
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013
1457

PAPER

Revisiting Shared Cache Contention Problems:
A Practical Hardware-Software Cooperative Approach

Eunji PAK†a), Member, Sang-Hoon KIM†, Jaehyuk HUH†, and Seungryoul MAENG†, Nonmembers

SUMMARY Although shared caches allow the dynamic allocation of
limited cache capacity among cores, traditional LRU replacement poli-
cies often cannot prevent negative interference among cores. To address
the contention problem in shared caches, cache partitioning and applica-
tion scheduling techniques have been extensively studied. Partitioning ex-
plicitly determines cache capacity for each core to maximize the overall
throughput. On the other hand, application scheduling by operating sys-
tems groups the least interfering applications for each shared cache, when
multiple shared caches exist in systems. Although application scheduling
can mitigate the contention problem without any extra hardware support,
its effect can be limited for some severe contentions. This paper proposes
a low cost solution, based on application scheduling with a simple cache
insertion control. Instead of using a full hardware-based cache partitioning
mechanism, the proposed technique mostly relies on application schedul-
ing. It selectively uses LRU insertion to the shared caches, which can be
added with negligible hardware changes from the current commercial pro-
cessor designs. For the completeness of cache interference evaluation, this
paper examines all possible mixes from a set of applications, instead of
using a just few selected mixes. The evaluation shows that the proposed
technique can mitigate the cache contention problem effectively, close to
the ideal scheduling and partitioning.
key words: multi-core, resource contentions, cache partitioning, applica-
tion scheduling

1. Introduction

Sharing caches allows dynamic allocation of cache capacity
among cores, thus improving the efficiency of limited on-
chip cache resources. However, such sharing also causes an
application to be negatively affected by co-running applica-
tions, when contentions on the shared cache lead to an in-
efficient allocation of cache resources. To address this con-
tention problem, cache partitioning and application schedul-
ing techniques have been extensively studied. Cache parti-
tioning estimates the performance benefit of the given cache
capacity and enforces some explicit capacity allocation to
each core to maximize the overall throughput [1]–[4]. Ap-
plication scheduling determines the grouping of applications
sharing a cache, considering the possible positive or nega-
tive interference among applications [5]. Although schedul-
ing is useful only when there are multiple shared caches, it
reduces the negative impact of cache sharing with no extra
hardware cost.

In this study, we revisit the cache contention problem
with respect to scheduling and partitioning strategies. By

Manuscript received September 13, 2012.
Manuscript revised February 25, 2013.
†The authors are with the Computer Science Department,

KAIST, South Korea.
a) E-mail: pakej@calab.kaist.ac.kr

DOI: 10.1587/transinf.E96.D.1457

examining all possible mixes from 24 benchmark applica-
tions, we evaluate possible negative interferences among ap-
plications, the effectiveness of scheduling and cache par-
titioning, and the mutual effects between the two mech-
anisms. We observed that a relatively small number of
mixes exhibit severe negative interferences, and application
scheduling mitigates such contentions quite effectively for
many cases. However, there are some cases with a signif-
icant performance loss, where scheduling alone cannot re-
duce the contention, requiring additional partitioning sup-
port.

Based on these observations, we propose an inexpen-
sive approach that mostly relies on application scheduling
with a minor HW support for cache LRU insertion. In the
proposed approach, scheduling uses only an approximate
classification of application types based on cache miss rates.
The proposed mechanism does not require any extra hard-
ware to characterize application behaviors. Instead, perfor-
mance monitoring counters already available in commercial
microprocessors are used to measure the cache miss counts.
Furthermore, we mostly eliminate the hardware complexity
of cache partitioning technique with scheduling support. It
removes any extra hardware to measure the utility of cache
capacity for each application. Instead of using full hard-
ware partitioning as proposed by prior work, the proposed
approach uses the support for cache LRU insertion, which
simply puts the new cache blocks of an offending applica-
tion to the LRU position in common set-associative caches.

This study shows that instead of using compli-
cated conflict-mitigating mechanisms previously proposed,
scheduling based on approximate classification, backed by
simple LRU insertion, is effective enough for practical pur-
poses. The prior partitioning-based approaches require ex-
tensive changes to the current commercial processor de-
signs. Considering severe cache contention problems occur
only for a small subset of application mixes, such extensive
changes may not be justified for processor designs, which
commonly pursue conservative and evolutionary changes.

We evaluate the proposed practical approach through
exhaustive application mix analysis so as not to exaggerate
the benefit of the proposed technique unfairly. Instead of
using tens of selected mixes from a benchmark suite, this
paper examines all possible combinations of mixes in mul-
tiprogrammed environments, and the evaluation represent
realistic contention scenarios. Our experiments show that
the performance of the proposed approach is close to the
ideal scheduling and partitioning scheme, when two cores

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

1458
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

share a cache, and the performance gain is slightly reduced,
when four cores share a cache. However, in general, the
approach with little extra design changes can provide near
optimal performance.

The main contributions of this paper are as follows.

• This paper explores mutual effects between scheduling
and partitioning by evaluating all possible mix com-
binations from a given set of applications. Instead of
using several selected application mixes, this paper ex-
amines the entire space of application mixes to truly
evaluate the impact of partitioning and scheduling.
• The proposed approach differs from the prior partition-

ing work, as it uses only application scheduling with a
minor extension in the cache insertion mechanism. Un-
like prior HW-based partitioning techniques, this work
does not require complicated changes to estimate the
utility of partitioning.
• This work also differs from the prior scheduling ap-

proaches, which rely purely on scheduling. Our anal-
ysis shows that pure scheduling cannot mitigate every
case of cache interference. We add an inexpensive LRU
insertion mechanism to address such cases.

