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Admissible Stopping in Viterbi Beam Search for Unit Selection
Speech Synthesis

Shinsuke SAKAI†a) and Tatsuya KAWAHARA†, Members

SUMMARY Corpus-based concatenative speech synthesis has been
widely investigated and deployed in recent years since it provides a highly
natural synthesized speech quality. The amount of computation required in
the run time, however, can often be quite large. In this paper, we propose
early stopping schemes for Viterbi beam search in the unit selection, with
which we can stop early in the local Viterbi minimization for each unit as
well as in the exploration of candidate units for a given target. It takes ad-
vantage of the fact that the space of the acoustic parameters of the database
units is fixed and certain lower bounds of the concatenation costs can be
precomputed. The proposed method for early stopping is admissible in that
it does not change the result of the Viterbi beam search. Experiments us-
ing probability-based concatenation costs as well as distance-based costs
show that the proposed methods of admissible stopping effectively reduce
the amount of computation required in the Viterbi beam search while keep-
ing its result unchanged. Furthermore, the reduction effect of computation
turned out to be much larger if the available lower bound for concatenation
costs is tighter.
key words: speech synthesis, unit selection, concatenation cost, Viterbi
search

1. Introduction

The corpus-based concatenative approach to speech synthe-
sis by unit selection has been widely explored in the re-
search community in recent years [1]–[7]. In this approach,
an optimal sequence of synthesis units with various gran-
ularities (e.g. Hidden Markov Model (HMM) state, half-
phone, phone, or non-uniform contiguous sequence of them
extracted from the corpus) are chosen from a large inven-
tory of units to synthesize speech for the input text through
the minimization of the overall cost on the unit sequence.
The overall cost is typically modeled as the weighted sum
of target costs and concatenation (or join) costs defined on
various features of synthesis units such as spectral shape, in-
tonation contour, and segmental duration. The sequence of
units to be concatenated to form the output is usually cho-
sen by some sort of Viterbi algorithm with beam pruning
where an optimal unit sequence is obtained by accumulated
cost minimization based on the dynamic programming prin-
ciple. The amount of computation, however, is often quite
large due to the large size of the unit database that some-
times amounts to more than ten hours of recorded speech.
Various techniques have so far been proposed to reduce the
amount of run-time computation, such as caching of con-
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catenation costs [8] and segment preselection based on us-
age statistics [9]. These techniques have been shown to be
effective and can be applied together with our methods pre-
sented in this paper, which are independent of these tech-
niques.

In this paper, we propose two novel schemes for reduc-
ing the amount of computation in the Viterbi beam search
for unit selection, by taking advantage of the prior knowl-
edge about the fixed acoustic space of the unit database [10].
Specifically, we use the knowledge of lower bounds of the
concatenation costs. One of the two schemes is “admissible
stopping in the local minimization”, with which we can stop
early in the local Viterbi minimization over the partial se-
quences of units up to the previous target position for a new
candidate unit retrieved from the database in the current tar-
get position. The other scheme is “admissible stopping for
the beam”, in which we can stop early in the exploration of
candidate units from the database for the current target.

These “admissible stopping” schemes are named after
“admissible heuristic functions” h(n) used in the A∗ algo-
rithm for graph search [11]. A heuristic function h(n) in
graph search is called admissible if it always gives a lower
bound of (i.e. the value smaller than or equal to) the true
cost of reaching the goal from the current node n. It is
also known that the search is usually faster if the heuris-
tic function h(n) is closer to (i.e. the better estimate of) the
true cost h∗(n). By metaphor with admissible heuristic func-
tions, the proposed early stopping schemes are named “ad-
missible stoppings” since they utilize lower bounds of the
concatenation costs and are guaranteed to yield exactly the
same results as the ordinary Viterbi beam search as long as
the lower bounds of concatenation costs are correctly com-
puted. It is also naturally expected that the search requires
less computation if these bounds get tighter i.e. closer to the
true minimums of the costs.

