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Outage Performance for Antenna Selection in AF Two-Way
Relaying System with Channel Estimation Error

Zhangjun FAN†a), Daoxing GUO†, Bangning ZHANG†, Nonmembers, and Youyun XU†, Member

SUMMARY This letter investigates the outage performance of a joint
transmit and receive antenna selection scheme in an amplify-and-forward
two-way relaying system with channel estimation error. A closed-form
approximate outage probability expression is derived, based on which the
asymptotic outage probability expression is derived to get an insight on
system’s outage performance at high signal-to-noise (SNR) region. Monte
Carlo simulation results are presented to verify the analytical results.
key words: two-way relaying, antenna selection, outage probability, diver-
sity order

1. Introduction

Two-way relaying has attracted enormous research interest
from the wireless community in recent years, due to its abil-
ity to enhance spectral efficiency [1]. When the nodes in
two-way relaying system are equipped with multiple anten-
nas, the system’s throughput and transmission reliability can
be further enhanced [2], [3]. However, it is typically nec-
essary to manipulate pre-coding and/or post-processing at
sources and/or relay to fully exploit the merits of mounting
multiple antennas, which imposes higher computational bur-
den on sources and/or relay. To circumvent this drawback,
the authors in [4], [5] have proposed a joint transmit and re-
ceive antenna selection (JTRAS) scheme for amplify-and-
forward (AF) two-way relaying system with multiple anten-
nas, aiming to achieve the full diversity order. However, the
works in [4], [5] have assumed perfect channel state infor-
mation (CSI) at both sources and the relay. To the best of our
knowledge, the impact of channel estimation error (CEE) on
the performance of the JTRAS scheme remains unknown in
the available literature. Note that the effect of CEE in one-
way relaying system has been investigated in [6]. Never-
theless, the analysis method for one-way relaying cannot be
applied to two-way relaying directly due to the bidirectional
transmission flows in two-way relaying system.

In this letter, we analyze the outage performance of
JTRAS scheme proposed in [4], [5] by taking into account
the CEE. Firstly, we derive a closed-form approximate out-
age probability expression. To get better insights, an asymp-
totic outage probability expression at high signal-to-noise
ratio (SNR) region is derived to reveal the achievable di-
versity order. Finally, we conduct Monte Carlo simulations
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to verify the analytical results. Both analytical and simu-
lation results reveal that (i) when the variance of CEE is a
decreasing function of transmitting power, the system can
still achieve full diversity order, and (ii) when the variance
of CEE is independent of transmitting power, the diversity
order tends to zero.

2. System Model

We consider an AF two-way relaying system that consists of
two source nodes (denoted by S 1 and S 2) and one relay node
(denoted by R). S 1 and S 2 exchange information via the aid
of R, and thus, also act as destinations. Specially, S 1, S 2 and
R are mounted with N1, N2 and NR antennas, respectively.
We assume that both sources and the relay operate in half-
duplex mode, and no direct link between S 1 and S 2 exists
due to high shadowing. The channels between S l, l = 1, 2
and R undergo block, flat, Rayleigh fading. Assuming time-
division duplex is adopted, then the channels are reciprocal,
namely, the channel gains of links S l → R and R → S l

are identical in one round of information exchange. Let the
channel between the ith antenna of S 1 and the kth antenna of
R be denoted as hik, and the channel between the jth antenna
of S 2 and the kth antenna of R be denoted as g jk, where
1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ NR. hik and g jk are
modeled as zero mean complex Gaussian random variables
with variances Ωh and Ωg, respectively. We also assume
that perfect information on noise powers at all nodes in the
system is available.

One round of information exchange consists of two
phases. In the first phase, S 1 and S 2 transmit simultane-
ously to R using the ith and jth antenna, respectively. As-
suming that perfect synchronization among all the nodes in
the system has been established, the received signal at the
kth antenna of R can be expressed as

yr =
√

p1hik s1 +
√

p2g jk s2 + nr (1)

where pl and sl denote the transmitting power and unit en-
ergy modulated signal of S l, l = 1, 2, nr denotes the addi-
tive white Gaussian noise (AWGN) at R with zero mean and
variance σ2

n. In the second phase, R amplifies yr by a factor

G =

√
1
/[

p1

∥∥∥ĥik

∥∥∥2 + p2

∥∥∥ĝ jk

∥∥∥2 + σ2
n

]
(2)

