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Affine Transformations for Communication and Reconfiguration
Optimization of Mapping Loop Nests on CGRAs∗

Shouyi YIN†a), Member, Dajiang LIU†, Leibo LIU†, and Shaojun WEI†, Nonmembers

SUMMARY A coarse-grained reconfigurable architecture (CGRA) is
typically hybrid architecture, which is composed of a reconfigurable
processing unit (RPU) and a host microprocessor. Many computation-
intensive kernels (e.g., loop nests) are often mapped onto RPUs to speed
up the execution of programs. Thus, mapping optimization of loop nests is
very important to improve the performance of CGRA. Processing element
(PE) utilization rate, communication volume and reconfiguration cost are
three crucial factors for the performance of RPUs. Loop transformations
can affect these three performance influencing factors greatly, and would
be of much significance when mapping loops onto RPUs. In this paper, a
joint loop transformation approach for RPUs is proposed, where the PE uti-
lization rate, communication cost and reconfiguration cost are under a joint
consideration. Our approach could be integrated into compilers for CGRAs
to improve the operating performance. Compared with the communication-
minimal approach, experimental results show that our scheme can improve
5.8% and 13.6% of execution time on motion estimation (ME) and partial
differential equation (PDE) solvers kernels, respectively. Also, run-time
complexity is acceptable for the practical cases.
key words: reconfigurable computing, loop transformation, polyhedra
model, compiling

1. Introduction

CGRA is a computing architecture combing the high per-
formance of application specific integrated circuit (ASIC)
with the much of the flexibility of general purpose processor
(GPP). A CGRA typically consists of reconfigurable pro-
cessing units (RPU) and a host microprocessor. With the
presence of RPU, high performance of computation on some
compute-intensive applications could be achieved and vari-
ous applications could be implemented on CGRA.

However, tapping the computing potential of such hy-
brid architecture is a hard work and compilers for such sys-
tem are urgently needed to leverage the synergies of the re-
configurable architectures. As the traditional sequential pro-
gramming model is unfavorable to parallel computing and
no acknowledged programming model is proposed for re-
configurable architecture, compiling for such architecture is
a well-known challenge work.

RPUs typically handles computational intensive ker-
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nels in applications and much of them are loops. Mapping
loops onto CGRAs to improve the execution performance
is difficult due to their complex nature. Several techniques
have been previously proposed to address the problems of
mapping loops onto CGRAs. In [1], modular scheduling
scheme is adopted to let a single loop to be executed in a
loop pipeline fashion, which improves the throughout and
the parallelism of CGRAs by overlapping the execution of
different iterations of a loop. Since only a single iteration
is analyzed, limited parallelism could be achieved. Loop
unrolling [2], [3] is a common technique to generate a map-
ping scheme with greater parallelism. It unrolls a loop and
transfer it into a DFG. Then, DFG based mapping optimiza-
tion is performed to improve the execution performance. It
is often used with other techniques such as loop shifting.
This technology usually deals with a single loop for paral-
lelization. In addition, the optimization opportunity in the
step of DFG generation for original code is of little thought.
Loop fission [4] is usually used to create smaller loops that
have more speedup potential when parallelized, which is of-
ten applied to a single loop containing in the loop body one
or more kernels. In [5], polyhedra model is firstly applied
to the loop optimization for reconfigurable computing archi-
tectures, where both communication cost and PE utilization
rate are considered. However, the reconfiguration cost is not
taken into account in that work.

Most previous works have focus on loop transforma-
tion on CGRAs for communication-minimal parallelism,
which is only one of the performance influencing factors of
performance of CGRA. Since RPUs usually have limited
resources and would be reconfigured many times to imple-
ment a computing task, the reconfiguration cost for chang-
ing the data path in RPUs could not be neglected. Thus, con-
sidering reconfiguration costs when applying loop transfor-
mation for communication minimal parallelization and PE
utilization rate is of much significance.

In this paper, we focus on the polyhedral model [6]
based loop transformations for coarse-grained reconfig-
urable architecture. The approach mainly find two
hyperplanes to tile the original source code for both
communication- and reconfiguration-minimal parallelism.
When mapping loop nests on a 2-D PE array, we use
scheduling hyperplane (Θ) to denote row related hyperplane
for time tilling. By the scheduling hyperplane, the PEs are
tiled in time domain, which means the tiled PEs execute in
time sequencing. And we use space hyperplane (Π) to de-
note the column related hyperplane for space tiling. The
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space hyperplane guarantees the tiled PEs in one row has no
dependence and can execute in parallel. In our approaches,
the three crucial factors in the architecture, PE utilization
rate, communication cost and reconfiguration cost, are taken
into a joint consideration. The proposed approaches in-
clude: 1). finding the best scheduling hyperplane. This step
is of high priority because both communication volume and
PE utilization rate are optimized in a unified way and it is
also the basis reference of the second hyperplane. 2). find-
ing the best space hyperplane independent of the schedul-
ing hyperplane, where the trade-off between communication
costs and configuration costs is made to get the global op-
timum by adding an angle constraint. This angle constraint
represents the trade-off metric between communication cost
and reconfiguration cost. With these two hyperplanes, a 2-
dimensional loop nest could be partitioned into small tiles
matching the size of an PE array. Then each tile can be
mapped onto 2-dimensional PE array.

