1544

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.7 JULY 2013

[LETTER

Stride Static Chunking Algorithm for Deduplication System

Young-Woong KO, Member, Ho-Min JUNG', Nonmember, Wan-Yeon LEE'T, Member,

SUMMARY In this paper, we propose a stride static chunking dedupli-
cation algorithm using a hybrid approach that exploits the advantages of
static chunking and byte-shift chunking algorithm. The key contribution of
our approach is to reduce the computation time and enhance deduplication
performance. We assume that duplicated data blocks are generally gathered
into groups; thus, if we find one duplicated data block using byte-shift, then
we can find subsequent data blocks with the static chunking approach. Ex-
perimental results show that stride static chunking algorithm gives signifi-
cant benefits over static chunking, byte-shift chunking and variable-length
chunking algorithm, particularly for reducing processing time and storage
space.

key words: static chunking, stride, deduplication, byte-shift

1. Introduction

In the face of exponentially growing data volumes, redun-
dant data elimination techniques have assumed critical sig-
nificance in the design of modern storage systems. For in-
stance, in the Linux ftp mirror storage server, duplication
data blocks exceed 50%. Data deduplication is a way to re-
duce storage space by eliminating redundant data to ensure
that only a single instance of the data is stored in a storage
medium. If implemented properly, data deduplication can
reduce the substantial demand for storage space, thus reduc-
ing the cost of the storage system.

Data deduplication schemes use a chunking mecha-
nism to divide a file into blocks. Well-known chunking
algorithms include fixed-size, variable-size, and byte-shift
chunking (Rabin fingerprinting) [1]. Fixed-size chunking is
also referred to as static chunking, because each chunk has
a static length. Static chunking allows files to be divided
into a number of fixed-sized blocks, before applying hash
functions to create a hash key of the blocks. A well-known
static chunking is Venti [2], which is a network storage sys-
tem that uses a 160-bit hash key. Venti enforces a write-
once policy so other data blocks cannot have the same ad-
dress. The main limitation of static chunking is the bound-
ary shift problem. For example, all subsequent blocks in

Manuscript received November 19, 2012.
Manuscript revised February 27, 2013.
"The authors are with the Department of Computer Engineer-
ing, Hallym University, Korea.
""The author is with the Department of Computer Science,
Dongduk Womens University, Seoul, Korea.
and Engineering, Korea University, Seoul, Korea.
a) E-mail: yuko@hallym.ac.kr
b) E-mail: hxy @korea.ac.kr (Corresponding author)
DOI: 10.1587/transinf. E96.D.1544

Min-Ja KIM ", Nonmember, and Chuck YOO, Member

the file will be rewritten and are likely to be considered dif-
ferent from those in the original file when adding new data
to a file. Therefore, it is difficult to find duplicated blocks
in the file, which degrades the deduplication performance.
Variable-length chunking [3] is a more advanced approach
that anchors variable-length segments based on their inte-
rior data patterns. This solves the boundary shift problem in
the fixed-size chunking approach. Variable-length chunking
is also referred to as content-defined chunking or content-
based chunking, because the size of each chunk is deter-
mined by the content value. A well-known variable-length
chunking algorithm is LBFS [4], which is a network file sys-
tem designed for low bandwidth networks. LBFS exploits
the similarities between files or versions of the same file in
order to save the bandwidth. Finally, byte-shift chunking is
arolling hash scheme where the input is hashed in a window
that moves through the input. The Rabin hash module reads
through the input and lets the window slide over the input
data, while it recalculates the fingerprint each time after ad-
vancing by a byte. Byte-shift chunking recalculated the hash
value each time it advanced by a byte and compared it with
the information on the server, so the overheads were very
high.

In this paper, we present the stride static chunking; a
compromise solution for searching duplicated data blocks in
a file that exploits the static chunking and byte-shift chunk-
ing. Static chunking is a fast algorithm for detecting du-
plicated blocks but its performance is not acceptable. On
the other hand, byte-shift chunking can detect all of the du-
plicated blocks, but with high overhead. To enhance dedu-
plication performance, we introduce the stride concept into
the chunking algorithm. We assume that duplicated data
blocks are generally gathered into groups; thus, if we find
one duplicated data block using byte-shift chunking, then
we can find subsequent data chunks with the static chunk-
ing approach.