and broadcasts to both destinations using the kth antenna.
ĥik and ĝ jk in (2) denote the estimates of hik and g jk, respec-
tively. Assuming a least mean squares estimator, we have
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the following relationship [6]

hik = ĥik + ehik , g jk = ĝ jk + eg jk (3)

where ehik and eg jk denote the CEEs, and are modeled as zero
mean complex Gaussian variables with variances σ2

ehik
and

σ2
eg jk

, respectively. For simplicity, we make a reasonable

assumption that σ2
ehik
= σ2

eh
, σ2

eg jk
= σ2

eg∀i, j, k. Since ĥik

is independent of ehik and ĝ jk is independent of eg jk [6], ĥik

and ĝ jk are also zero mean complex Gaussian variables with
variances Ωĥ = Ωh − σ2

eh
and Ωĝ = Ωg − σ2

eg , respectively.
As perfect synchronization is assumed, the received signal
at S 1 can be written as

y1 =
√

p1 p3G(ĥik + ehik )
2s1 +

√
p2 p3G(ĥik + ehik )

× (ĝ jk + eg jk )s2 +
√

p3G(ĥik + ehik )nr + n1 (4)

in which p3 denotes the transmitting power of R, and n1 de-
notes the AWGN at S 1 with zero mean and variance σ2

n. Af-
ter self-information cancelation and some elementary ma-
nipulation, the effective SNR at S 1 can be expressed as

γ
i, j,k
1 =

p̄2 p̄3

∥∥∥ĥik

∥∥∥2 ∥∥∥ĝ jk

∥∥∥2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
4p̄1 p̄3σ

2
eh
+ p̄2 p̄3σ

2
eg + p̄3 + p̄1

) ∥∥∥ĥik

∥∥∥2
+
(
p̄2 p̄3σ

2
eh
+ p̄2

) ∥∥∥ĝ jk

∥∥∥2 + 2p̄1 p̄3σ
4
eh

+p̄2 p̄3σ
2
eh
σ2

eg + p̄3σ
2
eh
+ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where p̄l = pl/σ
2
n, l = 1, 2, 3. Since the last four terms in

the denominator of (5) are of small values in practice where
both estimation error and noise variances are small, they can
be reasonably ignored and then (5) can be approximated as

γ
i, j,k
1 =

∥∥∥ĥik

∥∥∥2 ∥∥∥ĝ jk

∥∥∥2
a
∥∥∥ĥik

∥∥∥2 + b
∥∥∥ĝ jk

∥∥∥2 (6)

a =
(
4p̄1 p̄3σ

2
eh
+ p̄2 p̄3σ

2
eg + p̄3 + p̄1

)/
p̄2 p̄3 (7)

b =
(
p̄2 p̄3σ

2
eh
+ p̄2

)/
p̄2 p̄3 (8)

Following the same approach as conducted to obtain (6) and
assuming the variance of AWGN at S 2 is σ2

n, we get the
approximate effective SNR at S 2

γ
i, j,k
2 =

∥∥∥ĥik

∥∥∥2 ∥∥∥ĝ jk

∥∥∥2
c
∥∥∥ĥik

∥∥∥2 + d
∥∥∥ĝ jk

∥∥∥2 (9)

c =
(
p̄1 p̄3σ

2
eg + p̄1

)/
p̄1 p̄3 (10)

d =
(
4p̄2 p̄3σ

2
eg + p̄1 p̄3σ

2
eh
+ p̄3 + p̄2

)/
p̄1 p̄3 (11)

In order to achieve the full diversity order and reduce
the processing payload at both sources and the relay, the
authors in [4], [5] have proposed the following antenna se-
lection criterion

{i∗, j∗, k∗} = arg max
1≤i≤N1,1≤ j≤N2,1≤k≤NR

[
min
(
γ

i, j,k
1 , γ

i, j,k
2

)]
(12)

where i∗, j∗ and k∗ are the best antenna indices at S 1, S 2

and R, respectively. In the following section, we analyze the
outage performance of this antenna selection scheme in the
presence of CEE. It is worthy noting that the differences be-
tween the analysis in this letter and that in [6] mainly consist
of four aspects: 1) This letter focuses on two-way relaying,
while the main concern of [6] is one-way relaying. Different
from one-way relaying, the outage probability in two-way
relaying is defined as the probability that the minimum of
SNRs at two destinations falls below a predefined thresh-
old [5]. Since the SNRs at two destinations are dependent, it
is more complicated to investigate the effect of CEE on out-
age performance in two-way relaying, as compared to the
analysis in [6]; 2) The most key part of analysis in [6] is to
use 0.5 min (x, y) ≤ xy

x+y ≤ min (x, y). However, this inequal-
ity cannot be used to derive the closed-form outage proba-
bility expression in this letter; 3) The sources/destinations
in this letter are mounted with multiple antennas, while the
source/destination in [6] is equipped with single antenna.
This difference requires us to employ different method to
derive the outage probability; 4) In two-way relaying, the
CEE leads to residual self-noise, while no self-noise exists
in one-way relaying [6]. As seen from (5)–(11), this differ-
ence results in different SNRs forms as compared to [6].

