## LETTER

# Outage Performance for Antenna Selection in AF Two-Way Relaying System with Channel Estimation Error 

Zhangjun FAN ${ }^{\dagger \mathrm{a})}$, Daoxing GUO ${ }^{\dagger}$, Bangning ZHANG ${ }^{\dagger}$, Nonmembers, and Youyun XU $^{\dagger}$, Member


#### Abstract

SUMMARY This letter investigates the outage performance of a joint transmit and receive antenna selection scheme in an amplify-and-forward two-way relaying system with channel estimation error. A closed-form approximate outage probability expression is derived, based on which the asymptotic outage probability expression is derived to get an insight on system's outage performance at high signal-to-noise (SNR) region. Monte Carlo simulation results are presented to verify the analytical results.


key words: two-way relaying, antenna selection, outage probability, diversity order

## 1. Introduction

Two-way relaying has attracted enormous research interest from the wireless community in recent years, due to its ability to enhance spectral efficiency [1]. When the nodes in two-way relaying system are equipped with multiple antennas, the system's throughput and transmission reliability can be further enhanced [2], [3]. However, it is typically necessary to manipulate pre-coding and/or post-processing at sources and/or relay to fully exploit the merits of mounting multiple antennas, which imposes higher computational burden on sources and/or relay. To circumvent this drawback, the authors in [4], [5] have proposed a joint transmit and receive antenna selection (JTRAS) scheme for amplify-andforward (AF) two-way relaying system with multiple antennas, aiming to achieve the full diversity order. However, the works in [4], [5] have assumed perfect channel state information (CSI) at both sources and the relay. To the best of our knowledge, the impact of channel estimation error (CEE) on the performance of the JTRAS scheme remains unknown in the available literature. Note that the effect of CEE in oneway relaying system has been investigated in [6]. Nevertheless, the analysis method for one-way relaying cannot be applied to two-way relaying directly due to the bidirectional transmission flows in two-way relaying system.

In this letter, we analyze the outage performance of JTRAS scheme proposed in [4], [5] by taking into account the CEE. Firstly, we derive a closed-form approximate outage probability expression. To get better insights, an asymptotic outage probability expression at high signal-to-noise ratio (SNR) region is derived to reveal the achievable diversity order. Finally, we conduct Monte Carlo simulations

[^0]to verify the analytical results. Both analytical and simulation results reveal that (i) when the variance of CEE is a decreasing function of transmitting power, the system can still achieve full diversity order, and (ii) when the variance of CEE is independent of transmitting power, the diversity order tends to zero.

## 2. System Model

We consider an AF two-way relaying system that consists of two source nodes (denoted by $S_{1}$ and $S_{2}$ ) and one relay node (denoted by $R$ ). $S_{1}$ and $S_{2}$ exchange information via the aid of $R$, and thus, also act as destinations. Specially, $S_{1}, S_{2}$ and $R$ are mounted with $N_{1}, N_{2}$ and $N_{R}$ antennas, respectively. We assume that both sources and the relay operate in halfduplex mode, and no direct link between $S_{1}$ and $S_{2}$ exists due to high shadowing. The channels between $S_{l}, l=1,2$ and $R$ undergo block, flat, Rayleigh fading. Assuming timedivision duplex is adopted, then the channels are reciprocal, namely, the channel gains of links $S_{l} \rightarrow R$ and $R \rightarrow S_{l}$ are identical in one round of information exchange. Let the channel between the $i$ th antenna of $S_{1}$ and the $k$ th antenna of $R$ be denoted as $h_{i k}$, and the channel between the $j$ th antenna of $S_{2}$ and the $k$ th antenna of $R$ be denoted as $g_{j k}$, where $1 \leq i \leq N_{1}, 1 \leq j \leq N_{2}, 1 \leq k \leq N_{R} . h_{i k}$ and $g_{j k}$ are modeled as zero mean complex Gaussian random variables with variances $\Omega_{h}$ and $\Omega_{g}$, respectively. We also assume that perfect information on noise powers at all nodes in the system is available.