In the rest of the paper, we first describe the exist-
ing cache partitioning and scheduling techniques in Sect. 2,
and in Sect. 3, we explore the mutual impact of scheduling
and partitioning with the exhaustive evaluation of applica-
tion mixes and scheduling. In Sect. 4, we describe the con-
tention behaviors with different types of application mixes,
and in Sect. 5, we present our approach. Section 6 presents
the experimental evaluation, Sect. 7 describes the cost of ad-
ditional hardware, and Sect. 8 concludes the paper.

2. Background

2.1 Cache Partitioning

In shared caches, common LRU replacement policies treat
all cache references from different cores equally. Such LRU
replacement policies may allocate more cache blocks to the
application which touches a large number of unique ad-
dresses but hardly accesses them again. It leads to an in-
efficient allocation of cache capacity and degrades the per-
formance of co-running applications.

To mitigate such inefficient allocation of shared cache
resource among cores, cache partitioning aims to maximize
the utility of cache capacity by assigning more resources to
applications which can benefit most from the given cache
capacity [1]–[4]. Such per-application benefit curves for in-
creasing capacity are often generated from stack distance
counts which can be collected either online from an extra
hardware [3], [4] or various software-based techniques [6].
The stack distance count is the number of cache hits for ev-
ery recency position from the MRU to LRU. The number of
hits in the ith position implies the number of extra hits which
would be happen if the number of allocated ways increases
from i to i+1. Based on that information, cache partitioning

techniques decide the capacity allocation of each core, and
enforce the allocation using either hardware-oriented mech-
anisms or software-oriented mechanisms with page color-
ing.

Hardware-based techniques partition a shared cache by
modifying the cache replacement or allocation policies [1],
[3], [4]. While these approaches may resolve cache con-
tentions efficiently without any software changes, they re-
quire an additional hardware to profile cache access behav-
iors for stack distance counts and control cache allocation.
Moreover, the way-granularity of partitioning may restrict
the possible partitioning combinations, as the number of
ways in a cache is limited.

Tracking the utility information of an application when
it shares a cache with other application may lead to inaccu-
rate utility curves, because the stack distance count is differ-
ent from when it has the entire cache. To isolate the effect
of accesses from other cores, several techniques have been
used to estimate the utility curves on-line by auxiliary cache
tags or by reserving a subset of cache sets for certain cores.
UCP adds one set of shadow tags per core to track the cache
utility [3]. However, to reduce the HW overheads, instead of
tracking the utility of all cache sets, it tracks the utility from
a small number of sampling sets. PIPP uses the leader set to
track the utility information of specific core [4]. Some sets
are reserved for a specific core by changing the replacement
policy and those sets track the utility of that core. RRIP is
based on the NRU (Not Recently Used) replacement policy,
and uses dual insertion policies [1]. At runtime, it uses set
dueling, which dedicates a subset of cache sets for each pol-
icy, to identify which policy is best suited for the application
and change the policy.

Alternatively, software-oriented page coloring controls
the allocation of cache capacity by managing the memory
mapping from the logical to physical address space [2]. It
does not require extra hardware and allows more partition-
ing choices. However, page coloring causes a well-known
problem called re-coloring. When the allocation of cache
capacity needs to be changed, the operating system must
change virtual-to-physical page mappings for certain pages,
allocating new physical pages, and copying the contents of
the old pages to the new ones. Also, coloring can restrict
the memory management policies by the operating system,
since each application must be assigned to a specific set of
colors.

2.2 Scheduling

When there are multiple shared caches, thread scheduling
can also mitigate the resource contention on shared cache
resources [5]. It groups threads to different shared caches,
so that the contention on each shared cache is minimized.
The approach by Zhuravlev et al. [5] profiles the miss rates
of applications and distributes applications across caches to
balance the number of total misses for each shared cache.
Such a scheduling-based contention mitigation technique is
cost-effective, because it requires neither extra hardware nor

PAK et al.: REVISITING SHARED CACHE CONTENTION PROBLEMS: A PRACTICAL HARDWARE-SOFTWARE COOPERATIVE APPROACH
1459

page coloring compared to partitioning. Although schedul-
ing is useful only when there are multiple shared caches,
most of the current servers use multiple sockets for their
high efficiency per space. Furthermore, it is likely to have
multiple shared caches even in a processor as the number of
cores increases.

Jaleel et al. [7] study the scheduling strategy consid-
ering the underlying cache replacement policy. They have
studied the interactions between the cache partitioning and
scheduling for the first time and showed that the schedul-
ing policy assuming an LRU replacement policy may be
ineffective in a cache with a dynamic partitioning scheme,
RRIP [1]. The proposed scheduler co-locates applications
with the knowledge of underlying cache replacement policy
and the cache utility information provided by extra hardware
logic. Their approach requires some changes to examine
the effect of different cache allocation policies for a subset
of cache sets. Certain sets can be dedicated to each core,
and other sets enforces a static partitioning scheme. The ap-
proach uses the sample sets with different allocation policies
to determine the miss behaviors of each core.