In the next section, we describe the basic Viterbi beam
search algorithm utilized in the unit selection. In the suc-
ceeding two sections, we present the two early stopping
schemes, namely, the “admissible stopping in the local min-
imization” and the “admissible stopping for the beam” with
mathematical rationale that allows us to stop in the middle of
the procedure without any approximation errors. In Sect. 5,
we present experimental results to show that the proposed
scheme of admissible stoppings are effective with concate-
nation costs based on a probabilistic method as well as a
distance-based method. We also demonstrate that we have
larger reduction of computation if we have a tighter lower
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Fig. 1 A schematic diagram that depicts local minimization in the Viterbi
algorithm. A gray rectangle labeled ti stands for the i-th target. Dark round-
corner rectangles labeled k = 1, · · · , k = Ki are candidate units for the i-th
target shown above them.

bound for the concatenation costs available. The final sec-
tion presents our conclusions.

2. Unit Selection with Viterbi Beam Search

In this section, we review the basic Viterbi beam search
framework for unit selection in concatenative speech syn-
thesis. At the beginning of the unit selection, we are pro-
vided with a sequence of I target feature vectors, t1, · · · , t I ,
generated from the text processing module. Each of these
feature vectors ti usually comprises phonetic and prosodic
properties, such as phone context, duration, and F0, that we
wish the resultant units to have. Given the sequence of target
feature vectors t1, · · · , tI , we are to find a sequence of wave-
form fragments, or units, U = u1, · · · , uI , that minimizes the
total cost C(U ). This total cost C(U ) is defined as the sum
of all target costs over the unit sequence u1, · · · , uI and all
concatenation costs over the sequence,

C(U ) =
I∑

i=1

Lt(ui ) +
I∑

i=2

Lc(ui−1, ui ), (1)

where Lt(ui ) is the local target cost for the unit ui and
Lc(ui−1, ui ) is the local concatenation cost for having the unit
ui after ui−1. Minimization of the total cost C(U ) is done ef-
ficiently by the Viterbi algorithm. Figure 1 is a schematic
diagram that depicts a local minimization step in the algo-
rithm. The Viterbi algorithm performs global optimization
efficiently by repeating local optimizations. However, when
the number of candidate units is very large, the amount of
computation can get too large to be practical. Therefore,
beam pruning is usually employed and only a limited num-
ber of partial sequences of units are kept after local opti-
mizations at each target position to overcome this problem.
The basic algorithm of this Viterbi beam search is depicted
in Fig. 2.

Basic Viterbi beam search

(Notation)
ui(k): k-th database unit for the i-th target.
Ki: the number of database units for the i-th target.
Kθ: the beam width or the number of hypotheses (partial
unit sequences) retained at each stage of the iteration.
Lt(u): the local target cost for the unit u.
Lc(u1, u2): the local concatenation cost for having the unit
u2 after the unit u1.
C∗(u): the accumulated cost for the hypothesis ending with
the unit u.
bt(u): backtrace information, i.e. the predecessor of the unit
u determined by the local minimization.
{u1, u2, . . . }: a set of hypotheses each of which is identified
by its last (i.e. right-most) unit, u1, u2, . . ..

1. Initialization
C∗(u1(k)) = Lt(u1(k)) for k = 1, · · · ,K1.

Prune the initial set of hypotheses, {u1(1), · · · , u1(K1)}, pre-
ferring hypotheses with lower costs to keep at most Kθ units.

2. Iteration
Repeat the following for the target indices i = 2, · · · , I:

For all the unit indices k = 1, · · · ,Ki for the i-th target:

C∗(ui(k)) = min
j
{C∗(ui−1( j )) + Lc(ui−1( j ), ui(k ))}

+Lt(ui(k ))

bt(ui(k)) = arg min
j
{C∗(ui−1( j ))+Lc(ui−1( j ), ui(k ))}

Prune the new set of hypotheses up to the i-th target
position, {ui(1), · · · , ui(Ki)}, to keep at most Kθ hy-
potheses preferring hypotheses with lower values of
C∗(ui(k)).