One round of information exchange consists of two phases. In the first phase, $S_{1}$ and $S_{2}$ transmit simultaneously to $R$ using the $i$ th and $j$ th antenna, respectively. Assuming that perfect synchronization among all the nodes in the system has been established, the received signal at the $k$ th antenna of $R$ can be expressed as

$$
\begin{equation*}
y_{r}=\sqrt{p_{1}} h_{i k} s_{1}+\sqrt{p_{2}} g_{j k} s_{2}+n_{r} \tag{1}
\end{equation*}
$$

where $p_{l}$ and $s_{l}$ denote the transmitting power and unit energy modulated signal of $S_{l}, l=1,2, n_{r}$ denotes the additive white Gaussian noise (AWGN) at $R$ with zero mean and variance $\sigma_{n}^{2}$. In the second phase, $R$ amplifies $y_{r}$ by a factor

$$
\begin{equation*}
G=\sqrt{1 /\left[p_{1}\left\|\hat{h}_{i k}\right\|^{2}+p_{2}\left\|\hat{g}_{j k}\right\|^{2}+\sigma_{n}^{2}\right]} \tag{2}
\end{equation*}
$$

and broadcasts to both destinations using the $k$ th antenna. $\hat{h}_{i k}$ and $\hat{g}_{j k}$ in (2) denote the estimates of $h_{i k}$ and $g_{j k}$, respectively. Assuming a least mean squares estimator, we have
the following relationship [6]

$$
\begin{equation*}
h_{i k}=\hat{h}_{i k}+e_{h_{i k}}, g_{j k}=\hat{g}_{j k}+e_{g_{j k}} \tag{3}
\end{equation*}
$$

where $e_{h_{i k}}$ and $e_{g_{j k}}$ denote the CEEs, and are modeled as zero mean complex Gaussian variables with variances $\sigma_{e_{h_{i k}}}^{2}$ and $\sigma_{e_{q_{j k}}}^{2}$, respectively. For simplicity, we make a reasonable assumption that $\sigma_{e_{h_{i k}}}^{2}=\sigma_{e_{h}}^{2}, \sigma_{e_{g_{j k}}}^{2}=\sigma_{e_{g}}^{2} \forall i, j, k$. Since $\hat{h}_{i k}$ is independent of $e_{h_{i k}}$ and $\hat{g}_{j k}$ is independent of $e_{g_{j k}}$ [6], $\hat{h}_{i k}$ and $\hat{g}_{j k}$ are also zero mean complex Gaussian variables with variances $\Omega_{\hat{h}}=\Omega_{h}-\sigma_{e_{h}}^{2}$ and $\Omega_{\hat{g}}=\Omega_{g}-\sigma_{e_{q}}^{2}$, respectively. As perfect synchronization is assumed, the received signal at $S_{1}$ can be written as

$$
\begin{align*}
y_{1}= & \sqrt{p_{1} p_{3}} G\left(\hat{h}_{i k}+e_{h_{i k}}\right)^{2} s_{1}+\sqrt{p_{2} p_{3}} G\left(\hat{h}_{i k}+e_{h_{i k}}\right) \\
& \times\left(\hat{g}_{j k}+e_{g_{j k}}\right) s_{2}+\sqrt{p_{3}} G\left(\hat{h}_{i k}+e_{h_{i k}}\right) n_{r}+n_{1} \tag{4}
\end{align*}
$$

in which $p_{3}$ denotes the transmitting power of $R$, and $n_{1}$ denotes the AWGN at $S_{1}$ with zero mean and variance $\sigma_{n}^{2}$. After self-information cancelation and some elementary manipulation, the effective SNR at $S_{1}$ can be expressed as

$$
\gamma_{1}^{i, j, k}=\frac{\bar{p}_{2} \bar{p}_{3}\left\|\hat{h}_{i k}\right\|^{2}\left\|\hat{g}_{j k}\right\|^{2}}{\left[\begin{array}{l}
\left(4 \bar{p}_{1} \bar{p}_{3} \sigma_{e_{h}}^{2}+\bar{p}_{2} \bar{p}_{3} \sigma_{e_{g}}^{2}+\bar{p}_{3}+\bar{p}_{1}\right)\left\|\hat{h}_{i k}\right\|^{2}  \tag{5}\\
+\left(\bar{p}_{2} \bar{p}_{3} \sigma_{e_{h}}^{2}+\bar{p}_{2}\right)\left\|\hat{g}_{j k}\right\|^{2}+2 \bar{p}_{1} \bar{p}_{3} \sigma_{e_{h}}^{4} \\
+\bar{p}_{2} \bar{p}_{3} \sigma_{e_{h}}^{2} \sigma_{e_{g}}^{2}+\bar{p}_{3} \sigma_{e_{h}}^{2}+1
\end{array}\right]}
$$