The rest of this paper is organized as follows. In Sect. 2,
the target architecture of CGRA and the mathematical back-
ground of polyhedral model are provided. In Sect. 3, the
relationships of PE utilization rate, communication cost and
reconfiguration cost are analyzed in detail. Based on the
previous section, Sect. 4 describes the formulation of opti-
mization problems. Section 5 gives an efficient solution to
the formulated problems. Then, Sect. 6 presents the experi-
ments results that demonstrate the effectiveness of our opti-
mization algorithm. At last, we conclude in Sect. 7.

2. Background and Notation

This section provides the target architecture of CGRA and
the background of polyhedral model. In addition, the pro-
cess of polyhedra model based mapping optimization of
loop nests for CGRA is illustrated.

2.1 The Target Architecture of CGRA

The hardware architecture of coarse-grained reconfigurable
computing is typically based on RPUs as a role of copro-
cessor and coupled to a host microprocessor, as depicted in
Fig. 1, where the host microprocessor controls the execution
of the whole system. The host microprocessor and RPU
communicate with each other by memory (e.g., SRAM) out
of chip. Each RPU was composed of one or more recon-
figurable cell arrays (RCA), some data memory, a configu-
ration memory, a configuration controller, etc. The different
RCAs exchange data with a shared memory and the RCA in-
ternal memory stores the intermediate result of computation.
The configuration memory stores the configuration contexts
and the configuration controller controls the reconfiguration
and execution of the RCA.

The typical structure of the RCA is a two-dimensional
(2D) PE array connected by flexible routes. Each PE in-
cludes an ALU and some pass registers. The functionality
of PE could be configured to be different word-level opera-
tions of fixed-point numbers. The routing style of PEs has

Fig. 1 Target architecture of coarse-grained reconfigurable computing.

great variety, and this paper mainly focus on the crossbar
style connection [7], [8]. In crossbar style connection, the
PEs in neighbor rows can communicate with each other di-
rectly through the horizontal bars. There is no direct connec-
tion between unneighbor PEs. The communication between
unneighbor PEs must go through pass registers. For exam-
ple, as shown in Fig. 1, the PE A can communicate with PE
B directly since they are in neighbor rows. In contrast, the
PE A must go through the pass register of PE B to commu-
nicate with PE C.

The function of each PE and the specific routing style
could be reconfigurable by configuration contexts stored in
the configuration memory. The reconfiguration cost (la-
tency) depends on the size and bandwidth of the configu-
ration memory greatly. The reconfiguration latency equals
to the configuration context size divided by the configura-
tion memory bandwidth. If the bandwidth is large enough,
the latency could be very small. Moreover, if the size of con-
figuration memory is big enough, the double-buffering tech-
nique can be used. Then the latency can be hidden greatly.

However, in practical implementation of CGRA (e.g.
ReMUS [7] and PipeRench [8]), the configuration memory
size and bandwidth is usually not big enough, due to the con-
sideration of chip area and power consumption. For exam-
ple, in ReMUS processor, the bandwidth of the configura-
tion memory is 1024 bits and the configuration context size
of one RCA operation is 128 words. So 4 cycles are need to
finish the configuration of one RCA instance. In such cases,
the reconfiguration cost cannot be ignored in performance
analysis.

Our proposed loop optimization approach is based on
the general reconfigurable architecture described above.

2.2 Polyhedra Model

The polyhedron model [6] is convenient alternative rep-
resentation which combines analysis power, expressive-
ness and high flexibility. It first convert the original loop
source code into polyhedral model intermediate representa-
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tion (IR). Then affine transformations for optimization are
performed on the polyhedral model IR. At last, the trans-
formed polyhedral model IR is convert to optimized source
code. This model is widely applied to GPP, GPU, etc and
it is based on four main concepts: the iteration domain, the
access function, dependence polyhedra and affine transfor-
mation. A program part that can be represented using the
polyhedron model is called a Static Control Part or SCoP
for short.

The iteration domain is defined by a system of affine
inequalities, DS (�iS ) ≥ �0, derived from the bounds of loops
surrounding statement S. Using matrix to present the in-
equalities, the iteration space polytope is presented as:

DS ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�iS
�gS

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥
�0 (1)

whereDS is a matrix of n affine constraints on the execution
of statement S.�iS is the iteration vector of statement S and
�gS is a vector of global parameters.

Each reference in a statement is also affine functions
of loop indices and global parameters, which could also be
represented using matrices. if FkAS (�iS ) represents the access
function of the kth reference to an array A in statement S,
then

FkAS (�iS ) = FkAS ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�iS
�gS

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

where FkAS is a matrix representing an affine mapping form
the iteration space of statement S to the data space of array
S. Each row in the matrix defines a mapping corresponding
to one dimension of the data space.