In our work, we also consider the scheduling and the
cache partitioning at the same time. Unlike the work by
Jaleel et al. [7], we are more focused on the mutual effects
of those two mechanisms and suggest a practical approach
that the scheduling and the cache partitioning complements
each other. We mostly eliminate the hardware cost of cache
partitioning by relying on scheduler support, and requires a
negligible change to the current processor design for LRU
insertion on caches.

3. Motivation

3.1 Experimental Methodology

To simulate a system with shared caches, we use the GEM5
simulator [8]. The target system has multiple shared caches,
shared by either two or four cores. We evaluate three differ-
ent configurations, 2/4, 2/8, and 4/8 with 4 and 8 total cores.
In the rest of the paper, ‘m/n’ denotes a configuration which
has n total cores, and each shared L2 cache is shared by m
cores. For example, 2/8 configuration has 8 cores with four
shared L2 caches, and two cores share each shared cache.
Figure 1 shows the three configurations used in this paper.
Such systems with multiple shared caches are common in
server systems with multiple sockets. Recent commercial
multi-core architectures use an L2 shared by two cores, and
a chip has multiple shared caches. The other details of core
and cache configuration are shown in Table 1.

We use 24 SPEC CPU2006 benchmark applications in
Table 2. The type in the table represents the characteristics
of each application which is described in Sect. 4. C, P, or M
indicates cache-sensitive, cpu-bound, or memory-bound ap-
plication type. For the completeness of results, we evaluate
all possible combinations of mixes out of 24 applications.
For a system with 2/4 or 2/8 cofigurations, there are 10,626
or 735,471 application mixes, respectively. We ran each mix

(a) 2/4 (b) 2/8

(c) 4/8

Fig. 1 Configurations of cores and shared L2 caches.

Table 1 Architecture configuration.

Core 4 cores/8 cores, 4-wide, out-of-order
Private L1 2-way 64 KB I and D-cache, 1-cycle latency
Shared L2 64 B line-size, LRU

shared by 2 cores: 1 MB, 8-way, 16-cycle latency
shared by 4 cores: 2 MB, 16-way, 20-cycle latency

Memory 400-cycle access latency

Table 2 SPEC CPU2006 benchmarks.

Type Applications

C bzip2, hmmer, omnetpp, astar, gamess, gromacs, soplex, dealII
P h264ref, namd, povray, calculix, GemsFDTD, tonto, sphinx3
M sjeng,mcf,gobmk,libquantum,bwaves,milc,zeusmp,leslie3d,lbm

until it executes 200 million instructions after a warm-up ex-
ecution of 1 billion instructions. For the 4/8 configuration, to
reduce the simulation time, we pick 12 representative work-
loads which exhibit the characteristic of each category, and
generate 495 application mixes with the workloads. The 12
selected workloads are expressed in italic in Table 2.

To evaluate the effect of scheduling, we run all pos-
sible scheduling choices for each mix and choose the best
performing scheduling as an ideal scheduling case. For a
2/4, 2/8, and 4/8 configuration, there are 3, 105, and 35
different possible scheduling combinations respectively. In
this section, to evaluate the effect of cache partitioning, we
implemented cache partitioning similar to [3], [9], with an
assumption that per-application stack distance counts are
already known. However, we will later eliminate such re-
quirements in our approach, and propose a much simpler
approach with only miss rate information.

We use two metrics which are commonly used for mea-
suring performance of concurrently running applications:
Weighted speedup [3], [4] and Unfairness [10]. Weighted
speedup indicates the average ratio of execution time re-
ductions from an application mix. Unfairness is the perfor-
mance variance of applications and it is computed as the dif-
ference between the maximum weighted speedup and mini-
mum weighted speedup of all applications. Metrics are ex-
pressed quantitatively as follows:

1460
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

(a) 2 cores share a cache (b) 4 cores share a cache

Fig. 2 Cumulative distribution of the performance over fair share. The
negative performance indicates that an application cannot utilize the shared
cache capacity due to cache contentions.

Weighted speedup =
N∑

i=1

IPCi

singleIPCi
/ N (1)

Un f airness =
max (WS 1,WS 2 · · ·WS N)
min (WS 1,WS 2 · · ·WS N)

(2)

where N is the number of applications which is equal to the
number of cores in this paper, IPCi is the instruction per
cycle (IPC) of the i-th application when it concurrently ex-
ecutes with other applications, singleIPCi is the IPC when
the application executes without sharing a cache, and WS i
is the Weighted S peedup of the i-th application.

3.2 Effect of Scheduling and Partitioning

In this section, we evaluate the effect of cache contentions
among applications, the effect of scheduling, and the effect
of cache partitioning on the 2/4, 2/8, and 4/8 systems.

Figure 2 presents the cumulative distributions of the
performance of shared caches with a common LRU replace-
ment policy, compared to the fair share, which allocate the
same amount of cache capacity for each application. To
evaluate the effect of contentions without any mitigation
by scheduling, we present the results from every possible
scheduling combination of all mixes. For each run, the fig-
ure shows the average weighted speedup for a mix of appli-
cations. As shown in Fig. 2 for 2/4 mixes, 45% of mixes
shows negative performance compared to the fair share.
However, only less than 6.5% of runs exhibit more than
5% performance degradation due to contention on shared
caches. Unlike our initial expectation, for the entire space
of application combination and scheduling choice, the cases
with performance degradation due to contention are rela-
tively infrequent in 2/4 and 2/8 cases, although for such
contention cases, performance impact can be significant for
some applications. For 4/8, the effect of cache contention
increases, compared to 2/4 or 2/8 cases. When four cores
share a cache, one obtrusive application can potentially af-
fect the rest three applications sharing the same cache, low-
ering the weighted speedup of the three applications. Due
to the amplified effect, the performance effects appear much
higher in 4/8 than in 2/4 or 2/8 cases.