where $\bar{p}_{l}=p_{l} / \sigma_{n}^{2}, l=1,2,3$. Since the last four terms in the denominator of (5) are of small values in practice where both estimation error and noise variances are small, they can be reasonably ignored and then (5) can be approximated as

$$
\begin{align*}
& \gamma_{1}^{i, j, k}=\frac{\left\|\hat{h}_{i k}\right\|^{2}\left\|\hat{g}_{j k}\right\|^{2}}{a\left\|\hat{h}_{i k}\right\|^{2}+b\left\|\hat{g}_{j k}\right\|^{2}}  \tag{6}\\
& a=\left(4 \bar{p}_{1} \bar{p}_{3} \sigma_{e_{h}}^{2}+\bar{p}_{2} \bar{p}_{3} \sigma_{e_{g}}^{2}+\bar{p}_{3}+\bar{p}_{1}\right) / \bar{p}_{2} \bar{p}_{3}  \tag{7}\\
& b=\left(\bar{p}_{2} \bar{p}_{3} \sigma_{e_{h}}^{2}+\bar{p}_{2}\right) / \bar{p}_{2} \bar{p}_{3} \tag{8}
\end{align*}
$$

Following the same approach as conducted to obtain (6) and assuming the variance of AWGN at $S_{2}$ is $\sigma_{n}^{2}$, we get the approximate effective SNR at $S_{2}$

$$
\begin{align*}
& \gamma_{2}^{i, j, k}=\frac{\left\|\hat{h}_{i k}\right\|^{2}\left\|\hat{g}_{j k}\right\|^{2}}{c\left\|\hat{h}_{i k}\right\|^{2}+d\left\|\hat{g}_{j k}\right\|^{2}}  \tag{9}\\
& c=\left(\bar{p}_{1} \bar{p}_{3} \sigma_{e_{g}}^{2}+\bar{p}_{1}\right) / \bar{p}_{1} \bar{p}_{3}  \tag{10}\\
& d=\left(4 \bar{p}_{2} \bar{p}_{3} \sigma_{e_{g}}^{2}+\bar{p}_{1} \bar{p}_{3} \sigma_{e_{h}}^{2}+\bar{p}_{3}+\bar{p}_{2}\right) / \bar{p}_{1} \bar{p}_{3} \tag{11}
\end{align*}
$$

In order to achieve the full diversity order and reduce the processing payload at both sources and the relay, the authors in [4], [5] have proposed the following antenna selection criterion

$$
\begin{equation*}
\left\{i^{*}, j^{*}, k^{*}\right\}=\underset{1 \leq i \leq N_{1}, 1 \leq j \leq N_{2}, 1 \leq k \leq N_{R}}{\arg \max }\left[\min \left(\gamma_{1}^{i, j, k}, \gamma_{2}^{i, j, k}\right)\right] \tag{12}
\end{equation*}
$$

where $i^{*}, j^{*}$ and $k^{*}$ are the best antenna indices at $S_{1}, S_{2}$
and $R$, respectively. In the following section, we analyze the outage performance of this antenna selection scheme in the presence of CEE. It is worthy noting that the differences between the analysis in this letter and that in [6] mainly consist of four aspects: 1) This letter focuses on two-way relaying, while the main concern of [6] is one-way relaying. Different from one-way relaying, the outage probability in two-way relaying is defined as the probability that the minimum of SNRs at two destinations falls below a predefined threshold [5]. Since the SNRs at two destinations are dependent, it is more complicated to investigate the effect of CEE on outage performance in two-way relaying, as compared to the analysis in [6]; 2) The most key part of analysis in [6] is to use $0.5 \min (x, y) \leq \frac{x y}{x+y} \leq \min (x, y)$. However, this inequality cannot be used to derive the closed-form outage probability expression in this letter; 3) The sources/destinations in this letter are mounted with multiple antennas, while the source/destination in [6] is equipped with single antenna. This difference requires us to employ different method to derive the outage probability; 4) In two-way relaying, the CEE leads to residual self-noise, while no self-noise exists in one-way relaying [6]. As seen from (5)-(11), this difference results in different SNRs forms as compared to [6].