The Polyhedral Dependence Graph (PDG) [9] is a di-
rected multi-graph with each vertex representing a state-
ment, and an edge, e ∈ E, from node S i to S j representing
a polyhedral dependence from a dynamic instance of S i to
one of S j: it is characterized by a polyhedron, Pe, called the
dependence polyhedron that captures the exact dependence
information corresponding to e. The dependence polyhe-
dron is in the sum of the dimensionality of the source and
target statements polyhedra. The h-transformation [10] he

maps the target iteration vector�it to the source iteration vec-
tor�is that is the last access the same index of a array. So the
dependence polyhedra can be represented as:

Pe ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ds

Dt

he

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�is
�it
�g
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

≥ �0
≥ �0
= �0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

The affine transformation of a statement S is defined as
an affine mapping that maps an instance of S in the original
program to an instance in the transformed program. The
transform function of a statement S is given by:

Φ(�iS ) = TS ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�iS
�gS

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

Fig. 2 The process of polyhedra model based mapping optimization.

where T is a row vector and the affine transformation is a
one-dimensional mapping. Φ can also be called an affine hy-
perplane. An n-dimensional mapping can be represented as
a combination of n (linearly independent) one-dimensional
mappings. In the architecture of RCAs, we use space hy-
perplane Π to denote the space tiling (the hyperplane or-
thogonal to axis j in Fig. 2), and scheduling hyperplane Θ to
denote the time tiling (the hyperplane orthogonal to axis i).

2.3 The Process of Polyhedra Model Based Mapping Op-
timization of Loops for CGRA

We first use polyhedral model for the mapping optimization
of CGRAs in [5], where the mapping process is proposed as
follow: (1) Convert the original loop nest into polyhedra in-
termediate representation (IR). (2) Find two 1-d affine trans-
formations (i.e., two hyperplanes) on the polyhedra model
IR, where some optimizations is performed. (3) Tile the
iteration space by the two hyperplanes found in step (2)
to match the size of RCA. (4) Map every tile generated in
step (3) onto RCAs and generate configuration context for
CGRA. The whole mapping process is expatiated in Fig. 2.

3. CGRA’s Performance Factors Analysis

When mapping the loop nests onto CGRA, there are three
major performance factors that affect the performance: com-
munication cost, PE utilization rate and reconfiguration cost.
In this section, we first illustrate the unity between PE uti-
lization rate and communication cost. Then, the trade-off
between communication cost and reconfiguration cost is an-
alyzed.

The concept of communication cost refers to the data
exchange between different loop instances. From the per-
spective of loop nests, the communication cost (or data ex-
change) is caused by the data dependence between different
loop instances, which is presented by the arrows in Fig. 4 (c).
Therefore the communication cost can be measured by the
data volume need to be exchanged between different loop in-
stances. Actually, when the loop nests are given, the above
data volume can be calculated.

The communication cost affects the performance in two
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respects. Due to the size limitation of RCA, only limited
loop instances can be put into one RCA instance. There
must be some data dependence (resulting in data communi-
cations) traversing the boundary of different RCA instance
(the red arrows in Fig. 4 (c)). Since this kind of commu-
nication is between difference RCA instances, we call it as
external communication. In practice, the external communi-
cation is implemented through shared memory. On the other
hand, the data dependence between loop instances that are
put in the same RCA instance will cause the data commu-
nications within RCA (the black arrows in Fig. 4 (c)). We
call this kind of communication as internal communication.
Since the internal communication is between different PEs,
it can only be implemented by pass registers, which affects
the PE utilization directly. It should be noted, the terms in-
ternal and external are just used to facilitate narration. In
fact, both internal communication and external communica-
tion are caused by same data dependence in loop nests and
have the same value.

3.1 The Unification between PE Utilization Rate and
Communication Cost

The PE utilization rate is defined as the proportion of PEs
used for computation in RCAs. Higher PE utilization rate
means more PE were mapped with operators. The internal
communication is the data exchange between different PEs
in the same RCA instance. It can be only implemented by
pass register, since the latency of internal memory access is
not tolerable. Since the number of pass registers are limited
in RCA, the use of pass register would occupy the resource
of PEs. Therefore the PE utilization rate is inversely propor-
tional to communication cost. And improving PE utilization
rate is the same as reducing communication cost.