(a) 2/4 (b) 2/4

(c) 2/8 (d) 2/8

(e) 4/8 (f) 4/8

Fig. 3 Scheduling Effect: the performance and fairness improvement by
the best scheduling over the worst scheduling with and without cache par-
titioning support.

To show the impact of good scheduling, Fig. 3 presents
the performance and fairness improvement by the best
scheduling over the worst scheduling, with or without cache
partitioning. Sched.-Only curves represent the gap between
the best and worst scheduling without cache partitioning and
Sched.+Partition. curves represent the gap between the
best and worst scheduling with cache partitioning. Schedul-
ing has noticeable impacts on the overall speedups for sys-
tems both with and without partitioning. Without parti-
tioning, the performance gap between the best and worst
scheduling is more significant than with partitioning sup-
ports. The configuration without partitioning shows high
gaps for the majority of mixes – with 35% of possible mixes
having more than 5% performance gap between the best and
worst scheduling for the 2/4 system. In the 2/8 and 4/8 sys-
tem, the performance gap is much wider than that of the 2/4
as the mixes are more diverse in their demands on a cache.
Partitioning reduces the gap for the majority of mixes – for
the 2/4 system, only 14.6% of possible mixes having more

PAK et al.: REVISITING SHARED CACHE CONTENTION PROBLEMS: A PRACTICAL HARDWARE-SOFTWARE COOPERATIVE APPROACH
1461

than 5% performance gap. However, grouping of applica-
tions is still important for maximizing performance benefit
of partitioning mechanism. Performance gap is up to 26%
even with partitioning. The fairness improvements are gen-
erally higher than the performance improvements, since the
fairness metric shows the difference between min and max
performances. Fairness is an essential requirement of some
computing environments like cloud computing. In the cloud
computing, customer pay for the computing resources and
require some fairness guarantees when multiple applications
compete for the same resources.

Figure 4 is the improvement with the cache partition-
ing over the best scheduling. Cache partitioning improves
performance further from what scheduler did in some cases,
although the majority of mixes, 89% and 99.8% of all the
mixes, has less than 3% extra performance gains with par-
titioning compared to the best scheduling in the 2/4 and
2/8 systems. With 2/8 systems, as the number of schedul-
ing choices increases, we can achieve the ideal performance
with smart scheduling without cache partitioning support.
However, in the 4/8 system, the benefit of partitioning in-
creases significantly, compared to the 2/4 and 2/8 systems.
This indicates that although scheduling without any parti-
tioning support can potentially mitigate a significant portion
of the negative interference with shared caches, partition-
ing has some potential for further improvements in certain
mixes.

The complete analysis of application combinations and
scheduling choices leads to three observations.

• Contention cases are relatively infrequent, but their ef-
fects can be quite significant for certain cases. How-
ever, costly contention-mitigation mechanisms may not
provide enough return for the cost.
• Scheduling can be quite effective for mitigating cache

contentions, if there exist multiple shared caches.
• Partitioning complements scheduling, although the ex-

tra benefit of partitioning over the best scheduling is
relatively small. Such a marginal improvement may not
justify a full support for hardware partitioning. How-
ever, for certain cases, the extra gain from partitioning
is significant, so recovering the gain with the least extra

(a) Performance (b) Unfairness

Fig. 4 Partitioning Effect: the performance and the unfairness of the
cache partitioning over the best scheduling without cache partitioning sup-
port.

cost is important.

4. Application Classification

In this section, we classify applications based on their cache
miss rates, and explore the contention behaviors among sev-
eral different combinations of application types sharing a
cache. We use the simple metrics which can be measured
in performance monitoring counters currently available, so
that the classification does not require extra hardware sup-
port. We will use this classification method as a basis for
our scheduling policy described in Sect. 5.

4.1 Applications Classification

We categorize applications into three groups accord-
ing to their cache behavior – C(cache-sensitive),
P(cpu-bound) and M(memory-bound). This classification
with three types are commonly found in prior work [1], [5],
[11]. However, we revised the classification method to use
only simple metrics such as cache miss rates and misses
per 1K instructions. Applications with high MPKI (Miss
Per Killo Instructions) or miss rate are classified in to M
group. Those applications tend to hurt the performance of
co-located applications by polluting a shared cache with
blocks which will not be reused. Applications with rela-
tively low cache misses is categorized as P or C group. P
group is comprised of applications which exhibit a very low
miss ratio, thus not only do not cause cache contentions, but
are not affected by cache contentions because they have a
working set size that fits in the smaller levels of the cache.
Applications which benefit from more cache capacity are
classified to the C group and these applications are affected
by cache contentions the most.

For the practicality and scalability of the conflict-
mitigating approach, unlike the approaches by [11] or [7],
our classification method requires neither the prior knowl-
edge on applications from off-line profiling, nor extra hard-
ware for on-line characterization. The classification is
purely based on the miss rate information collectible from
the performance monitoring counters. As the most of mod-
ern processors are equipped with the performance monitor-
ing counter, our approach is more practical than using the
stack distance counter. Also, using the performance mon-
itoring counter allows online profiling during the applica-
tion’s run-time. Instead of the additional hardware, we use
the miss ratio of the private L1 cache, as well as the shared
cache for more accurate classification. The criteria of M/C/P
classification we used is presented in the Table 3. ML1

and ML2 are cache miss ratio of L1 and L2, respectively.