## 3. Outage Performance Analysis

### 3.1 Approximate Outage Probability

In the AF two-way relaying system, an outage event occurs when either $\gamma_{1}^{i^{*}, j^{*}, k^{*}}$ or $\gamma_{2}^{i^{*}, j^{*}, k^{*}}$ falls below a predefined threshold $\gamma_{t h}$. So, the outage probability can be expressed as [5]

$$
\begin{array}{r}
P_{\text {out }}\left(\gamma_{\text {th }}\right)=\operatorname{Pr}\left[\operatorname { m i n } \left(\gamma_{1}^{i^{*^{*}}, j^{*}, k^{*}}, \gamma_{2}^{\left.\left.i^{*^{*}, j^{*}, k^{*}}\right)<\gamma_{\text {th }}\right]}\right.\right. \\
=\{\underbrace{\operatorname{Pr}\left[\min \left(\gamma_{1}^{i^{*}, j^{*}, k}, \gamma_{2}^{i^{*}, j^{*}, k}\right)<\gamma_{t h}\right]}_{F\left(\gamma_{t h}\right)}\}^{N_{R}} \tag{13}
\end{array}
$$

in which $\operatorname{Pr}(x)$ denotes the probability of a random variable $x, \gamma_{1}^{i^{*}, j^{*}, k}$ and $\gamma_{2}^{i^{*}, j^{*}, k}$ are given by

$$
\begin{equation*}
\gamma_{1}^{i^{*}, j^{*}, k}=\frac{X_{k} Y_{k}}{a X_{k}+b Y_{k}}, \gamma_{2}^{i^{i^{*}, j^{*}, k}}=\frac{X_{k} Y_{k}}{c X_{k}+d Y_{k}} \tag{14}
\end{equation*}
$$

where $X_{k}=\max _{1 \leq i \leq N_{1}}\left\|\hat{h}_{i k}\right\|^{2}, Y_{k}=\max _{1 \leq j \leq N_{2}}\left\|\hat{g}_{j k}\right\|^{2}$. Thus, the remaining problem is to solve $F\left(\gamma_{t h}\right)$. According to the results in [7], $F\left(\gamma_{t h}\right)$ in (13) can be approximated as

$$
\begin{equation*}
F\left(\gamma_{t h}\right)=F_{1}\left(\gamma_{t h}\right)+F_{2}\left(\gamma_{t h}\right)-F_{1}\left(\gamma_{t h}\right) F_{2}\left(\gamma_{t h}\right) \tag{15}
\end{equation*}
$$

where $F_{l}\left(\gamma_{t h}\right)=\operatorname{Pr}\left(\gamma_{l}^{i^{*}, j^{*}, k}<\gamma_{t h}\right)(l=1,2)$ denotes the cumulative distribution function (CDF) of $\gamma_{l}^{i^{*}, j^{*}, k}$. Because $\gamma_{1}^{i^{*}, j^{*}, k}$ and $\gamma_{2}^{i^{*}, j^{*}, k}$ have similar forms, we focus on the derivation of $F_{1}\left(\gamma_{t h}\right)$ in the following.

We start our derivation by writing $\gamma_{1}^{i^{*}, j^{*}, k}$ in a more tractable form as follows:

$$
\begin{equation*}
\gamma_{1}^{i^{*}, j^{*}, k}=\left(A_{k}+B_{k}\right)^{-1} \tag{16}
\end{equation*}
$$

where $A_{k}=b / X_{k}, B_{k}=a / Y_{k}$. By using order statistics [8], the probability density function (PDF) of $X_{k}$ can be written as

$$
\begin{equation*}
f_{X_{k}}(x)=\frac{N_{1}}{\Omega_{\hat{h}}} \sum_{p=0}^{N_{1}-1}\binom{N_{1}-1}{p}(-1)^{p} e^{-\frac{p+1}{\Omega_{h}} x} \tag{17}
\end{equation*}
$$

By using Jacobian transformation between $X_{k}$ and $A_{k}$, we get the PDF of $A_{k}$

$$
\begin{equation*}
f_{A_{k}}(x)=\frac{N_{1}}{\Omega_{\hat{h}}} \sum_{p=0}^{N_{1}-1}\binom{N_{1}-1}{p}(-1)^{p} \frac{b}{x^{2}} e^{-\frac{(p+1) b}{\Omega_{h} x}} \tag{18}
\end{equation*}
$$