3. Outage Performance Analysis

3.1 Approximate Outage Probability

In the AF two-way relaying system, an outage event occurs
when either γi∗, j∗,k∗

1 or γi∗, j∗,k∗
2 falls below a predefined thresh-

old γth. So, the outage probability can be expressed as [5]

Pout (γth) = Pr
[
min
(
γ

i∗, j∗,k∗
1 , γ

i∗, j∗,k∗
2

)
< γth

]

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩Pr
[
min
(
γ

i∗, j∗,k
1 , γ

i∗, j∗,k
2

)
< γth

]
︸��������������������������������︷︷��������������������������������︸

F(γth)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
NR

(13)

in which Pr (x) denotes the probability of a random variable
x, γi∗, j∗,k

1 and γi∗, j∗,k
2 are given by

γ
i∗, j∗,k
1 =

XkYk

aXk + bYk
, γ

i∗, j∗,k
2 =

XkYk

cXk + dYk
(14)

where Xk = max
1≤i≤N1

∥∥∥ĥik

∥∥∥2, Yk = max
1≤ j≤N2

∥∥∥ĝ jk

∥∥∥2. Thus, the re-

maining problem is to solve F(γth). According to the results
in [7], F(γth) in (13) can be approximated as

F(γth) = F1 (γth) + F2 (γth) − F1 (γth) F2 (γth) (15)

where Fl (γth) = Pr
(
γ

i∗, j∗,k
l < γth

)
(l = 1, 2) denotes the

cumulative distribution function (CDF) of γi∗, j∗,k
l . Because

γ
i∗, j∗,k
1 and γi∗, j∗,k

2 have similar forms, we focus on the deriva-
tion of F1(γth) in the following.

We start our derivation by writing γi∗, j∗,k
1 in a more

tractable form as follows:

γ
i∗, j∗,k
1 = (Ak + Bk)−1 (16)
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where Ak = b/Xk, Bk = a/Yk. By using order statistics [8],
the probability density function (PDF) of Xk can be written
as

fXk (x) =
N1

Ωĥ

N1−1∑
p=0

(
N1 − 1
p

)
(−1)p e

− p+1
Ωĥ

x
(17)

By using Jacobian transformation between Xk and Ak, we
get the PDF of Ak

fAk (x) =
N1

Ωĥ

N1−1∑
p=0

(
N1 − 1
p

)
(−1)p b

x2
e
− (p+1)b
Ωĥ x (18)

Then, with the help of [9, Eq. (3.471.9)], the moment gener-
ating function (MGF) of Ak can be given by

MAk (s) =
2N1

Ωĥ

N1−1∑
p=0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
N1 − 1
p

)
(−1)p

√
Ωĥbs

p + 1

× K1

⎛⎜⎜⎜⎜⎜⎜⎝2
√

(p + 1) bs
Ωĥ

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(19)

where K1 (·) is the first order modified Bessel function of the
second kind [9, Eq. (8.432.6)]. Following the similar steps
as (17)–(19), the MGF of Bk can be written as

MBk (s) =
2N2

Ωĝ

N2−1∑
q=0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
N2 − 1
q

)
(−1)q

√
Ωĝas

q + 1

× K1

⎛⎜⎜⎜⎜⎜⎜⎝2
√

(q + 1) as
Ωĝ

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

By using the Theorem 1 in [10] and (19) and (20), the CDF
of γi∗, j∗,k

1 can be expressed as

F1 (γth) = H (γth, a, b) (21)

The function H (·, ·, ·) is presented at the top of next page.
Following the similar steps as (16)–(21), the CDF of

γ
i∗, j∗,k
2 can be obtained as

F2 (γth) = H (γth, c, d) (23)

Substituting (15), (21) and (23) into (13), we get the approx-
imate outage probability Pa

out (γth), which is shown at the top
of next page.