To illustrate this clearly, we define some tokens. As
shown in Fig. 3, a combination of the framed R and circled
+ indicates an PE while the framed R and circled + mean
a pass register and an ALU respectively. In addition, the
horizontal bars between two nearby rows of PE means the
crossbar style routes. As described in [5], a long depen-
dence traversing more than one row (the vertical part of a
dependence) in an RCA means more cost of pass registers,
subsequently, lower utilization rate of PEs. As the cross-
bar style routes could just connect two PEs from two nearby
rows, the life time of internal registers in RCA is one cycle.
If a temporary value should maintain more than one control
steps, it will be passed by pass a register step by step un-
til it is consumed by an ALU operation. Thus, in an RCA,
the longer the life time a temporary value is, the more num-
ber of pass registers will be used, which is generally limited
in number in RCAs. Once all the pass registers in the row
are occupied, some ALUs will be wasted because of lack-
ing of pass register to pass temporary value. As a result,
ALUs would be wasted in RCA because of long vertical de-
pendence. As shown in Fig. 3, a vertical dependence with
length of “1”, “2”, “3” and “4” will consume “0”, “1”, “2”,
“3” pass registers, respectively.

Fig. 3 The unity of PE utilization rate and internal communication.

For the feature of RCA described above, less internal
communication (i.e. shorter data dependence) is expected
for improving the PE utilization rate when finding the two
hyperplanes. When the PE utilization rate is improved, the
more PEs can be mapped with operators for computation.
Therefore, the parallelization is also improved at the same
time.

From the perspective of external communication, the
more exchange data is, the more time is spent on the load
and store of data (i.e. more external communication). In
the optimization of loop in GPP, communication volume is
given by the number of hyperplanes the dependence tra-
verses along the hyperplane normal. The case in recon-
figurable computing system is similar, where the minimal
communication volume means a small quantity of data ex-
changes of different RCA through share memory or little
temporary data in RCA internal memory. Reducing the
communication cost is also helpful to reduce the data load
and store latency.

From the discussion above, it is clear that short loop de-
pendence (i.e. less loop communication) is good for increas-
ing the PE utilization rate and reducing RCA external com-
munication. In other words, reducing the communication
cost will achieve both higher PE utilization rate and smaller
data load and store latency. Therefore, the PE utilization and
communication cost can be optimized in a unified way.

3.2 The Trade-Off between Communication Cost and Re-
configuration Cost

Reconfiguration cost means the time spent on the configura-
tion of the RCA because of the change of data path in RCA.
As an example to demonstrate the trade-off between com-
munication cost and reconfiguration cost, we first focus on
a simple code in Fig. 4 (a). The polyhedra representation of
the original loop nest is depicted in Fig. 4 (b). There are two
reference of the same array a. One reference is aw[i][ j] with
write operation, the other one is ar[i − 2][ j − 1] with read
operation. So their is a dependence from reference (i, j) to
reference (i− 2, j− 1). The untransformed mapping scheme
is depicted in Fig. 4 (c), where the nested data dependence
could be see clearly. One of data dependence is marked with
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(a) (b) (c)

(d)

Fig. 4 A motivation example.

a doted arrow, where the black solid circular and vacant cir-
cular indicate the resource instance and target instance.

First, we do not apply any loop transformation to the
original loop nest. We assume that the RCA is a 4×4 PE ar-
ray and there is enough registers per PE to pass all the inter-
nal result in the RCA for pipelined operation. Then the orig-
inal loop nest could be partitioned into small tiles matches
the RCA size. With out any PE utilization and communi-
cation optimization, we find that 10 output data need to be
export from the tile and 10 input data need to be import into
the tile. So there are totally 20 data exchanges for one RCA
operation. The communication cost is high. In spite of this,
we find that the data path of almost all the tile is isomorphic.
Consequently, the data path need not be reconfigured once
the first operation instance is configured. In another word,
the configuration cost of the original mapping is very low.

Then, we apply the communication minimal transfor-
mations to the original loop nest. With the same approaches
in [9], we find two optimal hyperplanes for communication
minimal parallelization. Then we figure out the tile size by
RCA size and the operators of the loop statement. As a re-
sult, a transformation for communication cost is achieved,
which is shown in Fig. 4 (d). In the optimized mapping ap-
proach, only 4 output data need to be export from the tile
and 4 input data need to be import into the tile. So 8 data
exchanges in total are required for one RCA operation com-
pared with 20 in the original loop nest. However, we find
that there are many heterogeneous tiles with different data
path mapped to RCAs. That means the RCA need to be
reconfigured many times because the data path changes fre-
quently.

In this motivation example, we select the size param-
eter of the loop nest N = 32 for a quantitative analysis.
As shown in Table 1, although the communication volume
of the original mapping scheme is more than triple that of
communication minimized scheme, the configuration times
of the original mapping scheme is only once compared to 46

Table 1 Communication volume and reconfiguration cost of the example
loop nest with global parameter N = 32.

Transformations Original Scheme
Communication

Minimized Scheme
input data exchanges/tile 10 4

output data exchanges/tile 10 4
total data exchanges/tile 20 8

regular tiles 64 40
irregular tiles 0 38

total tiles 64 78
configuration times 1 46

times of Communication Minimized Scheme.
Making a step further, we could conclude that the big-

ger the gap between the angle and 90◦ is, the more hetero-
geneous tiles will arise, where the angle means the angle be-
tween the two hyperplane partitioning the original loop nest.
Consequently, there may be more configuration cost. Thus,
this angle is a trade-offmetric between Communication cost
and Reconfiguration cost (C-R angle) and is an important
constraint when formulating problems in next section.