Then, with the help of [9, Eq. (3.471.9)], the moment generating function (MGF) of $A_{k}$ can be given by

$$
M_{A_{k}}(s)=\frac{2 N_{1}}{\Omega_{\hat{h}}} \sum_{p=0}^{N_{1}-1}\left\{\begin{array}{l}
\binom{N_{1}-1}{p}(-1)^{p} \sqrt{\frac{\Omega_{\hat{h}} b s}{p+1}}  \tag{19}\\
\times K_{1}\left(2 \sqrt{\frac{(p+1) b s}{\Omega_{\hat{h}}}}\right)
\end{array}\right\}
$$

where $K_{1}(\cdot)$ is the first order modified Bessel function of the second kind [9, Eq. (8.432.6)]. Following the similar steps as (17)-(19), the MGF of $B_{k}$ can be written as

$$
M_{B_{k}}(s)=\frac{2 N_{2}}{\Omega_{\hat{\jmath}}} \sum_{q=0}^{N_{2}-1}\left\{\begin{array}{l}
\binom{N_{2}-1}{q}(-1)^{q} \sqrt{\frac{\Omega_{\hat{\jmath}} a s}{q+1}}  \tag{20}\\
\times K_{1}\left(2 \sqrt{\frac{(q+1) a s}{\Omega_{\hat{g}}}}\right)
\end{array}\right\}
$$

By using the Theorem 1 in [10] and (19) and (20), the CDF of $\gamma_{1}^{i^{*}, j^{*}, k}$ can be expressed as

$$
\begin{equation*}
F_{1}\left(\gamma_{t h}\right)=H\left(\gamma_{t h}, a, b\right) \tag{21}
\end{equation*}
$$

The function $H(\cdot, \cdot, \cdot)$ is presented at the top of next page.
Following the similar steps as (16)-(21), the CDF of $\gamma_{2}^{i^{i^{*}},^{*}, k}$ can be obtained as

$$
\begin{equation*}
F_{2}\left(\gamma_{t h}\right)=H\left(\gamma_{t h}, c, d\right) \tag{23}
\end{equation*}
$$

Substituting (15), (21) and (23) into (13), we get the approximate outage probability $P_{\text {out }}^{a}\left(\gamma_{t h}\right)$, which is shown at the top of next page.

### 3.2 High SNR Analysis

For the purpose of getting better insights, we derive the asymptotic outage probability at high SNR region in the following. As the function $K_{1}(x)$ can be approximated as $1 / x$ for small $x[7], F_{1}\left(\gamma_{t h}\right)$ can be approximated as

$$
\begin{align*}
& F_{1}\left(\gamma_{t h}\right)=1-\underbrace{N_{1} \sum_{p=0}^{N_{1}-1}\binom{N_{1}-1}{p} \frac{(-1)^{p}}{p+1} e^{-\gamma_{t h} \frac{(p+1) b}{\Omega_{h}}}}_{E_{1}}  \tag{25}\\
& \times \underbrace{N_{2} \sum_{q=0}^{N_{2}-1}\binom{N_{2}-1}{q} \frac{(-1)^{q}}{q+1} e^{-\gamma_{t h} \frac{(q+1) a}{\Omega_{\hat{G}}}}}_{E_{2}}
\end{align*}
$$

Using Taylor series expansion, $E_{1}$ in (25) can be written by

$$
\begin{equation*}
E_{1}=N_{1} \sum_{p=0}^{N_{1}-1}\binom{N_{1}-1}{p} \frac{(-1)^{p}}{p+1} \sum_{k=0}^{\infty} \frac{1}{k!}\left(-\gamma_{t h} \frac{(p+1) b}{\Omega_{\hat{h}}}\right)^{k} \tag{26}
\end{equation*}
$$

By using the following equations

$$
\begin{align*}
& N \sum_{p=0}^{N-1}\binom{N-1}{p} \frac{(-1)^{p}}{p+1}=1  \tag{27}\\
& \sum_{p=0}^{N-1}\binom{N-1}{p}(-1)^{p}(p+1)^{k}=0 \text { for } k=0 \sim N-2 \tag{28}
\end{align*}
$$