3. Termination

u∗I = arg min
k

C∗(uI(k))

Starting from u∗I , backtrace bt(u∗I ) recursively, and retrieve
the ui(k)’s for i = 1, · · · , I − 1 that lead to u∗I .

Fig. 2 Basic Viterbi beam search for the unit selection.

3. Admissible Stopping in Local Minimization

The number of the partial unit sequences (we call them hy-
potheses, hereafter) up to the preceding target position that
are examined in a local minimization of Viterbi beam search
may be very large and it can often be in the order of thou-
sands. Furthermore, the concatenation cost between a hy-
pothesis up to (i−1)-th target position and a candidate unit at
the i-th target position is usually different across hypothesis-
unit combinations and must be computed based on their in-
dividual acoustic feature values, unlike the state transition
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Fig. 3 Admissible stopping in local minimization. Cumulative costs
C∗(ũi−1( j )) up to the previous target position are sorted in an ascending
order (gray bars). We see that the sum of the cumulative cost and the con-
catenation cost Lc(ũi−1( j ), ui(k )) is always larger than the minimum after
a certain value of j ( j = 3).

probabilities in HMMs. Therefore the situation is quite dif-
ferent from typical word-internal local Viterbi maximiza-
tions seen in left-to-right HMMs for speech recognition in
which maximizations are done over typically two candidates
and the transition probabilities are fixed parameters of the
model. Thus, there is much room in the computation to be
reduced by introducing efficient “pruning” schemes. For-
tunately, in the corpus-based speech synthesis, the acoustic
space of the synthesis units, i.e. the set of waveform frag-
ments extracted from the corpus is fixed and it is possible
to provide the speech synthesis system with a useful prior
knowledge about the relationships among synthesis units,
such as a set of lower bounds of concatenation costs for pos-
sible phone contexts.

For local Viterbi minimizations at every target posi-
tion, we store the hypotheses that have survived the beam
pruning in an ascending order of their cumulative costs
C∗(ui(k )), where ui(k ) represents the last unit of a hypoth-
esis spanning from the first through the i-th target posi-
tion. The list of hypotheses after sorting is denoted as
〈ũi(1), · · · , ũi(K̃i) 〉, where the hypotheses are identified by
their last units ũi(k), · · · , ũi(K̃i). Usually, the number of hy-
potheses K̃i is equal to the beam width Kθ, although it may
sometimes happen that the number of the hypotheses is al-
ready smaller than the beam width (i.e. K̃i < Kθ ) when only
a small number of database units are available for the target.

Now we look at the local minimization for the k-th unit
at the i-th target position. In a straightforward manner, K̃i−1

hypotheses (i.e. all the hypotheses from the previous target
position) participate in the local minimization,

C∗(ui(k)) = min
j
{C∗(ũi−1( j )) + Lc(ũi−1( j ), ui(k))}

+Lt(ui(k)), (2)

in the basic Viterbi beam search depicted in Fig. 2. However,
as we see in Fig. 3, we can stop in the middle of minimiza-
tion at some j0 ( j0 = 4 in the figure) with no approximation

error, if the cumulative cost up to the last target position,
C∗(ũi−1( j0)), is large enough such that

C∗(ũi−1( j0)) + lbound
j
{Lc(ũi−1( j ), ui(k))}

> min
j ′ < j0
{C∗(ũi−1( j ′ )) + Lc(ũi−1( j ′ ), ui(k))}, (3)

where “lbound” stands for a lower bound of Lc(ũi−1( j ),
ui(k)) for all possible values of j. This lower bound can
be given by a table of the minimums of the concatenation
costs of the database units for all phone bigram contexts, for
example. To justify this stopping condition, we first note
that

Lc(ũi−1( j ), ui(k)) ≥ lbound
j
{Lc(ũi−1( j ), ui(k))} (4)

holds for any j, as the property of a lower bound. Since the
list of hypotheses up to the (i−1)-th target position is sorted
in the ascending order of cumulative costs, it holds that