3.2 High SNR Analysis

For the purpose of getting better insights, we derive the
asymptotic outage probability at high SNR region in the fol-
lowing. As the function K1 (x) can be approximated as 1/x
for small x [7], F1(γth) can be approximated as

F1 (γth) = 1 − N1

N1−1∑
p=0

(
N1 − 1
p

)
(−1)p

p + 1
e
−γth

(p+1)b
Ωĥ

︸��������������������������������������︷︷��������������������������������������︸
E1

×N2

N2−1∑
q=0

(
N2 − 1
q

)
(−1)q

q + 1
e
−γth

(q+1)a
Ωĝ

︸��������������������������������������︷︷��������������������������������������︸
E2

(25)

Using Taylor series expansion, E1 in (25) can be written by

E1 = N1

N1−1∑
p=0

(
N1 − 1
p

)
(−1)p

p + 1

∞∑
k=0

1
k!

(
−γth

(p + 1) b
Ωĥ

)k
(26)

By using the following equations

N
N−1∑
p=0

(
N − 1
p

)
(−1)p

p + 1
= 1 (27)

N−1∑
p=0

(
N − 1
p

)
(−1)p (p + 1)k = 0 for k = 0∼N − 2 (28)

(The proof of (27), (28) is presented in Appendix) E1 can be
written as

E1 = 1 + N1

N1−1∑
p=0

(
N1 − 1
p

)
(−1)p+N1

(p + 1) N1!

(
γth

(p + 1) b
Ωĥ

)N1

+ o

⎡⎢⎢⎢⎢⎢⎣
(
γth

(p + 1) b
Ωĥ

)N1+1⎤⎥⎥⎥⎥⎥⎦
(29)

where o(x) represents lim
x→0

o(x)
x = 0. Following the similar

steps as (26)–(29), E2 can be written as

E2 = 1 + N2

N2−1∑
q=0

(
N2 − 1
q

)
(−1)q+N2

(q + 1) N2!

(
γth

(q + 1) a
Ωĝ

)N2

+o

⎡⎢⎢⎢⎢⎢⎣
(
γth

(q + 1) a
Ωĝ

)N2+1⎤⎥⎥⎥⎥⎥⎦
(30)

Substituting (29) and (30) into (25), F1(γth) at high SNR
region can be approximated by

F1 (γth) = C(a, b)γK
th (31)

K = min (N1,N2) (32)

The function C (·, ·) is presented at the top of the next page.
Following the similar steps as (25)–(31), F2(γth) at high
SNR region can be approximated as

F2 (γth) = C(c, d)γK
th (34)

Substituting (15), (31) and (34) into (13), the asymptotic
outage probability expression at high SNR is given by

P∞out (γth) = (C(a, b) +C(c, d))NR γKNR

th (35)

Now, we employ (35) to analyze the impact of CEE
on diversity order. Without loss of generality, we assume
p̄1 = p̄2 = p̄3 = p̄0 and σ2

eh
= σ2

eg = σ
2. We consider two

CEE models: (i) the variance of CEE reduces with increas-
ing SNR p̄0, and is formulated by σ2 = 1/(Lp̄0), where L
is the length of training sequence. By inspection on a, b,
c, d and P∞out (γth), it is observed that (35) can be written in
the form P∞out (γth) = D ( p̄0γth)−KNR , where D is a constant
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H (γth, a, b) = 1 − N1N2

N1−1∑
p=0

N2−1∑
q=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

N1 − 1
p

) (
N2 − 1
q

)
(−1)p+q e

−γth

(
(p+1)b
Ωĥ
+

(q+1)a
Ωĝ

) √
4γ2

thab

(p + 1)(q + 1)ΩĥΩĝ
K1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

4γ2
th(p + 1)(q + 1)ab

ΩĥΩĝ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (22)

Pa
out (γth) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 − N2

1 N2
2

N1−1∑
p=0

N2−1∑
q=0

N1−1∑
u=0

N2−1∑
v=0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
N1 − 1
p

) (
N2 − 1
q

) (
N1 − 1
u

) (
N2 − 1
v

)
(−1)p+q+u+v e

−γth

[
(p+1)b+(u+1)d

Ωĥ
+

(q+1)a+(v+1)c
Ωĝ

]

√
16γ4

thabcd

(p+1)(q+1)(u+1)(v+1)Ω2
ĥ
Ω2
ĝ

K1

⎛⎜⎜⎜⎜⎜⎝
√

4γ2
th(p+1)(q+1)ab
ΩĥΩĝ

⎞⎟⎟⎟⎟⎟⎠K1

⎛⎜⎜⎜⎜⎜⎝
√

4γ2
th(u+1)(v+1)cd
ΩĥΩĝ

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

NR

(24)

C (a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1

N1−1∑
p=0

(
N1 − 1
p

)
(−1)p+N1+1

(p + 1) N1!