2. Design Principle of the Proposed System
2.1 System Architecture

In this work, we implemented a deduplication server using
a source-based approach [S]. In the source-based approach,
the data deduplication process is performed in the client side
and the client sends only non-duplicated files or blocks to
the deduplication server. With this approach, we can save

Copyright © 2013 The Institute of Electronics, Information and Communication Engineers

LETTER

CLIENT [DEDUP SERVER |

File Duplication “
2
|
’I
Chunking
¢ HASH

< ‘ Lomase | ____

1
' 1
P Hash Index “ | |
Send File Hash Update E i
' '
~ L : :
(i i
' '
'
'
'

/| :
Block X4 Block Location
Deduplication ’ Update “

File access

Make File Hash

Tl
gl

.I

Block I/0 <

I«

Fig.1 System architecture overview.

network bandwidth by reducing the number of duplicated
data blocks.

As can be seen in Fig.1, we first apply whole file
chunking to eliminate file level duplication. In this work,
the client calculates the SHA1 hash key and sends it to the
deduplication server. If there is an identical hash key in the
hash index, it means that we have a duplicated file on the
server. The file hash generation module checks duplicated
files by comparing the file hash and then processes block-
level deduplication work. In the file deduplication stage, the
hash key of each file is sent to the server. Duplicated files
are checked at the server through comparison with existing
file hashes on the DBMS. The server sends a hash list of
duplicated files to the client. With this approach, we can
prevent duplicated files from being transferred to the server.
In the data deduplication module, block-level data dedupli-
cation is processed. The system divides the data stream into
blocks with a chunking function. We then obtain each data
block key using hash function. In our work, we adopt a
static chunking method because of its simplicity and ease of
implementation. The chunking size of a data block varies
from 4 Kbytes to several megabytes. In our work, we fixed
the chunking size from 4 Kbytes to 16 Kbytes in order to
enhance the data deduplication performance. By choosing
a small chunking block, we can increase the possibility of
finding duplicated blocks.

2.2 Stride Static Chunking Algorithm

In this work, we integrate the byte-shift chunking approach
with static chunking. We assume that duplicated data have
spatial locality; therefore, if we can find one duplicated
chunk using byte-shift chunking, then we can find subse-
quent duplicated chunks around that position using the static
chunking approach. Figure 2 shows the conceptual diagram
of the proposed system.

To implement the stride static chunking, we adapted
two hash keys for each chunk: SHAT1 hash key for static
chunking and the Rabin hash key for byte-shift chunking.
The Rabin hash key is used for light-weight duplication
checking in byte-shift approach. However, the Rabin hash

1545

‘L QUERY RHK: Rabin Hash Key
[BYTE SHIFTING]_»I, SHK: SHA1 Hash Key

Out RHK {SHA1, Rabin} | Location
5823 4690 378901
2345 3456 234789
9762 5573 941231
STATIC CHUNKING
Out: SHK Hash Index

YES (1) Update

{RHK, SHK}

DEDUPLICATION
(2) Store BLK

Fig.2 The conceptual diagram of stride static chunking.

key has high probability of hash collision, so consequently
we have to use another hash key (SHA1) to provide robust-
ness against hash collision. The deduplication processing
steps are as follows:

o The system calculates the Rabin hash key for a data
block and compares it with hash indexes in the dedu-
plication server. If an identical hash key does not ex-
ist, then the algorithm skips the fixed size of stride
region and continues duplication checking using byte-
shift chunking.

e When the Rabin hash key of the chunk is found in the
hash index, and then the system compares the SHA1
hash key of that chunk with the SHA1 hash key in the
hash index. If two SHAI1 hash keys are identical, then
we assume that the chunk is duplicated.

e In the deduplication step, one we found a duplicated
chunk, then the system updates the SHAI and the
Rabin hash keys in the hash index and also updates the
block location. If the chunk is not duplicated then the
system stores the chunk to the storage server and in-
serts a new Rabin and SHA 1 hash key tuple to the hash
index.

Algorithm 1 presents the stride static chunking algo-
rithm. The input data is the byte stream of a file. First,
the system starts with byte-shift chunking with the rabin-
fingerprint() function, which calculates the hash key us-
ing the Rabin hash function. If rabinlookup() is TRUE, it
means the same Rabin hash key exists in the deduplication
server, then the system calculates the SHA1 hash key with
the SHA Idigest() function. If this hash key exists in the hash
index, it means the chunk is really identical on the dedupli-
cation server. At this point, the chunking mode is changed
to static chunking from byte-shift chunking. Static chunk-
ing works duplication check until there are no duplicated
chunks. If static chunking reaches to non-duplicated region,
then the chunking algorithm turns to byte-shift chunking.