C∗(ũi−1( j )) ≥ C∗(ũi−1( j0)) (5)

for all j such that j > j0. Therefore, summing up (4) and
(5), we note its relationship with the stopping condition (3),

C∗(ũi−1( j )) + Lc(ũi−1( j ), ui(k))

≥ C∗(ũi−1( j0)) + lbound
j
{Lc(ũi−1( j ), ui(k))}

> min
j ′ < j0
{C∗(ũi−1( j ′ )) + Lc(ũi−1( j ′ ), ui(k))}, (6)

for all j such that j > j0. This means that once the con-
dition (3) holds, the sum of the previous cumulative cost
and the concatenation cost will never get smaller than the
current minimum and therefore the minimization is over at
this point. The run-time concatenation cost computation can
thus be avoided for j > j0.

4. Admissible Stopping for the Beam

In the previous section, we presented an early stopping
scheme in the local minimization loop. Now we look at
(possibly an enormous number of) candidate units coming
from the unit database at the stage for the i-th target. Sup-
pose we have Ki candidate units, ui(1), · · · , ui(Ki), retrieved
from the unit database. Before we perform the beam pruning
to retain just Kθ new hypotheses, we need to perform the lo-
cal minimization (described in the previous section) for each
of these units. This may be inefficient if Ki is considerably
larger than Kθ, for example, Ki = 2,000 and Kθ = 200. We
can speed up the search if we can stop in the middle of ex-
amining all candidate units ui(1), · · · , ui(Ki) for local Viterbi
minimization at the i-th target position.

Toward this objective, we make use of the prior knowl-
edge of the lower bounds of concatenation costs once again.
We sort the set of candidate units retrieved from the unit
database for the i-th target in an ascending order of the
local target cost Lt(·) and keep them in the ordered list
[ui(1), · · · , ui(Ki)]. We also keep newly created hypotheses,
i.e., candidate units so far concatenated with past partial unit
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Fig. 4 Admissible stopping for the beam. Units with local minimization
done are stored in an ascending order of the new cumulative cost C∗(ũi(k)),
which is the sum of the previous cumulative cost C∗, the local concatena-
tion cost Lc, and the local target cost Lt .

sequences, in the ordered list 〈ũi(1), · · · , ũi(k)〉 in an ascend-
ing order of new cumulative costs, C∗(ũi(1)), · · · , C∗(ũi(k)),
after local minimizations are done up to the k-th candidate
unit. Note that the square brackets “[” and “]” are used to
denote an ordered list of units and the angle brackets “〈”
and “〉” are used for an ordered list of hypotheses. We de-
note units in the sorted hypothesis list as ũi(k) to distinguish
them from those in the sorted unit list denoted ui(k), since k-
th elements of these two lists do not necessarily refer to the
same unit. As we can see in Fig. 4, after we have explored
Kθ units in the i-th stage, we can stop if the target cost for
some k0-th unit Lt(ui(k0)) is large enough such that

min
j

C∗(ũi−1( j )) + lbound
j, k
{Lc(ũi−1( j ), ui(k))} + Lt(ui(k0))

> C∗(ũi(Kθ)). (7)

This lower bound can also be given by a table of the mini-
mums of the concatenation costs, as in the last section. To
see the validity of this condition, we first note that Lt(ui(k))
is larger than or equal to Lt(ui(k0)) for all k such that k > k0.
Then, if the inequality (7) holds for some k0, we have

C∗(ui(k))

= min
j
{C∗(ũi−1( j )) + Lc(ũi−1( j ), ui(k))} + Lt(ui(k))

≥ min
j

C∗(ũi−1( j )) + lbound
j, k′
{Lc(ũi−1( j ), ui(k

′))} + Lt(ui(k))

≥ min
j

C∗(ũi−1( j )) + lbound
j, k′
{Lc(ũi−1( j ), ui(k

′))} + Lt(ui(k0))

> C∗(ũi(Kθ)). (8)

for all k such that k > k0. Inequalities (8) above demon-
strates that after k0, the new cumulative cost computed for
k (> k0) never gets smaller than the current C∗(ũi(Kθ)), thus
allowing us to skip further exploration of candidate units

Local minimization with admissible stopping

1. Initialization
Hypotheses (partial unit sequences) up to the (i − 1)-th
stage are listed in an ascending order of cumulative cost
C∗(ũi−1( j )).
Set jmin = none and costmin = ∞.