(The proof of (27), (28) is presented in Appendix) $E_{1}$ can be written as

$$
\begin{array}{r}
E_{1}=1+N_{1} \sum_{p=0}^{N_{1}-1}\binom{N_{1}-1}{p} \frac{(-1)^{p+N_{1}}}{(p+1) N_{1}!}\left(\gamma_{t h} \frac{(p+1) b}{\Omega_{\hat{h}}}\right)^{N_{1}} \\
+o\left[\left(\gamma_{t h} \frac{(p+1) b}{\Omega_{\hat{h}}}\right)^{N_{1}+1}\right] \tag{29}
\end{array}
$$

where $o(x)$ represents $\lim _{x \rightarrow 0} \frac{o(x)}{x}=0$. Following the similar steps as (26)-(29), $E_{2}$ can be written as

$$
\begin{array}{r}
E_{2}=1+N_{2} \sum_{q=0}^{N_{2}-1}\binom{N_{2}-1}{q} \frac{(-1)^{q+N_{2}}}{(q+1) N_{2}!}\left(\gamma_{t h} \frac{(q+1) a}{\Omega_{\hat{g}}}\right)^{N_{2}} \\
+o\left[\left(\gamma_{t h} \frac{(q+1) a}{\Omega_{\hat{g}}}\right)^{N_{2}+1}\right] \tag{30}
\end{array}
$$

Substituting (29) and (30) into (25), $F_{1}\left(\gamma_{t h}\right)$ at high SNR region can be approximated by

$$
\begin{align*}
& F_{1}\left(\gamma_{t h}\right)=C(a, b) \gamma_{t h}^{K}  \tag{31}\\
& K=\min \left(N_{1}, N_{2}\right) \tag{32}
\end{align*}
$$

The function $C(\cdot, \cdot)$ is presented at the top of the next page. Following the similar steps as (25)-(31), $F_{2}\left(\gamma_{t h}\right)$ at high SNR region can be approximated as

$$
\begin{equation*}
F_{2}\left(\gamma_{t h}\right)=C(c, d) \gamma_{t h}^{K} \tag{34}
\end{equation*}
$$

Substituting (15), (31) and (34) into (13), the asymptotic outage probability expression at high SNR is given by

$$
\begin{equation*}
P_{o u t}^{\infty}\left(\gamma_{t h}\right)=(C(a, b)+C(c, d))^{N_{R}} \gamma_{t h}^{K N_{R}} \tag{35}
\end{equation*}
$$

Now, we employ (35) to analyze the impact of CEE on diversity order. Without loss of generality, we assume $\bar{p}_{1}=\bar{p}_{2}=\bar{p}_{3}=\bar{p}_{0}$ and $\sigma_{e_{h}}^{2}=\sigma_{e_{g}}^{2}=\sigma^{2}$. We consider two CEE models: (i) the variance of CEE reduces with increasing SNR $\bar{p}_{0}$, and is formulated by $\sigma^{2}=1 /\left(L \bar{p}_{0}\right)$, where $L$ is the length of training sequence. By inspection on $a, b$, $c, d$ and $P_{\text {out }}^{\infty}\left(\gamma_{t h}\right)$, it is observed that (35) can be written in the form $P_{\text {out }}^{\infty}\left(\gamma_{t h}\right)=D\left(\bar{p}_{0} \gamma_{t h}\right)^{-K N_{R}}$, where $D$ is a constant