From the discussion above, we find that there are close
relationships between PE utilization rate, communication
cost and configuration cost and they all have important in-
fluences on the performance of reconfigurable computing
system. In this paper, instead of methods which may ob-
tain suboptimal result for PE utilization rate, communica-
tion cost or reconfiguration cost requirement, we proposed
a joint approach to optimize PE utilization rate, communi-
cation cost and configuration cost to get the global optimal
results.

4. Problem Formulation

In this section, we describe the formulation of the problem.
In order to simplify the problem, we make the following as-
sumptions for the hardware architectures and applications.
First, the hardware platform is a pipelined coarse-grained
reconfigurable computing system, where the pass registers
are limited in number. This is the most of the cases of
pipelined reconfigurable computing system, e.g., there are
only two registers in REMUS [7]. Then the input loop nest
are static control parts (SCoP), where the loop bounds, i f
conditions and array subscripts are made of affine expres-
sions involving only outer loop iterations, integer constants
and integer literals. Next, we just consider the mapping of
innermost two loops of multi-level loop nests. Then, the
optimization is applied to perfectly nested loops. For im-
perfectly nested loops, the embedding approach proposed
in [11] could convert the imperfectly nested loops into per-
fectly nested loops. At last, the length of all the data depen-
dence are constants. The majority of daily life computation-
intensive applications satisfy these assumptions.

Our problem is defined as: given the C programs sat-
isfy the basic assumption described above, find the pipelined
stage hyperplane Θ optimized for both communication cost
and PE utilization rate. Then find another hyperplane Π (in-
dependent of the first one) which get a trade-off result in
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over all consideration of communication cost and configu-
ration cost.

4.1 Find the Hyperplane Θ for Unified Optimization of PE
Utilization Rate and Communication Cost

Based on the theory of the polyhedra model in the previ-
ous subsection, we proposed an algorithm to find two hy-
perplanes to split the loop nest and map the split tiles to the
RCAs in an RPU. As analyzed in Sect. 3, the configura-
tion cost is sensitive to the angle of the two hyperplane that
partition the original loop nest. So we firstly focus on the
determination of the first hyperplane as a basis reference. In
consideration the pass registers in the RCA are limited in
number, we firstly determine the hyperplane Θ correspond-
ing to the pipelined stage in the RCA for the unified opti-
mization of PE utilization rate and communication cost.

We first give the constraints of good transformations.
Considering the route style of pipelined PE rows in RCAs,
all the data dependence should traverse at least one hyper-
plane of the Θ hyperplane set. So the pipelined stage con-
straint is defined as:

ΘS i (�it) − ΘS j (�is) ≥ 1, <�is,�it >∈ Pe (5)

As the h-transformation he could convert the iteration
of source node into the iteration of target node, the pipelined
stage constraint could also be represented as:

ΘS i (�it) − ΘS j (he(�it)) ≥ 1, �it ∈ Pe (6)

With this constraints, the characterization of the
pipelined PE rows that the operation in upper rows of RCA
should be executed before the operations in lower rows is
satisfied. Therefor, dependent operations could be executed
without change their dependent relations, which is of most
important to guarantee the correctness of a transformation.

In order to deduce the optimal target, we define the
same cost function in [9]:

δe(�it) = ΘS i (�it) − ΘS j (he(�it)),�it ∈ Pe (7)

δe(�it) has the same mathematic meaning as the work in
[9] that the number of hyperplanes the dependence e traverse
along the hyperplane in vertical direction. However, it has
its own physical meaning in pipelined reconfigurable com-
puting system, where δe(�it) indicates the pass register used.
Further more, it also indicates the number of PE “wasted”
in the RCA.

We also use the bonding function approach to restrict
the cost function. Since the loop variables themselves are
bounded by affine function of the global parameters, an
affine form in the program global parameter �gS that bounds
δe(�it) for every dependence edge e could be found. The
expression of the bound function could be presented as
v(�g) = �u · �g + w, which could be simplified as w for con-
stant data dependence. Such that

ΘS i (�it) − ΘS j (he(�it)) ≤ v(�gS ),�it) ∈ Pe

i.e., w − δe(�it) ≥ 0, �it ∈ Pe (8)

Then our optimization target is to find lexicographic
minimal solution with w in the leading position and other
transformation variables. Since the structural parameters are
quite large, we first want to minimize their coefficients. So
the optimization target finding the first hyperplane is:

minimize≺ (w, c1, c2) (9)

Where c1, c2 are the coefficients of the 1-D affine trans-
formation Θ.