2. Iteration
Starting from j = 1, repeat the following for j = 1, · · · , K̃i−1

until C∗(ũi−1( j )) is large enough such that

C∗(ũi−1( j )) + lbound
j′
{Lc(ũi−1( j′ ), ui(k))} > costmin :

if C∗(ui−1( j )) + Lc(ũi−1( j ), ui(k)) < costmin,
then costmin = C∗(ui−1( j )) + Lc(ũi−1( j ), ui(k)),

and jmin = j .

3. Termination

C∗(ui(k)) = costmin + Lt(ui(k))

bt(ui(k)) = ui−1( jmin)

Fig. 5 Local minimization loop for Viterbi beam search with admissible
stopping.

with no approximation error.
The modified Viterbi beam search algorithm that in-

corporates the two admissible stopping schemes described
in this section and the previous section is depicted in Figs. 5
and 6.

5. Experiments and Results

We implemented the two admissible stopping methods pre-
sented in the previous sections in a concatenative speech
synthesis system [12], [13]. Synthesis units are uniformly
phone-sized. The unit database was developed using the
speaker SLT of the CMU Arctic speech databases [14]. It
is spoken by a female speaker of American English and
consists of 1,132 utterances. The total duration is roughly
50 minutes. The target and concatenation models were all
trained using this database.

The total target cost for each unit is a sum of spec-
tral, duration, and F0 target costs which are negatives of
the log probabilities coming from the probabilistic target
models [13], [15]. As the costs of concatenating synthe-
sis units, we have developed a probabilistic concatenation
model based on conditional Gaussian densities [12]. In or-
der to demonstrate the wide applicability of the proposed
method, we also implemented a distance-based concatena-
tion model using the Euclidean distance, which is more
widely adopted in the speech synthesis community [16].
These two schemes both compute the concatenation cost
based on the near-boundary spectral features of the two
units to be concatenated. The spectral feature parameters
used in the target and concatenation models were both 8-
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Viterbi beam search with admissible stoppings

(Notation)

(The definitions of ui(k), Ki, Kθ, Lt(u), Lc(u1, u2), C∗(u), and
bt(u) are the same as Fig. 2.)

[u1, u2, . . . ]: an ordered list of units.
〈u1, u2, . . . 〉: an ordered list of hypotheses each of which is
identified by its last unit, u1, u2, . . ..

1. Initialization
Retrieve the set of units for the first target from the unit
database. Sort them in an ascending order of the target cost,
yielding a sorted list of units [u1(1), · · · , u1(K1)].

Set C∗(u1(k)) = Lt(u1(k)) for k = 1, · · · ,K1.

Prune the initial hypothesis list 〈u1(1), · · · , u1(K1)〉, prefer-
ring hypotheses with smaller costs and keep at most Kθ
units.

2. Iteration
Repeat the following for the target indices i = 2, · · · , I :

Retrieve the set of units for the i-th target from
the unit database and sort them in an ascending or-
der of the target cost, yielding a sorted list of units,
[ui(1), · · · , ui(Ki)].

Starting from k = 1, repeat the local minimization
procedure shown in Fig. 5, keeping the new hypotheses
in the list 〈ũi(1), · · · , ũi(k)〉 sorted in ascending order of
the accumulated costs just calculated, for unit indices
k = 1, · · · ,Ki. Stop, however, if k > Kθ and the in-
equality

min
j

C∗(ũi−1( j )) + lbound
j,k′
{Lc(ũi−1( j ), ui(k

′))} + Lt(ui(k))

> C∗(ũi(Kθ))

holds.
Prune the list of new hypotheses up to the i-th target,
〈ũi(1), ũi(2), · · ·〉 to keep at most Kθ units.