$$
\begin{align*}
& H\left(\gamma_{t h}, a, b\right)=1-N_{1} N_{2} \sum_{p=0}^{N_{1}-1} \sum_{q=0}^{N_{2}-1}\left\{\binom{N_{1}-1}{p}\binom{N_{2}-1}{q}(-1)^{p+q} e^{-\gamma_{t h}\left(\frac{(p+1) b}{\Omega_{h}}+\frac{(q+1) a}{\Omega_{\hat{g}}}\right)} \sqrt{\frac{4 \gamma_{t h}^{2} a b}{(p+1)(q+1) \Omega_{\hat{h}} \Omega_{\hat{g}}}} K_{1}\left(\sqrt{\frac{4 \gamma_{t h}^{2}(p+1)(q+1) a b}{\Omega_{\hat{h}} \Omega_{\hat{g}}}}\right)\right\}  \tag{22}\\
& P_{o u t}^{a}\left(\gamma_{t h}\right)=\left\{\begin{array}{l}
1-N_{1}^{2} N_{2}^{2} \sum_{p=0}^{N_{1}-1} \sum_{q=0}^{N_{2}-1} \sum_{u=0}^{N_{1}-1} \sum_{v=0}^{N_{2}-1}\left\{\begin{array}{l}
\left.\binom{N_{1}-1}{p}\binom{N_{2}-1}{q}\binom{N_{1}-1}{u}\binom{N_{2}-1}{v}(-1)^{p+q+u+v} e^{-\gamma_{t h}\left[\frac{(p+1) b+(u+1) d}{\Omega_{\hat{h}}}+\frac{(q+1) a+(v+1) c}{\Omega_{\hat{g}}}\right]}\right) \\
\sqrt{\frac{16 \gamma_{t h}^{4} a b c d}{(p+1)(q+1)(u+1)(v+1) \Omega_{\hat{h}}^{2} \Omega_{\hat{g}}^{2}}} K_{1}\left(\sqrt{\frac{4 \gamma_{t h}^{2}(p+1)(q+1) a b}{\Omega_{\hat{h}} \Omega_{\hat{g}}}}\right)
\end{array}\right) K_{1}\left(\sqrt{\frac{4 \gamma_{t h}^{2}(u+1)(v+1) c d}{\Omega_{\hat{h}} \Omega_{\hat{g}}}}\right)
\end{array}\right\}  \tag{24}\\
& C(a, b)=\left\{\begin{array}{l}
N_{1} \sum_{p=0}^{N_{1}-1}\binom{N_{1}-1}{p} \frac{(-1)^{p+N_{1}+1}}{(p+1) N_{1}!}\left(\frac{(p+1) b}{\Omega_{\hat{h}}}\right)^{N_{1}} \text { for } N_{1}<N_{2}, \quad N_{2} \sum_{q=0}^{N_{2}-1}\binom{N_{2}-1}{q} \frac{(-1)^{q+N_{1}+1}}{(q+1) N_{2}!}\left(\frac{(q+1) a}{\Omega_{\hat{g}}}\right) \\
N \sum_{p=0}^{N-1}\binom{N-1}{p} \frac{(-1)^{p+N+1}}{(p+1) N!}\left[\left(\frac{(p+1) b}{\Omega_{\hat{h}}}\right)^{N}+\left(\frac{(p+1) a}{\Omega_{\hat{g}}}\right)^{N}\right] \quad \text { for } N_{1}=N_{2}=N
\end{array}\right. \tag{33}
\end{align*}
$$

that is independent of $\bar{p}_{0}$ and $\gamma_{t h}$. In this case, the system can achieve a diversity order of $K N_{R}$, namely, full diversity order. (ii) $\sigma^{2}$ is independent of SNR $\bar{p}_{0}, P_{o u t}^{\infty}\left(\gamma_{t h}\right)$ will not approach to zero as $\bar{p}_{0}$ approaches infinity. This is because $a, b, c, d$ have SNR independent constant terms, e.g., the term $5 \sigma^{2}$ in $a=\left(4 \bar{p}_{1} \bar{p}_{3} \sigma_{e_{h}}^{2}+\bar{p}_{2} \bar{p}_{3} \sigma_{e_{g}}^{2}+\bar{p}_{3}+\bar{p}_{1}\right) / \bar{p}_{2} \bar{p}_{3}=$ $5 \sigma^{2}+2 / \bar{p}_{0}$. In this case, the system's diversity order tends to zero as the SNR (or equivalently the transmitting power) approaches infinity.

## 4. Simulation Results

In this section, we conduct Monte Carlo simulations to verify the analytical results (shown in Fig. 1). The simulation parameters are as follows: $p_{1}=p_{2}=p_{3}=p_{0}, \sigma_{e_{h}}^{2}=\sigma_{e_{g}}^{2}=\sigma^{2}$, $\gamma_{t h}=3, \Omega_{h}=2, \Omega_{g}=1, N_{1}=N_{2}=N_{R}=2$. The SNR in Fig. 1 equals to $\bar{p}_{0}=p_{0} / N_{0}$. We adopt two CEE models: (i) $\sigma^{2}$ is a decreasing function of received SNR, and formulated as $\sigma^{2}=1 / \bar{p}_{0}$; (ii) $\sigma^{2}$ is independent of $\operatorname{SNR} \bar{p}_{0}$. It is shown from Fig. 1 that the derived approximate and asymptotic expressions match well with the simulated results. We can observe that the curves corresponding to $\sigma^{2}=1 / S N R$ have the same decreasing speed as those corresponding to $\sigma^{2}=0$


Fig. 1 Outage probability for JTRAS scheme in AF two-way relaying system with CEE.
at high SNR. This observation illustrates that the CEE only degrades coding gain but not diversity order when the variance of CEE is a decreasing function of received SNR (or transmitting power). By comparing the curves corresponding to $\sigma^{2}=0.01$ with those corresponding to $\sigma^{2}=0$, an error floor is observed for $\sigma^{2}=0.01$, which means that the diversity order tends to zero when variance of CEE is fixed for the whole SNR. The curves with $\sigma^{2}=0.01,0.001$ also show that increasing the variance of CEE leads to the increase of outage probability.