From the discussion above, we can summarize our
formulation finding the pipelined stage hyperplane Θ as
Eq. (10). Equation (10a) is responsible for the all depen-
dence analysis of the original loop nest. Equation (10b) is
the cost function of the transformation. Equation (10c) is
the constraint for pipelined execution mode in RCAs. And
Eq. (10d) is the affine bound of the cost function. Therefor,
the first problem of finding the pipelined stage hyperplane is
formulated.

Minimize≺(w, c1, c2)

Subject to

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ds

Dt

he

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�is
�it
�g
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

≥ �0
≥ �0
= �0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10a)

δe(�it) = ΘS i (�it) − ΘS j (he(�it)) (10b)

δe(�it) ≥ 1,�it ∈ Pe (10c)

w − δe(�it) ≥ 0,�it ∈ Pe (10d)

4.2 Find the Hyperplane Π for Trade-Off Optimization of
Communication Cost and Configuration Cost

After the determination of the first hyperplane as the ba-
sis reference, we now could further find the hyperplane Π
in consideration the angle with the first one for the trade-
off optimization of the communication cost and configuring
cost.

First, we also need to give the good transformation con-
straint for the space hyperplane. As analyzed in Sect. 3, data
dependence with big horizontal component has low route
cost in RCAs because horizontal routes are implemented by
MUXs without pass registers. So the transformation con-
straint for hyperplane Π is:

ΠS i (�it) − ΠS j (�is) ≥ 0, <�is,�it >∈ Pe (11)

Then, the place hyperplane Π must be independent of
the first hyperplane Θ, which could be presented as:

c1d2 − c2d1 > 0 or c2d1 − c1d2 > 0 (12)

Where, c1, c2 indicate the coefficients of theΘ transfor-
mation found in the previous subsection and d1, d2 indicates
the coefficients of the Π transformation.

Next, we will give constraint in consideration of con-
figuration cost. As analyzed in Sect. 3, the configuration
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cost is close related to the angle of the two hyperplanes se-
lected to partition the original loop nest. In particular, the
angle of the two hyperplane is closer to 90◦, the less config-
uration times are needed to change the data path of RCAs.
So the configuration constraint is presented as:
∣∣∣∣∣∣∣

c1d1 + c2d2
√

c1
2 + c2

2
√

d1
2 + d2

2

∣∣∣∣∣∣∣
< ε, 0 < ε < 1 (13)

Where ε is an experiment parameter to control the gap be-
tween the actual angle and 90◦ and the left part of “<” is
actually the cosine function of the angle between vector
(c1, c2) and (d1, d2).

From the discussion above, we summarize the prob-
lem formulation finding the place hyperplane Π as Eq. (10).
Equation (14a) is responsible for the iteration domain and
data dependence analysis. Equation (14b) and Eq. (14e)
have same meanings in Eq. (10). Equation (14d) is a in-
dependent constraint and Eq. (14f) is a configuration con-
straints. As a result, the whole problems are formulated
now.

Minimize≺(w, d1, d2)

Subject to

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ds

Dt

he

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�is
�it
�g
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

≥ �0
≥ �0
= �0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14a)

δe(�it) = ΠS i (�it) − ΠS j (he(�it)) (14b)

δe(�it) ≥ 0,�it ∈ Pe (14c)

c1d2 − c2d1 > 0 or c2d1 − c1d2 > 0 (14d)

w − δe(�it) ≥ 0,�it ∈ Pe (14e)∣∣∣∣∣∣∣
c1d1 + c2d2

√
c1

2 + c2
2
√

d1
2 + d2

2

∣∣∣∣∣∣∣
< ε, 0 < ε < 1 (14f)

5. Efficient Solution

As discussed in the previous section, there are mainly two
formulated problems of transform and mapping 2-D loop
nests on to the RCA of pipelined reconfigurable computing
system: Problem 1 is the selection of pipeline stage hyper-
plane Θ optimized for communication cost and PE utiliza-
tion rate in a unified way, which is also a basis reference of
the second hyperplane. Problem 2 is the selection of space
hyperplane Π, where the communication cost is optimized
under a specified angle range with the first basis reference
hyperplane. In this section, the solution of the two problems
are addressed, respectively.

Observe the Eq. (10) carefully, we find that all the con-
straints (i.e., (10a), (10b), (10c) and (10d)) are linear in-
equalities and the optimal target is to find a lexicographic
minimum. Fortunately, the solution of this problem is within
the power of Parametric Integer Programming [12]. As the
work in [9], Problem 1 can be handled by PIP software eas-
ily.

Now, we move on to the other problem. Observes dis-
covery in Eq. (14), every constraints are linear except that
Eq. (14f) is a nonlinear constraint which is not easy to be
transferred or removed. Actually, Eq. (14f) is a quadratic in-
equality of two unknowns, d1 and d2, since c1 and c2 has
already been worked out in Problem 1. Therefor, this in-
equality is only related to loop transformation. Actually, the
loop level associated with data dependence is relative small,
and the coefficients of the loop transformation is also rela-
tive small. The Problem 2 could be converted into a integer
linear programming problem if we enumerate the some of
the transformation coefficients in the polyhedra formed by
all the linear inequalities.