3. Termination

(The same as “3. Termination” in Fig. 2.)

Fig. 6 Viterbi beam search with admissible stopping for the unit selec-
tion.

dimensional feature vectors obtained by principal compo-
nent analysis on 14 MFCC coefficients. For modeling of F0

and duration targets, fundamental frequencies and durations
in seconds were directly used without any transformations.

In the experiments using the Euclidean distance, we
adopted two kinds of lower bounds for the concatenation
costs that are different in their tightness. We also employed
the popular heuristics of assigning zero cost when the units
concatenated were adjacent in the original corpus in order

Table 1 The average number of units actually examined for concatena-
tion per target. Numbers are floored to integers. The numbers in parenthe-
ses indicate their proportions to the number of all the units retrieved from
the database, which was 1,286 per target on average.

beam # units examined (%)
2000 1,268 (98.59)

600 1,028 (79.94)
200 741 (57.64)

60 501 (39.02)

Fig. 7 The average number (left axis) of the database units examined
for concatenation per target during beam search for four beam widths with
conditional Gaussian concatenation models. The right axis represent their
proportions to the number of all the units retrieved from the database. The
graph visualizes Table 1.

to see whether the proposed method is effective as well with
this heuristics applied. The lower bounds of the concatena-
tion costs were precomputed for all the phone pair contexts.
In the current implementation using 50 phones, these lower
bounds are stored in a table with 50 × 50 entries. Ten con-
versational sentences extracted from the Blizzard Challenge
2005 test set were used as input text in the speech synthesis
tests reported in the following subsections.

A. Results with conditional Gaussian models

The concatenation cost of having unit v just after u based on
the conditional Gaussian models is defined as

Lc(u, v) = − logN(h(v) | B t(u) + b, Σ ), (9)

where t(u) and h(v) indicate near-boundary feature vectors
of the units u and v, respectively. The conditional Gaussian
model parameters B, b, and Σ are determined by the current
phonetic context for the units [17].

We first look at how admissible stopping for the beam
presented in Sect. 4 is effective on its own. Table 1 shows
the average number of units retrieved from the unit database
per target while synthesizing the test utterances (column 2)
and the number of units actually examined for concatena-
tion before the early termination by admissible stopping for
the beam (column 3). The actual number is also plotted in
Fig. 7. From the table and the figure, we see that the number
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Fig. 8 The average number of concatenation cost computations per tar-
get with four beam widths and all admissible stopping combinations. Con-
ditional Gaussian concatenation models are used. For example, ‘‘b:N
l:N’’ means neither of the admissible stopping schemes are applied and
‘‘b:N l:Y’’ means the admissible stopping for the beam is not applied
but the admissible stopping in local minimization is applied. Thin gray
bars in the middle represent the proportions against no admissible stopping
case.

of units examined for concatenation was effectively reduced
by admissible stopping for the beam. Naturally, its effect
gets larger when the beam width gets smaller, which is ex-
pected from Fig. 4. (In Fig. 4, we see that the vertical broken
line showing the cumulative cost at Kθ should move toward
left when the beam width Kθ gets smaller, thus making the
admissible stopping occur earlier.)

The reduction of the number of concatenation cost
computations achieved by two admissible stopping schemes
applied independently and together is summarized in Fig. 8.
In the figure, we see that the number of concatenation cost
computations is effectively reduced by the two admissible
stopping schemes. The right-most bars (in orange color) of
Fig. 8 shows that the number of concatenation cost compu-
tations is reduced to roughly one third of the baseline, repre-
sented by the left-most bars (in gray color) in the same fig-
ure, for all beam widths when both of admissible stopping
schemes are applied. We also note that the reduction effect
by the admissible stopping in local minimization alone is
more dominant when the beam width is larger, since there
are a larger number of hypotheses coming from the previ-
ous target position, a majority of which can escape the con-
catenation cost computation. On the other hand, the reduc-
tion effect by the admissible stopping for the beam alone is
more dominant when the beam width is smaller, since the
number of database units to be examined for concatenation
is already reduced as described in the last paragraph refer-
ring to Table 1 and Fig. 7. Overall, in all beam width con-
ditions, the number of concatenation cost computations is
further reduced when both of admissible stopping schemes
are applied.

