however,
M-AR in IMM differs significantly with the single-model
AR filter: The single-model AR filter cannot follow the tran-
sient trend of state changes, and it fails to find a stable value

Table 9 Settings of IMM elemental filters and their corresponding
single-model filters in Case 3.

Filter f Qfac h Rfac
M-AR AR(1) 0.01

PS queue 0.02
M-Drift Drift 0.1
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Table 10 Prediction errors of IMM relative to their elemental filters and
an optimal single-model filter in Case 3.

fMARE(z,1)(%) fMARE(z,3)(%)
Filter Smooth Chaotic

Overalla
Smooth Chaotic

Overall
mode mode mode mode

M-AR 2.85 10.95 7.03 5.29 20.95 14.42
M-Drift 3.23 9.10 6.28 7.28 14.74 12.19
M-AR*b 2.67 9.39 6.17 4.46 16.51 11.34

IMM 2.42 9.15 5.91 3.38 14.91 10.42

aThis is not solely an average value. It contains predictions across the
mode boundary.

bThe optimal M-AR. Qfac for real states are 0.1. Qfac for AR coeff.
are 0.01

(AR oscillates around 1). In contrast, M-AR in IMM is al-
most stable at a value of 1 as a result of the interaction (IMM
interaction step) with the dominating M-Drift model, which
always assumes trend coefficient of value 1. The difference
among filters in trend estimation leads to different levels of
prediction accuracy, especially with respect to multi-step-
ahead predictions.

The 3-step-ahead utilization prediction error is shown
in Fig. 6 (c). In the smooth mode, the trend remains sta-
ble, and M-AR can utilize estimated trends to produce bet-
ter state predictions. (Its fMARE is smaller than that of
M-Drift.) In the chaotic mode, the state changes randomly,
and the estimated trend of M-AR becomes unreliable. As
a result, the estimated states of M-AR often overshoot the
real state, which causes large, frequent prediction errors of
more than 60%. These inaccurate predictions may trig-
ger false alarms and cause unnecessary resource manage-
ment activities. Instead of following transient trend, M-Drift
projects the current state estimate constantly into the future.
This has been shown to be more accurate in the chaotic
mode. (Its fMARE is smaller than that of M-AR.) By dy-
namically switching between M-AR and M-Drift, IMM can
produce accurate predictions in both modes.

We summarize prediction results quantitatively in Ta-
ble 10. In addition to M-AR, M-Drift, and IMM, we also
included an optimal M-AR (M-AR*), which was obtained
through experiments with different Qfac from 0.001 to 0.1.
IMM produces the best predictions of any the filters studied
here.

Influence of design parameters and mismatched model sets
Because the AR(1) and drift model are already approx-

imation of true state evolution process, the only design pa-
rameters are Q. We vary Qfac of from 0.001 to 1 and find
that as long as the Qfac of M-Drift is 10 times larger than
that of M-AR, optimal prediction accuracy can be obtained
(Table 11). The two exceptions are shown in the upper left
and bottom right corners of Table 11. In the upper left cor-
ner, the Qfac of M-Drift is close to the real Qfac in the
smooth mode, therefore M-Drift is more probable than the
expected model, M-AR, whose Qfac is too small. In the
bottom right corner, the Qfac of M-AR is close to the real
Qfac of the chaotic mode, therefore M-AR is more probable
than the expected model, M-Drift, whose Qfac is too large.

Table 11 3-step-ahead prediction errors in fMARE(z,3)(%) of Case 3
when IMM uses M-AR and M-drift with varying Qfac. Rfac of both models
fixed at 0.02. Optimal regions are shown in bold.

Qfac of Qfac of M-Drift
M-AR 0.01 0.02 0.05 0.1a 0.2 0.5 1
0.001 13.45 12.61 12.24 10.43 10.39 10.41 10.42
0.002 12.22 12.61 10.28 10.18 10.20 10.22 10.24
0.005 10.86 10.42 10.21 10.20 10.22 10.27 10.30
0.01b 13.58 10.79 10.43 10.42 10.48 10.52 10.60
0.02 15.30 15.30 10.99 10.68 10.75 10.99 11.44
0.05 16.42 17.11 16.93 11.97 14.12 15.52 15.81
0.1 17.03 17.87 16.72 12.83 12.74 16.76 16.82

aReal Qfac of Chaotic mode
bReal Qfac of Smooth mode

When designing a model set with different process mod-
els, the suggestion is to ensure that Q of a process model
matches the magnitude of changes in states of the target op-
erating region or at least matches it better than any other
process model in the set.

As in Case 2, transition probability was found to have
little influence on the tracking and prediction results.

5.5 Case 4: Validation on a Practical System

TPC-W is a standard web-based benchmark. It implements
the basic functions of online bookstores. We deployed
TPC-W on a platform consisting of Tomcat 6.0 and MySQL
5.1. Tomcat and MySQL run on two virtual machines using
Ubuntu 10.04 as the OS. The workload was generated using
100 emulated browsers in a separate server. The perfor-
mance model of the system is a closed product-form queue-
ing network consisting of 2 PS queues representing web and
DB CPU, and 1 delay center representing network delay.
The disk operation is not considered in this case. All servers
in our test-bed has one 2.60 GHz Pentium dual-core proces-
sor, and are interconnected using switched ethernet.