3. Performance Evaluation

To perform comprehensive analysis on stride static chunk-

1546

Input: DataStream

Output: HashList

begin

strdieoffset « 0

offset « 0

length « Length(DataStream)

while offset < length do

offset « seek(DataStream, seek-cur)

byte « readbyte(DataStream)

fingerprint « rabinfingerprint(byte)

if rabinlookup(fingerprint) = true then

block « read(DataStream, blocksize, offset)

hash « SHA 1digest(block)

if SHAIlookup(hash) = true then

DedupHashList += (hash, fingerprint, offset)

L Perform Static Chunking

else

strideoffset += 1

if strideoffset > blocksize x 2 then
| Perform Stride Static Chunking

A_lgorithm 1: Stride static chunking algorithm.

Table1 Experiment data description.
Total (MB) I Description
Linux Distribution 7,952 Fedora Core
VMware Image Disk 18,154 CentOS
Media data 4,204 Drama Video

ing (SSC), we also implemented several algorithms for com-
parison purpose including static chunking (SC) and byte-
shift chunking (BS). Table 1 summarizes the data sets used
in this experiment. We have performed a series of sample
experiments with different file types: Linux Distribution CD
image, VMware image file with CentOS Linux system and
multimedia video files. The chunk size is fixed as 4, 32 and
64 Kbyte.

3.1 Performance Result: SSC vs. SC and BS

This experiment focused on evaluating the efficiency of the
three algorithms: SC, BS, and SSC. The performance re-
sults for TAR are presented for comparison because TAR
lacks a deduplication mechanism. In Fig. 3, we present the
measurement results for the deduplication algorithms. The
left figure shows the results of data compression, and the
right figure shows the computation time. The x-axis and y-
axis in the left figure denote the chunk size and data size
(GB), respectively.

In SSC, the stride size is a key parameter for dedupli-
cation performance. If we increase the stride size then the
deduplication system will have pros and cons: deduplication
computation time will be decreased and data compression
performance also will be degraded. Therefore, it is impor-
tant to provide optimal stride size for SSC. In this work,
we repeatedly test the performance of SSC and get heuristic
value for the proposed system. In our system, we fixed stride
size as 20 Kbyte for 4 Kbyte chunk, 80 KByte for 16 Kbyte
chunk, and 320 Kbyte for 64 Kbyte chunk, respectively.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.7 JULY 2013

10.06 4 14004
R

CTAS CTAR
[sc [sC
I BS I BS

Time(sec)

Data Size(GB)

[SSC [N SSC
6.0G 4
4.0G 4
206 4
200
00 od

4K 32K 64K 4K 32K 64K
Chunk Size(KB) Chunk Size(KB)

(a) Linux Kernel Source

246G 3500 4 CTAR

JTAR I sc
[sc B BS
(. BS [ES9
[SSC
16G
@
< 3
g 126 8
H g
& o =
1000
4G+ 500 4
0G4 0
4K 32K 64K 4K 32K 64K
Chunk Size(KB) Chunk Size(KB)
(b) VMware Image Data

12004

1000 . BS

Data Size(GB)
Time(sec)

32K 64K - 4K 32K 64K
Chunk Size(KB) Chunk Size(KB)

(c) Multimedia Data

Fig.3 Deduplication performance result: SSC vs. SC and BS.

In this experiment, SSC was faster than BS in com-
putation time. BS recalculated the hash value each time it
advanced by a byte and compared it with the information on
the server, so the overheads were very high. On the other
hand, SSC only performed byte-shift chunking in the non-
duplicated region and static chunking in the duplicated re-
gion. If SSC found a duplicated chunk in the data stream, it
switched to the SC mode, so SSC could perform the dedu-
plication process very rapidly. The data compression capa-
bility of SSC is superior to SC because the boundary shift
problem of SC causes poor performance in data compres-
sion. Consequently, SSC can reduce data size more than SC
and SSC can process data deduplication work faster than
BS.