Table 3 Criteria for the application classification.

Category Criteria

P ML1 < 0.01 or (ML1 < 0.02 and ML2 < 0.1)
M MPKIL2 > 50 or ML2 > 0.7 or ML1 > 0.2
C The rest f all into the group C

1462
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

(a) CCCC (b) CPMM

(c) CCMM (d) CMMM

Fig. 5 The performance of the scheduling and the partitioning with var-
ious combinations of mixes: We present the worst case performance, the
best performance with scheduling, and the best performance of the cache
partitioning with appropriate scheduling.

MPKIL2 is the number of L2 misses per killo instructions.
For the accurate classification at runtime even when multi-
ple applications content for the shared cache, we re-examine
every M application which is co-located with other M ap-
plications and classify application as C if the application
has small L1 miss ratio. That application might be mis-
classified as M group because of the high miss rate which
is caused by the cache contentions.

4.2 The Effect of Scheduling and Partitioning on Combi-
nations of Application Classes

In this section, we further investigate the contention problem
with 4 representative combinations of application classes as
defined in the previous section. We focus on the four com-
binations, since they represent most of the contention cases.
In this section, we use only the 2/4 system for discussion, al-
though the other configurations exhibit similar trends. Our
proposed scheduling with LRU insertion control is based on
the observations made in this section.

We categorize all the mixes of 4 cores according to
the group that each application belong to. Then we present
the result of CCCC, CPMM, CCMM, and CMMM mixes in
the Fig. 5. Note that each character indicates the group that
each application belongs to. For example, CPMM mixes are
composed of one application of group C, one from group P,
and two applications from group M. Figure 5 represents the
weighted speedup of the worst case performance (WORST),
the best case performance with scheduling without cache

partitioning (BEST Sched.-Only), and the best case perfor-
mance of partitioning with appropriate scheduling support
(BEST Sched.+Partition.). In the rest of the paper, ‘C ap-
plication’ denotes that an application from the C group.

CCCC: In Fig. 5 (a), mixes are composed of four C
applications. Because all of the applications require more
cache capacity, both scheduling and partitioning do not im-
prove the performance effectively. In this case, even with the
combination of scheduling and partitioning, the weighted
speedup of more than half of the mixes is below the 0.9,
meaning that the performance loss by contention is more
than 10%, compared to the performance in single core runs.
However, in this case, there may not be an effective solution
other than increasing the cache capacity.

CPMM: For these mixes, scheduler eliminates almost
all the cache contentions as shown in Fig. 5 (b). Without
scheduling, 30% of mixes exhibit over than 10% perfor-
mance loss due to contention. However, with scheduling
support, None of mixes exhibit over than 10% performance
loss. For those mixes, to eliminate cache contentions, sched-
uler allocates C application with the P one. C application
does not suffer from the cache contentions and occupies al-
most all of the cache resource. The cache partitioning is not
efficient for these mixes because the scheduling eliminates
almost all negative interference among applications.

CCMM: Not only the scheduling but the cache par-
titioning is efficient for improving performance of these
mixes. Scheduler isolates C application from the M applica-
tion to reduce the cache contentions. In this case, the nega-
tive impact of cache contentions decreases, but the shared
cache may be underutilized. With the cache partitioning
support, scheduler co-locates the C and M application on
a shared cache then the cache space is isolated so that the
C application has the almost all the cache capacity. With-
out any contention management mechanisms, 64% of mixes
experience over than 10% performance loss. With appro-
priate allocation of applications, portion of mixes suffering
from contentions reduces to the 25.5%, and with the cache
partitioning with appropriate scheduling, only 2% of mixes
experience over than 10% performance loss.

CMMM: For these mixes, with any possible schedul-
ing combinations, at least one C application has to be co-
located with the M application which leads to the cache
contentions. However, not every co-location of C and M ap-
plication degrades performance significantly. As shown in
Fig. 5 (d), scheduler reduces cache contentions quite effec-
tively, if it is possible to find the M application which least
contends with C applications. The partitioning improves
performance further by isolating the cache space between
the C and M applications, so that the C application occu-
pies the almost all cache capacity. Though the scheduler
reduces the cache contentions effectively by co-locating the
less-interfering applications, it requires the accurate predic-
tion of cache contentions based on the complex application
profile like stack distance count. In our approach, for these
mixes, we use a limited LRU insertion to reduce the com-
plexity of the scheduling algorithm.

PAK et al.: REVISITING SHARED CACHE CONTENTION PROBLEMS: A PRACTICAL HARDWARE-SOFTWARE COOPERATIVE APPROACH
1463

5. Approach

Based on the observations discussed in the previous sec-
tions, we propose an inexpensive approach based on
scheduling with a simple LRU insertion mechanism, which
is occasionally used for certain mixes with a high con-
tention. The proposed approach differs from the prior par-
titioning or scheduling techniques in two ways. Firstly, un-
like prior cache partitioning techniques, our approach does
not require costly online or offline construction of stack dis-
tance profiles for applications. Instead, it uses only a sim-
ple classification method based on miss rates. Secondly, the
approach mostly mitigates contentions by scheduling appli-
cations with the aforementioned approximate classification,
but it also uses a HW support for LRU insertion. The se-
lective use of LRU insertion allows the scheduler to recover
the performance potential, which cannot be improved with
scheduling-only schemes, or the performance loss caused by
our approximate classification.