## 5. Conclusions

In this letter, we have derived closed-form approximate and asymptotic outage probability expressions for JTRAS scheme in AF two-way relaying system by taking into account CEE. Monte Carlo simulation results have shown the correctness of our derived expressions. Both analytical and simulation results have revealed that the CEE had a detrimental effect on the system's outage performance. When the variance of CEE decreases as transmitting power (or received SNR) increases, the CEE degrades the coding gain while the system can still achieve the full diversity order. When the variance of CEE is fixed from low to high SNR, the system's diversity order tends to zero.

## References

[1] B. Rankov and A. Wittneben, "Spectral efficient protocols for halfduplex fading relay channels," IEEE J. Sel. Areas Commun., vol.25, no.2, pp.379-389, Feb. 2007.
[2] R. Zhang, Y.C. Liang, C.C. Chai, and S. Cui, "Optimal beamforming for two-way multi-antenna relay channel with analogue network coding," IEEE J. Sel. Areas Commun., vol.27, no.5, pp.699-712, June 2009.
[3] G. Amarasuriya, C. Tellambura, and M. Ardakani, "Performance analysis of zero-forcing for two-way MIMO AF relay networks," IEEE Wireless Commun. Lett., vol.1, no.2, pp.53-56, April 2012.
[4] K. Xu, Y. Gao, X. Yi, and W. Yang, "Joint antenna selection for achieving diversity in a two-way relaying channel," IEICE Trans. Commun., vol.E95-B, no.6, pp.2141-2143, June 2012.
[5] G. Amarasuriya, C. Tellambura, and M. Ardakani, "Two-way amplify-and-forward MIMO relay network with antenna selection," Proc. IEEE GLOBECOM, pp.1-5, Dec. 2011.
[6] M. Seyfi, S. Muhaidat, and J. Liang, "Amplify-and-forward selection cooperation over Rayleigh fading channels with imperfect CSI," IEEE Trans. Wireless Commun., vol.11, no.1, pp.199-209, Jan. 2012.
[7] C. Wang, T.C.-K Liu, and X. Dong, "Impact of channel estimaiton error on the performance of AF two-way relaying," IEEE Trans. Veh. Technol., vol.61, no.3, pp.1197-1207, March 2012.
[8] H.A. David, Order Statistics, Wiley, New York, 1970.
[9] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 7th ed., Academic Press, San Diego, CA, 2007.
[10] M.O. Hasna and M.S. Alouini, "End-to-end performance of transmission systems with relays over Rayleigh-fading channels," IEEE Trans. Wireless Commun., vol.2, no.6, pp.1126-1131, Nov. 2003.

## Appendix: Proof of Eqs. (27) and (28)

In this appendix, we present the proof in brevity. (27) can be proved by using variable change $q=p+1$ and the following equation

$$
\left.h(x)\right|_{x=1}=\left.(1-x)^{N-1}\right|_{x=1}=\sum_{p=0}^{N-1}\binom{N-1}{p}(-1)^{p}=0
$$

We use mathematical induction method to prove (28). By using variable change $q=p-1$ and (A.1), we can prove (28) is true for $k=0,1$. Assuming (28) holds for $k=l$, then (28) can be proved through the following procedure:

$$
\begin{align*}
& \sum_{p=0}^{N-1}\binom{N-1}{p}(-1)^{p}(p+1)^{l}=0 \\
& \Rightarrow \sum_{p=0}^{N-1}\binom{N-1}{p}(-1)^{p} p^{l+1}=0 \\
& \Rightarrow \sum_{p=0}^{N-1}\binom{N-1}{p}(-1)^{p}(p+1)^{l+1}=0
\end{align*}
$$


[^0]:    Manuscript received April 12, 2012.
    Manuscript revised January 28, 2013.
    ${ }^{\dagger}$ The authors are with the Institute of Communications Engineering, PLA University of Science and Technology, 210007, Nanjing, China.
    a) E-mail: fzjicepangpang @ 126.com

    DOI: 10.1587/transinf.E96.D. 1552