In terms of data compression, SSC and BS delivered
the best results of all the algorithms. SSC compressed the
Linux kernel data size from 8 to 4.2 GB (Fig 3 (a)) and the
VMware data size from 18 to 8 GB (Fig3(b)). However,
the compression performance results with SC were similar
to FTP. As described above, SSC can find duplicated chunks
rapidly in a small area using the BS approach. If there are
no duplicated chunks, it increases the interval size in the
data stream and initiates the BS approach to find duplicated
chunks. If a duplicated chunk is found, the SC approach can
find more duplicated chunks with low overheads. There-
fore, SSC can find most of the duplicated chunks within a

LETTER

5GB l— SSC-timejf|[_] SSC- 5|ze - 700
. VLC-time| VLC S|ze

4GB

3GB

2GB

Data Size(GB)
Time(sec)

1GB

04K 32K
Chunk Size(KB)

Fig.4 Deduplication performance result: SSC vs. VLC.

data stream and its performance is comparable to BS. Al-
though BS delivered the best compression performance, the
computation time was twice that with SSC and three times
that with SC.

For multimedia data (Fig. 3 (c)), there was no enhance-
ment in terms of data compression because the multimedia
data generally contained no duplicated data. Therefore, we
consider that the deduplication algorithm is not suitable for
multimedia data. We also tested the deduplication capac-
ity with chunk sizes that varied from 4 Kb to 64 Kb. We
found that the computation time decrease was inversely pro-
portional to the chunk size and the difference was signifi-
cant. For the Linux kernel data, the computation time with
SSC was reduced from 550s to 500s, i.e., 10% less. For
the VMware data, the difference was 250s (from 1450s
to 1200s). This experiment demonstrated that SSC deliv-
ered the best performance of the deduplication algorithms
in terms of the data compression and deduplication compu-
tation times.

3.2 Performance Result: SSC vs. VLC

This experiment focuses on evaluation of the efficiency of
two algorithms: SSC and VLC. In Fig.4, we compare the
performance of the two deduplication algorithm on Linux
kernel source data. With respect to the computation time,
SSC achieves fast deduplication performance compared to
VLC by 5% (32 Kbyte chunk size) to 20% (64 Kbyte chunk
size). In terms of data compression, SSC slightly outper-
forms VLC around 3%.

Although SSC is superior to VLC in terms of data
compression performance and computation time, SSC re-
quires more information for handling data deduplication. As
shown in Fig.2, SSC uses two hash keys: SHA1 hash key

1547

for static chunking and the Rabin hash key for byte-shift
chunking. Therefore, SSC consumes slightly larger physi-
cal memory space than VLC approach. Consequently, we
can conclude that in terms of data compression and dedupli-
cation computation time, SSC shows the best performance
between deduplication algorithms.

4. Conclusion

In this paper, we introduced a novel deduplication algorithm
that can be used as a way to store data efficiently in a stor-
age system. The key idea of this paper is to exploit stride
scheme that mixes static chunking and byte-shift chunking
to accomplish enhanced deduplication capability. We as-
sume that duplicated data blocks are generally gathered into
groups, so if we can find one duplicated chunk, then we
can find subsequent data chunks with static chunking ap-
proach. Stride static chunking only searches a fixed size
of region for detecting duplicated chunk using byte-shift
chunking. If there is no duplicated chunk, then it skips stride
size of region and repeats byte-shift chunking. If a dupli-
cated chunk is found, then it searches duplicated chunks
with static chunking approach. The experimental results
show that the proposed system can minimize storage space
and reduces the computation time effectively.

Acknowledgment

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the MEST (2012R1A1A2044694), (No.
2011-0029848), (2009-0076520).

References

[1] A.Z. Broder, “Some applications of rabin’s fingerprinting method,”
Sequences II: Methods in Communications, Security, and Computer
Science, pp.143—152, Springer-Verlag, 1993.

[2] S. Quinlan and S. Dorward, “Venti: A new approach to archival data
storage,” Proc. Ist USENIX Conference on File and Storage Tech-
nologies, FAST "02, Berkeley, CA, USA, 2002.

[3] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey, “Redundancy elim-
ination within large collections of files,” Proc. Annual Conference on
USENIX Annual Technical Conference, p.5, 2004.

[4] A.Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth net-
work file system,” ACM SIGOPS Operating Systems Review, vol.35,
no.5, pp.174-187, 2001.

[5] H.Jung, W. Park, W. Lee, J. Lee, and Y. Ko, “Data deduplication sys-
tem for supporting multi-mode,” Intelligent Information and Database
Systems, pp.78-87, 2011.