5.1 Selective Cache LRU Insertion

The proposed approach does not use a full HW cache
partitioning support proposed by the prior partitioning ap-
proaches. Instead, we use a very simple mechanism of LRU
insertion. In the conventional caches with a LRU replace-
ment policy, a cache-block is always inserted to the MRU
(Most Recently Used) position of the corresponding set.
However, an option to insert a new cache-block to the LRU
position can be added without any significant change in the
current processor design. Some commercial processors al-
ready support such a mechanism, and expose it to the partial
control of the system software [12]. Our approach requires
only such a simple option to insert a new cache-block selec-
tively to the LRU position, when the scheduler needs.

This LRU insertion support is completely different
from the prior partitioning support. Unlike prior partitioning
techniques, our approach uses a simple classification with-
out any extra support to accurately measure the application
cache behaviors as discussed in Sect. 2. Instead of allocat-
ing the appropriate capacity based on the accurate utility in-
formation, we focus on eliminating the cache contentions
caused by steam-like cache accesses. The blocks belong
to an application which generates stream-like accesses are
inserted at the LRU position, instead of MRU position to
minimize the residency time of such blocks. Our scheduler
uses the LRU insertion support selectively only when the
scheduling itself cannot handle the contention effectively.

5.2 Scheduler Design

The proposed scheduler groups applications based on their
approximate classification, and selectively uses the LRU in-
sertion for certain cases. The proposed scheduling algorithm
is based on the contention behavior with different combi-
nations of application classes as discussed in Sect. 4. Ta-

Table 4 Scheduling policy of our approach.

1. distribute all C applications across all caches
2. co-locate all P applications with C applications
3. co-locate all M applications with C,P applications
4. for all the M applications co-located with C application,

insert blocks of M applications in the LRU position

ble 4 describes the scheduling policy. After the classifica-
tion, scheduler allocates applications in the way of maximiz-
ing the overall cache utilization. The scheduler firstly dis-
tributes C applications as evenly as possible across caches,
so that the applications can take advantage of a large portion
of cache capacity.

After allocating all the C applications, P and M appli-
cations are scheduled in turn. Firstly, P applications are co-
located with C applications, as P applications do not require
much of cache capacity, and allow C applications to use the
shared capacity. Finally, M applications are distributed to
all the caches. However, for M applications which are co-
located with C applications, the LRU insertion is turned on
for the M applications to mitigate cache conflicts caused
by the M applications. When the LRU insertion is turned
on, the cache-blocks brought in by the M application are
inserted to the LRU position. If P or M applications are
co-located with an M application, the LRU insertion is not
used, since the M application does not affect the P or M ap-
plications.

6. Experimental Results

6.1 Performance Evaluation

Figure 6 depicts the performance of the proposed mech-
anism in terms of the weighted speedup and unfairness.
Three figures in the left are the weighted speedup. WORST
and BEST is the worst and the best performance of the pos-
sible combinations of scheduling and cache partitioning.
Sched.+LRU insert plots the performance of our scheduler
which is combined with selective LRU insertion. WORST is
the performance with the worst scheduling without cache
partitioning support and BEST is the performance with the
best scheduling with the full cache partitioning support.
CRUISE represents the performance of the prior full HW-
based mechanism for partitioning and scheduling [7].

In our experiments, we classify applications with the
cache miss behaviors measured every 200M instructions.
During a 200M instruction period, cache miss behaviors for
each core are measured, and the classification based on the
measured cache misses is used to schedule applications for
the next 200M instruction period. Figure 6 shows the per-
formance for a 200M instruction period.

The performance of Sched.+LRU insert is close to that
of the ideal performance. Therefore, the results show that
instead of using the state of the art cache partitioning or
scheduling mechanisms, our combined approach with a sim-
ple hardware extension is enough for the practical purposes.
Sched.+LRU insert proposed in this paper shows a simi-

1464
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

(a) 2/4 (b) 2/4

(c) 2/8 (d) 2/8

(e) 4/8 (f) 4/8

Fig. 6 The cumulative distribution of the weighted speedup and unfair-
ness of the worst and the best performance of the possible combinations of
scheduling and cache partitioning, CRUISE, and proposed approach. Note
that the weighted speedup uses the single IPC under LRU replacement.

lar or slightly better performance than the full HW-oriented
CRUISE mechanism.

As shown in the Fig. 6, the performance of the pro-
posed one can be slightly better than CRUISE in some
cases, because of the caching efficiency incurred by the set-
sampling mechanism used in the CRUISE. For the CRUISE
results, we use the ideal implementation of CRUISE which
uses the static profiling of applications to decouple the
performance of CRUISE and the overhead of logic for
the application classification. A realistic implementation
of CRUISE requires a dynamic profiling mechanism with
cache set-sampling which will be explained in Sect. 7.
CRUISE with dynamic application classification with the
set-sampling, incurs an additional 2% performance loss,
compared to the ideal result shown in the figure.