Fig. 9 The average number (left axis) of the database units examined
during beam search per target for four beam widths using Euclidean
distance-based concatenation cost with various conditions, namely, with
corpus-based lower bounds (euc (corpus)), lower bounds all zero (euc
(zero)), and lower bounds zero and a zero cost for corpus adjacency (euc
(zero+a)). The right axis represents their proportions to the number of all
the units retrieved from the database.

B. Results with the Euclidean distance

When the Euclidean distance is employed, the concatenation
cost is defined to be

Lc(u, v) = ‖ h(v) − t(u) ‖, (10)

where t(u) and h(v) indicate near-boundary spectral feature
vectors of the units u and v, respectively.

Figure 9 shows the average number of units actually ex-
amined out of all units retrieved from the database per target
before the early termination by the admissible stopping for
the beam. In Fig. 9 and succeeding figures, euc (corpus)
represents the results with corpus-based lower bounds and
euc (zero) represents the results with lower bounds set to
all zero. The results using lower bounds all zero as well as
zero cost heuristics for corpus adjacency is represented as
euc (zero+a). From the figure, we see that the admissible
stopping for the beam is also and further effective with the
Euclidean distance. As seen with the conditional Gaussian
models, we see that the effect gets larger when the beam
width gets narrower. For example, only around 10% of the
units retrieved from the database were examined for con-
catenation when the beam width is 60. By comparing the
results for euc (corpus) and euc (zero) in Fig. 9, we also
note that the number of units examined is smaller with euc
(corpus) than euc (zero), which indicates that a greater re-
duction effect is achieved when the lower bounds for con-
catenation cost is closer to the true minimum.

Figure 10 summarizes the reduction effects on the num-
ber of concatenation cost computations when the both of
the two admissible stopping schemes are applied with the
Euclidean distance. From Fig. 10, we see that the use of ad-
missible stoppings effectively reduces the number of con-
catenation cost computations as well when the Euclidean
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Fig. 10 The average number of concatenation cost computations per tar-
get using Euclidean distance with four beam widths and three different
lower bound conditions: corpus-based lower bounds (euc (corpus)), lower
bounds all zero (euc (zero)), and lower bounds all zero + zero cost heuris-
tics for corpus-adjacent units (euc (zero+a)). Both of the two admissible
stoppings are applied. Thin gray bars in the middle represent the propor-
tions against no admissible stopping case.

distance is employed for concatenation cost. In fact, we no-
tice that the reduction rate is much larger with the Euclidean
distance than the conditional Gaussian when we compare
Fig. 8 and Fig. 10. To understand this result, we looked at
the numerical values of concatenation costs appearing in
the search experiments and we found out that the dynamic
range of the concatenation costs by the Euclidean distance is
much smaller than the costs given by conditional Gaussian-
based concatenation models. This much smaller dynamic
range leads to much tighter lower bounds and stops the lo-
cal Viterbi minimization much earlier.

Comparing the results for euc (corpus) and euc (zero)
in Fig. 10, we also see that the reduction effect on the num-
ber of concatenation cost computations is greater with euc
(corpus) than euc (zero). Therefore, we again confirm that
the reduction effect gets greater due to earlier occurrences
of admissible stoppings when the lower bounds are closer
to the true minimum, which is expected when we note the
widths of lbound Lc in Figs. 3 and 4.