We proposed a pseudo-optimum based stepwise expan-
sion searching method to solve the Problem 2. Instead of
a brute-force search approach, we search the result in the
stepwise expansion area of the optimal solution to speed up
the search, where the initial the optimal solution is the opti-
mal result without consideration of the nonlinear inequality
(14f).

Our pseudo-optimum based stepwise expansion search-
ing method includes three steps: 1). Using the PIP software,
we first figure out the initial optimal result (w∗, d1

∗, d2
∗) of

Problem 2 without the nonlinear inequality (14f); 2). Give
a stepwise expansion area that by adding a incremental k to
all the components of the initial optimal result; 3). Search
the optimal solution of Problem 2 in the area from the initial
optimal solution (w∗, d1

∗, d2
∗) to (w∗ + k, d1

∗ + k, d2
∗ + k) in

lexicographic order. Once a solution satisfies all constraints
in Eq. (14), we stop search and this solution is the optimal
result. If there still no legal solution when the search goes
through all the points in the area determined in 2), we add a
incremental k to all the components of the finish points and
repeat 2) in the rest area. The detail of the pseudo-optimum
based stepwise expansion searching algorithm is presented
as follow:

Algorithm 1 Pseudo-Optimum Based Stepwise Expansion
Searching for Problem 2.
1: find all dependence P0, P2, . . . , Pn by dependence polyhe-
dra;
2: figure out the initial optimal solution (w∗, d1

∗, d2
∗) using PIP

3: repeat
4: determine search local areaA from (w∗, d1

∗, d2
∗) to

(w∗ + k, d1
∗ + k, d2

∗ + k)
5: repeat
6: if IsSearched(�p) is false then
7: feasibleA← �p is in the areaA
8: feasibleB← IsSatisfyEqn14(�p)
9: IsSearched(�p)← true
10: end if
11: �p← �p increase in lexicographic order in areaA
12: until feasibleA is false or feasibleB is true
13: if feasibleA is false then
14: k← k+k
15: end if
16:until feasibleA is true and feasibleB is true

Obviously, our result is the lexicographic minimum of
the Problem 2 because the initial optimal result is obtained
on relaxed constraints and our search index increase step by
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step in lexicographic order. Generally, the data dependence
length and transformation coefficient are relative small, so
the 3-dimensional search space formed by (w, d1, d2) is also
relative small.

6. Experiment Result

To verify and evaluate the proposed optimization approach,
we conduct some experiments on REMUS processor [7]. As
shown in Fig. 5, REMUS is a reconfigurable multi-media
processor with an 8x8 RCA in an RPU clocked at 200 MHz,
tape-out in SMIC 65 nm, where only two pass registers are
available for each PE in RCAs.

Our loop transformation algorithm is first performed
as source to source processing step to partition the origi-
nal 2-D loop nest into small tiles matching the RCA size.
Then, every tile is converted into data flow graph (DFG)
and mapped on RCAs. Our design flow takes loop ker-
nels in high level language, such as C, as input, and extract
the polyhedra intermediate representation (IR) from source
code by Clan [13] and perform dependence analysis by the
Chunky Analyzer for Dependences in Loops (CAnDL) as
the work [14]. Then the tile size is determined by opera-
tor decomposition of the statement in loops and the size of
RCA. Finally, we convert the tiles into DFG and generate
the configuration context running on REMUS [7].

Our test example include a set of real-life compute-
intensive loop kernels: 1-D jacobi, Motion Estimation (ME)
and stencil computations in partial differential equation
(PDE). The proposed joint loop transformation in consider-
ation communication cost, PE utilization rate and configura-
tion cost (Joint PE+COM+CFG) is compared with two ref-
erence points. The first reference point is the loop unrolling
based optimization scheme [2], where all the loops are un-
rolled and converted into DFGs. Therefor, the regularity of
original code is disarranged and optimization is performed
on the generated DFG. The second reference point is a work
only perform unified optimization of PE utilization rate and
communication cost (Combined PE+COM) [5], equal to
find two independent communication minimal hyperplanes.

6.1 Performance Evaluation

The experiments of the three different approaches are

(a) Architecture (b) Die photograph

Fig. 5 REMUS: Reconfigurable multimedia processor [7].

demonstrated in Table 2. The first column lists the three
different approaches. The notation tcom,tc fg, top and ttotal

indicate the data communication cycles, configuration cy-
cles, RCA operation cycles and the total running cycles of
a whole tasks, respectively, where ttotal = tcom + tc fg + top.
The notation PI is the performance improvement of our pro-
posed approach compared with the other approaches. Fi-
nally, the notation rpe indicates the average utilization rate
of PEs.

Here, tcom corresponds to the sum of external commu-
nication of a task in Sect. 3. Lower rpe indicates that more
times of RCA operations are needed, and more RCA oper-
ation time (top) is further needed. Thus, top involves the PE
utilization rate rpe, and further involves internal communi-
cations. In addition, ttotal is the sum of tcom, top and tc fg, so
the joint influence of loop communications (external and in-
ternal communication), PE utilization rate and configuration
cost is presented in ttotal.