With 4/8 configuration, the proposed mechanism out-
performs the CRUISE because we represent the perfor-
mance of the selected mixes for the 4/8 configuration. And

Table 5 The portion of mixes with respect to the number of threads using
the LRU insertion. Note that there are 4 threads for 2/4 configuration, and
8 threads for 2/8 or 4/8 configuration.

of threads
conf. 0 1 2 3 ≥ 4

2/4 62.8% 27.7% 9.5% 0% 0%
2/8 53.8% 21.5% 16.3% 7.2% 1.2%
4/8 4.3% 3.4% 14.2% 42.4% 35.7%

the set-sampling overhead is increased as the number of
cores sharing a cache increases. We will discuss the HW
cost and set-sampling mechanism of CRUISE in Sect. 7.

The performance gap between our approach and the
ideal case slightly increases with the 2/8 and 4/8 config-
urations. For the 2/8 configuration, the number of possi-
ble scheduling choices increases as the number of cores in-
creases and it requires a smart scheduling when the number
of core becomes large. For the 4/8 configuration, the num-
ber of cores sharing a cache increases and it causes more
cache contentions among applications. In this case, the ap-
proximate approach of the cache partitioning may not reach
the ideal performance. However, the performance of our
work is close enough to the ideal case in these cases, and
the performance difference is marginal.

As in Fig. 6 (b), 6 (d), and 6 (f), fairness is improved
enormously. The fairness support from our approach is al-
most identical to the ideal run in 2/4 and 2/8, and slightly
lower than that of the ideal in 4/8.

6.2 LRU Insertion Cases

In the proposed approach, the cache LRU insertion is se-
lectively enabled only when an M-type application is co-
located with a C-type application. Table 5 represents the
portion of mixes with respect to the number of threads us-
ing the LRU insertion. For example, for the 2/4 configura-
tions, 62.8% of mixes does not the LRU insertion for any of
threads. For 4/8 configuration, LRU insertion is more fre-
quently used as the number of threads competing a shared
cache increases, still less than 2

5 of mixes use LRU inser-
tion for more than 4 threads of those mixes. As the number
of cores sharing a cache increases, the chance to co-locate
M and C type applications also increases, enabling the LRU
insertion mechanism.

7. Complexity Comparison with CRUISE

In this section, we compare the proposed simple SW-based
approach against a state of the art full HW-oriented parti-
tioning and scheduling mechanism, CRUISE [7]. Compared
to the full HW mechanism, the proposed approach does
not require any extra hardware support except for a sim-
ple LRU insertion mechanism. Even with such a low addi-
tional HW complexity, the proposed approach exhibits per-
formance similar to or better than the full HW approach, as
shown in the previous section. In this section, we elaborate
the implementation cost and complexity of two extra mech-

PAK et al.: REVISITING SHARED CACHE CONTENTION PROBLEMS: A PRACTICAL HARDWARE-SOFTWARE COOPERATIVE APPROACH
1465

anisms necessary for the prior HW-based CRUISE mecha-
nism.

7.1 Cache Partitioning and Replacement in CRUISE

CRUISE requires a relatively complicated HW-based parti-
tioning mechanism to improve cache utility. The partition-
ing mechanism in CRUISE uses the DRRIP [1] cache re-
placement policy. DRRIP is a modified NRU (Not Recently
Used) cache replacement to mitigate the cache contentions
among applications with different cache utility. For the n-
way associative cache, DRRIP requires the hardware cost of
2n while the baseline NRU replacement policy requires the
hardware cost of n.

DRRIP selectively uses the two different cache replace-
ment policies, scan-resistant SRRIP and thrash-resistant
BRRIP. SRRIP attempts to preserve the active working set
of an application after scan-like cache accesses. BRRIP pre-
vents thrashing blocks from evicting the other cache blocks.
To keep track of which policy is better for an application,
DRRIP uses a set-sampling mechanism. It dedicates 32 sets
for each policy, and makes those sets follow only either SR-
RIP or BRRIP. A 10-bit counter counts the number of cache
misses for those sets and DRRIP uses the replacement policy
with low cache misses for the rest of cache sets. Compared
to separate tags to measure cache utility on-line [3], the set-
sampling mechanism require a relatively low hardware area
because it uses a subset of sets as a sampling set. However,
it imposes the performance overhead, in addition to the in-
creased complexity of tag lookups and updates, because the
dedicated sets may have to use an inferior performing re-
placement policy. For example, for the 16-way 4 MB cache
shared by 8 cores, 512 among 4096 sets are dedicated to fol-
low a specified replacement, even though it is not the best
performing one for the sets.

Our approach uses only a simple HW mechanism to
allow a new cache block to be inserted in the LRU (Least
Recently Used) position of the corresponding set. The ap-
proach needs neither a set-sampling mechanism nor separate
tags to support complicated partitioning or dual replacement
policies used by the prior work.

7.2 Application Classification for CRUISE

In addition to the complexity and inefficient use of a sub-
set of cache sets for DRRIP partitioning, CRUISE assigns
certain sets for each core to identify the caching behavior of
the core. To classify applications, CRUISE uses the RICE
(Runtime Isolated Cache Estimator) mechanism to estimate
the cache utility of an application in isolation at runtime. For
every application, RICE dedicates 32 sets for each core as
sampling sets, and forces the other cores to bypass the cache
sets. Based on cache misses in the sample sets, it estimates
the caching behavior of the core, if it were to have solo ac-
cess to the cache. In addition, RICE dedicates other 32 sets
and forces other cores to use only the half of the capacity to
estimate the caching behavior of an application with the half

of the cache. Based on the number of cache misses from the
two types of sampling sets for each core, CRUISE classifies
applications according to their cache utility and schedules
them to minimize the contention. As in the DRRIP, such a
set-sampling may cause the performance degradation in ad-
dition to the increased hardware complexity to embed such
sampling sets with different policies. As presented in the
CRUISE paper and our own evaluation results, performance
degradation due to RICE alone is about 2% on average, due
to the inefficient use of some sets.