The benchmark contains 14 different requests. We used
the most common shopping mix as the workload. To re-
flect the real workload variation, we used the ClarkNet ac-
cess log [26], collected from a web server of a commercial
Internet provider, to guide the load generation. The think
time of the emulated browsers was changed every minute
so that the arrival rates, scaled down with a constant factor,
matched the one of web page requests in the ClarkNet log.
The portion of ClarkNet log used was from Aug. 28 to Aug.
29. The traffic of ClarkNet shows typical diurnal pattern,
which increases gradually to a peak in the early afternoon,
then drops gradually to a lowest level in the early morning.

Besides the gradually changes in traffic volume, practi-
cal system can also undergo sudden large changes in states
as a result of system reconfiguration and software upgrade.
We injected large changes in states by adding a controlled
CPU-intensive loop in the code of web server servlets. As
a result, the service time of requests in the web server dou-
bled after 6 pm and changed back to the original one after
6 am.

We used the model set of Case 3. The AR(1) model
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Table 12 3-step ahead prediction errors in fMARE(z,3)(%) of IMM rel-
ative to their elemental filters and an optimal single-model filter in Case 4.

Smooth Chaotic
Overall

mode mode
M-AR 4.75 14.86 6.77

M-Drift 7.54 8.89 7.81
M-AR*a 5.20 11.82 6.52

IMM 4.41 9.23 5.37

aThe optimal M-AR. Qfac = 0.04

with a small Qfac is used to track the gradual changes in
think time and service time due to load dependent behav-
ior. The drift model with a larger Qfac is used to track the
sudden changes in service time. The CPU utilization was
collected using Sysstat tools, and the end-to-end response
time and throughput was collected in the load generator. As
in [6], we chose a relative large sampling interval of 15 min.
Since the real traffic as in the ClarkNet log is quite bursty,
we smoothed the data by calculating a moving average with
a window of 3 samples before feeding it into the tracking
filters.

Unlike the simulation experiments, the real states are
unknown, therefore we evaluate the predictive ability of dif-
ferent filters using only fMARE(z, 3). There are 2 potential
modes in the system. Normally, the system is in a smooth
mode where states change gradually with the variation of
traffic. There is also a transient chaotic mode where sys-
tem states undergo sudden large changes. We use “chaotic
mode” to refer to the subsequent 10 time steps after the in-
jected state changes. As shown in Table 12, in overall, IMM
has significant smaller prediction error than its elemental fil-
ters and the optimal single-model filter. In particular, in the
chaotic mode, by temporally switching the process model
to the drift model, the prediction error of IMM decreases
by 38% (14.86 vs 9.23). In other settings of Qfac and Rfac
for elemental filters, IMM shows similar accuracy improve-
ment. The findings are consistent with those found through
simulation.

6. Discussion

This work presents the first successful attempt to adapt
Kalman filter models when tracking parameters of perfor-
mance models. Our case studies show that the proposed
IMM based method can improve tracking and prediction
accuracy significantly. Setting the parameters for IMM is
not difficult, and a wide range of parameters are adequate
to produce optimal tracking results. However, the setting
of Q and R is more restrictive than in single-model filters.
As shown in Case 1, the absolute value of Q and R can in-
fluence the probabilities of models, so Q and R should not
deviate greatly from the real change magnitude observed in
the data. IMM also renders the parameterization of filters
easier because one can include multiple models with differ-
ent Q and R values. In particular, one can include a filter that
has small Q which is considered dangerous in single-model
filter [9]. This remains true as long as one also includes a fil-

ter that has a large Q value. The extra design parameter in-
troduced by IMM, the model transition matrix π, is easy to
set. The transition probabilities ranging from 0.0001 to 0.1
can consistently give good tracking results.

IMM is not limited to two models. Rather, it can easily
scale to a model set with 10 models as long as the computa-
tion load is acceptable [15]. However, because large model
sets are difficult to design, smaller ones are often preferable.

The biggest problem in MM methods is the problem
of designing a set of models that complement each other
and cover various system modes. Our three case studies
offer a good start, but more development is needed. For
performance models, heterogeneous model sets are possi-
ble. These include queueing networks with different num-
bers of queues and different structures, even the combination
of queueing models and blackbox models [27]. For process
models, the drift and AR models are the only serious op-
tions. Models that consider the correlation between different
states could be useful for tracking multi-class performance
models. For error covariance, experimental methods such as
those mentioned previously may be used to determine mul-
tiple Q and R settings [4].

The model set design problem is more difficult for per-
formance models with complex structure and large num-
bers of parameters. Each queue may have different behavior
mode (such as service discipline). Each parameter may vary
in manner and magnitude. Each measurement may have dif-
ferent noise levels. To model all the behavioral uncertain-
ties, the model set must include all possible combinations
of modes. The number of combinations can be quite large
which is not desirable. In practice, one should identify and
model the behavior uncertainties that have the largest impact
on system performance.

IMM assumes that the system mode can be represented
sufficiently accurately at any time by one of the models in
the set. Problems may arise if none of the models is accu-
rate enough. We investigate one such case in Case 1. IMM
can give estimates as accurate as the best single-model fil-
ter. Mixing the models more evenly by properly increas-
ing measurement covariance R can give even better results.
Further work is required to determine the conditions under
which mixing models evenly are optimal. Another possible
solution is to use the so-called variable structure MM meth-
ods [13]. These methods can generate models that fit mea-
surements better than existing models in the set and remove
unlikely models from the set dynamically.
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