From the entries for euc(zero+a) in Fig. 9 and Fig. 10,
we see that the admissible stopping is still effective when the
popular heuristics of assigning the concatenation cost zero
to units that happen to be adjacent in the corpus. Compar-
ing euc (zero) and euc (zero+a) in Fig. 10, we see that the
number of concatenation cost computations is a little further
reduced with euc (zero+a), i.e. when the zero cost heuris-
tics is employed. This is because zero cost has the effect
of making the right-hand side of the inequality (3) smaller,
which, in turn, leads to an earlier termination of the local
Viterbi minimization.

C. Time measurements

In order to demonstrate the contribution of admissible stop-
ping to the actual processing speed improvement, we mea-

Fig. 11 The average elapsed time for unit selection with four beam
widths and all admissible stopping combinations. Conditional Gaussian
concatenation models are used. Thin gray bars in the middle represent the
proportions against no admissible stopping case.

Fig. 12 The average elapsed time for unit selection with four beam
widths. Euclidean distance is used for concatenation cost with different
lower bounds and heuristics, namely, corpus-based lower bounds (euc (cor-
pus)), lower bounds all zero (euc (zero)), and lower bounds all zero + zero
cost heuristics for corpus-adjacent units (euc (zero+a)). All admissible
stoppings applied. Thin gray bars in the middle represent the proportions
against no admissible stopping case.

sured the elapsed time spent for unit selection. The ma-
chine is equipped with Intel Core2 Extreme (Q6850) with
3.0 GHz clock and 8 GB of memory. The operating system
is Red Hat Enterprise Linux release 5. The average time
required for unit selection for an utterance is depicted in
Fig. 11 for conditional Gaussian-based concatenation costs
with four possible combinations of admissible stoppings and
in Fig. 12 for Euclidean distance-based concatenation costs
with both of two admissible stoppings applied. The average
length of a synthesized utterance varied between 2.46 sec-
onds and 2.53 seconds depending on the model and beam
conditions. Observing the similarity of Fig. 11 and Fig. 8,
we see that the reduction in the number of concatenation
cost computations leads to the almost proportional reduc-
tion of unit selection time with conditional Gaussian con-
catenation models. Therefore, the additional overhead time
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for sorting the hypotheses and units required in admissible
stoppings were negligible compared to the reduction effect
of processing time for concatenation cost computations.

When we compare Fig. 10 and Fig. 12, we also see the
similar trends between the number of concatenation cost
computations and the elapsed time for unit selection. There-
fore, the proposed method works effectively with the Eu-
clidean distance as well. Since the computation time for
concatenation cost with the Euclidean distance is roughly
the half of conditional Gaussian, the overhead time for sort-
ing is relatively larger than when we adopt the conditional
Gaussian model. Thus, we see a little slowing effect by the
overhead of sorting with the Euclidean distance.

By the way, the absolute value of the elapsed time is
roughly 20 times larger with conditional Gaussian (Fig. 11,
b:Y l:Y) than with Euclidean distance (Fig. 12). This is
because reduction rate of the number of concatenation cost
computation is one order of magnitude larger with Eu-
clidean distance as discussed in the last subsection and the
time for concatenation cost computation itself is roughly the
half with Euclidean distance.

Overall, we see that the actual elapsed time for unit
selection is indeed reduced, for example, to below 40% for
the conditional Gaussian models and to below 12% for the
Euclidean distance, respectively.

6. Conclusion

In this paper, we proposed two methods of admissible stop-
ping for the Viterbi beam search in unit selection for con-
catenative speech synthesis systems that reduce computa-
tion without changing the search result. One is the admis-
sible stopping in the local minimization, which can termi-
nate the computation over the list of hypotheses in the mid-
dle. The other is the admissible stopping for the beam,
which makes it possible to avoid examining the database
units with large target costs for concatenation without intro-
ducing any approximation error. The experimental results
have shown that both of the admissible stopping methods ef-
fectively speed up unit selection by reducing the number of
concatenation cost computations with concatenation mod-
eling based on conditional Gaussian models as well as the
Euclidean distance. The whole unit selection time was re-
duced to 30–40% with the condition Gaussian models and
to 3–12% with the Euclidean distance.
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