In our approach, we do not use any extra hardware to
classify applications. Instead, we use the performance mon-
itoring counter that almost all the modern processors already
have. Existing software can utilize our application classifi-
cation and scheduling policy by dynamically profiling the
application’s cache behavior through the performance mon-
itoring counters.

8. Conclusions

This paper revisited the contention problem in shared caches
and proposed a new approach combining scheduling with
a simple LRU insertion policy. The paper first analyzed
the contention behaviors with an exhaustive analysis of all
possible mixes from a given benchmark suite. Based on
the analysis, this study introduced a classification-based
scheduling which occasionally uses the LRU insertion sup-
port to reduce contentions unresolved by scheduling. Unlike
prior partitioning schemes, the approach requires negligible
changes in the current hardware designs. Compared to the
prior scheduling-only schemes, this study addresses the con-
tentions with the LRU insertion support, which cannot be
handled effectively by scheduling.

This new direction, managing contention only if it is
necessary, reduces the design and implementation costs, and
suggests a practical way of contention management which
is applicable on actual platforms. We will examine the pro-
posed mechanism on a real platform to verify the practicality
and scalability of our work and we expect that it also enables
us to observe the effect of other resource factors such as bus
bandwidth or memory controllers.

Acknowledgements

This research was supported by the SW Computing R&D
Program of KEIT (2011-10041313, UX-oriented Mobile
SW Platform) funded by the Ministry of Knowledge Econ-
omy

References

[1] A. Jaleel, K.B. Theobald, S.C. Steely, Jr., and J. Emer, “High per-
formance cache replacement using re-reference interval prediction
(RRIP),” Proc. 37th Annual International Symposium on Computer
Architecture (ISCA), 2010.

[2] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan,
“Gaining insights into multicore cache partitioning: Bridging the
gap between simulation and real systems,” Proc. International Sym-
posium on High Performance Computer Architecture (HPCA),

1466
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

2008.
[3] M.K. Qureshi and Y.N. Patt, “Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition
shared caches,” Proc. 41st annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2006.

[4] Y. Xie and G.H. Loh, “PIPP: promotion/insertion pseudo-
partitioning of multi-core shared caches,” Proc. 36th Annual Inter-
national Symposium on Computer Architecture (ISCA), 2009.

[5] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” Proc.
13th International Conf. Architectural support for programming lan-
guages and operating systems (ASPLOS), 2010.

[6] J. Mars, L. Tang, R. Hundt, K. Skadron, and M.L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” Proc. 41st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2011.

[7] A. Jaleel, H.H. Najaf-abadi, S. Subramaniam, S.C. Steely, and J.
Emer, “CRUISE: Cache replacement and utility-aware scheduling,”
Proc. 17th International Conf. Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2012.

[8] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and
S.K. Reinhardt, “The m5 simulator: Modeling networked systems,”
ACM SIGARCH Computer Architecture News, 2011.

[9] G.E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of
shared cache memory,” J. Supercomputing, vol.28, pp.7–26, 2004.

[10] E. Ebrahimi, C.J. Lee, O. Mutlu, and Y.N. Patt, “Fairness via source
throttling: A configurable and high-performance fairness sub-
strate for multi-core memory systems,” SIGPLAN Notices, vol.45,
pp.335–346, March 2010.

[11] Y. Xie and G.H. Loh, “Dynamic classification of program memory
behaviors in cmps,” Proc. 2nd Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 2008.

[12] BIOS and kernel developer’s guild for AMD family 15h processors,
March 2012.

Eunji Pak is a Ph.D. candidate of Computer
Science at Korea Advanced Institute of Science
and Technology (KAIST). Her research inter-
ests are in computer architecture and operating
systems. She received the B.S. and M.S. degrees
in Computer Science from Korea Advanced In-
stitute of Science and Technology (KAIST) in
2002 and 2004, respectively.

Sang-Hoon Kim is a Ph.D. candidate of
Computer Science at Korea Advanced Institute
of Science and Technology (KAIST). His re-
search interests are in operating systems and
storage systems and flash memory technology.
He received the BS degree in Computer Sci-
ence from Korea Advanced Institute of Science
and Technology (KAIST) in 2002. He worked
for “FnBC” as a software engineer in 2002 and
worked for “Inzen” as a software engineer from
2003 to 2005.

Jaehyuk Huh is an Associate Professor
of Computer Science at Korea Advanced Insti-
tute of Science and Technology (KAIST). His
research interests are in computer architecture,
parallel computing, virtualization and system
security. He received a BS in computer science
from Seoul National University, and an MS and
a PhD in computer science from the University
of Texas at Austin.

Seungryoul Maeng is a Professor of Com-
puter Science at Korea Advanced Institute of
Science and Technology (KAIST) since 1984.
His research interests are in computer archi-
tecture, parallel computing, and system secu-
rity. He received the B.S. degree in Electron-
ics Engineering from Seoul National University,
Korea, in 1977, and the M.S. and Ph.D. degrees
in Computer Science from KAIST in 1979 and
1984, respectively. From 1988 to 1989, he was
with the University of Pennsylvania as a visiting

scholar.