(
(p + 1) b
Ωĥ

)N1

for N1 < N2, N2

N2−1∑
q=0

(
N2 − 1
q

)
(−1)q+N1+1

(q + 1) N2!

(
(q + 1) a
Ωĝ

)N2

for N1 > N2

N
N−1∑
p=0

(
N − 1
p

)
(−1)p+N+1

(p + 1) N!

[ (
(p+1)b
Ωĥ

)N
+

(
(p+1)a
Ωĝ

)N ]
f or N1 = N2 = N

(33)

that is independent of p̄0 and γth. In this case, the system
can achieve a diversity order of KNR, namely, full diversity
order. (ii) σ2 is independent of SNR p̄0, P∞out (γth) will not
approach to zero as p̄0 approaches infinity. This is because
a, b, c, d have SNR independent constant terms, e.g., the
term 5σ2 in a =

(
4p̄1 p̄3σ

2
eh
+ p̄2 p̄3σ

2
eg + p̄3 + p̄1

)/
p̄2 p̄3 =

5σ2 + 2/ p̄0. In this case, the system’s diversity order tends
to zero as the SNR (or equivalently the transmitting power)
approaches infinity.

4. Simulation Results

In this section, we conduct Monte Carlo simulations to ver-
ify the analytical results (shown in Fig. 1). The simulation
parameters are as follows: p1 = p2 = p3 = p0, σ2

eh
=σ2

eg =σ
2,

γth =3, Ωh =2, Ωg =1, N1 =N2 =NR =2. The SNR in Fig. 1
equals to p̄0 = p0/N0. We adopt two CEE models: (i) σ2

is a decreasing function of received SNR, and formulated as
σ2 = 1/ p̄0; (ii) σ2 is independent of SNR p̄0. It is shown
from Fig. 1 that the derived approximate and asymptotic ex-
pressions match well with the simulated results. We can
observe that the curves corresponding to σ2 = 1/SNR have
the same decreasing speed as those corresponding to σ2 = 0

Fig. 1 Outage probability for JTRAS scheme in AF two-way relaying
system with CEE.

at high SNR. This observation illustrates that the CEE only
degrades coding gain but not diversity order when the vari-
ance of CEE is a decreasing function of received SNR (or
transmitting power). By comparing the curves correspond-
ing to σ2 = 0.01 with those corresponding to σ2 = 0, an
error floor is observed for σ2 = 0.01, which means that the
diversity order tends to zero when variance of CEE is fixed
for the whole SNR. The curves with σ2 = 0.01, 0.001 also
show that increasing the variance of CEE leads to the in-
crease of outage probability.

5. Conclusions

In this letter, we have derived closed-form approximate
and asymptotic outage probability expressions for JTRAS
scheme in AF two-way relaying system by taking into ac-
count CEE. Monte Carlo simulation results have shown the
correctness of our derived expressions. Both analytical and
simulation results have revealed that the CEE had a detri-
mental effect on the system’s outage performance. When
the variance of CEE decreases as transmitting power (or re-
ceived SNR) increases, the CEE degrades the coding gain
while the system can still achieve the full diversity order.
When the variance of CEE is fixed from low to high SNR,
the system’s diversity order tends to zero.
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Appendix: Proof of Eqs. (27) and (28)

In this appendix, we present the proof in brevity. (27) can be
proved by using variable change q = p+1 and the following
equation

h (x) |x=1 = (1 − x)N−1 |x=1 =

N−1∑
p=0

(
N − 1
p

)
(−1)p = 0

(A· 1)

We use mathematical induction method to prove (28). By
using variable change q = p − 1 and (A.1), we can prove
(28) is true for k = 0, 1. Assuming (28) holds for k = l, then
(28) can be proved through the following procedure:

N−1∑
p=0

(
N − 1
p

)
(−1)p (p + 1)l = 0

⇒
N−1∑
p=0

(
N − 1
p

)
(−1)p pl+1 = 0

⇒
N−1∑
p=0

(
N − 1
p

)
(−1)p (p + 1)l+1 = 0

(A· 2)