From the results, it is clear that the three factors (i.e.,
PE utilization rate, communication cost and configuration
cost) have important influence on the performance of recon-
figurable computing system. Take rpe and top into consider-
ation, we find that the higher rpe is the less top is. Take the
PDE solvers in Table 2 for example, rpe = 61.2% in Com-
bined PE+COM approach is the highest with its operation
cycles top = 1.1e3, while the rpe = 40.2% in Loop unrolling
approach is the lowest with its operation cycles top = 1.5e3.
For a given kernels, the total number of operations is fixed,
so the higher the PE utilization rate is the less number of
RCA operation times is. However, utilization rate is only
one of total performance influencing factors. As a result,
the Combined PE+COM approach with the highest rpe in
the PDE solvers don’t get the best total performance of the
three approach.

Compared with the combined PE+COM scheme, the
kernels of 1-D JACOBI have almost the same operation cy-
cles. The reason is that both our proposed approach and the

Table 2 The performance comparison of joint PE+COM+CFG, com-
bined PE+COM and loop unrolling based scheme.

Examples
1-D

JACOBI
ME PDE Solvers

Joint
PE+COM+CFG

rpe 77.2% 58.3% 49.3%
tcom(cycles) 1.1e2 2.8e2 2.7e2
top(cycles) 1.4e2 1.8e3 1.2e3
tc fg(cycles) 7.5e1 1.1e3 4.5e2
ttotal(cycles) 3.3e2 3.2e3 1.9e3

Combined
PE+COM [5]

rpe 77.2% 61.2% 52.6%
tcom(cycles) 1.1e2 2.1e2 1.2e2
top(cycles) 1.4e2 1.7e3 1.1e3
tc fg(cycles) 7.5e1 1.5e3 9.3e2
ttotal(cycles) 3.3e2 3.4e3 2.2e3

PI 0% 5.8% 13.6%

Loop unrolling
scheme [2]

rpe 52.4% 53.0% 40.2%
tcom(cycles) 1.8e2 6.1e2 4.1e2
top(cycles) 1.7e2 1.9e3 1.5e3
tc fg(cycles) 1.1e2 1.8e3 1.1e3
ttotal(cycles) 4.6e2 4.3e3 3.0e3

PI 28.3% 25.6% 36.7%
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Fig. 6 The time component parts of the three approaches in PDE.

Fig. 7 The time component parts of the three approaches in ME.

combined PE+COM approach got the same transformation
coefficients for the features of data dependence. However,
our approach performs better than the loop unrolling based
approaches [2] in all the three example cases, where the ex-
ecution performance of 1-d JACOBI, ME and PDE solvers
are improved by 28.3%, 25.6% and 36.7%, respectively.

Subsequently, we focus on the performance of our pro-
posed approach and combined PE+COM approach [5] on
the ME and PDE solver kernels, where the performance
of our proposed approach is better than that of combined
PE+COM [5] approach. For clearer comparison, we trans-
fer the data in Table 2 into histogram if Fig. 6 and Fig. 7. As
show in Figs. 6 and 7, our proposed approach is better than
the loop unrolling scheme in every time components be-
cause loops are totally unrolled in the loop unrolling scheme
and little optimization opportunity could be achieved in the
disordered large DFG. In the other comparison, the com-
munication cycles, operation cycles and PE utilization in
our proposed approach don’t perform better than that of the
COM+PE method because less communication and PE uti-
lization optimization opportunity could be found with the
C-R angle constraint in Eq. (13). However, the reconfigura-
tion cycles in our approach is lower than that of the COM
scheme as less isomorphic tiles would arise with the cosine
constraint in Eq. (13). As a result, the overall performance
in our proposed approach is improved by 5.8% and 13.6%
on average in the ME and PDE solver kernel, respectively.

Make a step further, we move on to the different size
of the same kernel in Table 3 and we find that the amount
of performance increase (13.6%) of small PDE kernels is
bigger than that (11.3%) of bigger PDE kernels. So is the
case with ME. Generally, the proportion of isomeric tiles of
small kernels is bigger than that of big kernels after they are

Table 3 The impact of kernel size on performance.

Kernel of
different size

Joint
PE+COM+CFG

Combined
PE+COM [5]

Improvement

PDE Solvers
(N = 64)

1.9e3 2.2e3 13.6%

PDE Solvers
(N = 128)

3.9e3 4.4e3 11.3%

ME
(N = 64)

3.2e3 3.4e3 5.8%

ME
(N = 128)

6.6e3 6.9e3 4.3%

tiled by a same loop transformation. Therefor, the reduction
of configuration cost in small kernels is of paramount impor-
tance and the upper hand of our proposed approach shows
up.

Now REMUS [7] has been applied to set-top box
(STB) and performs well in decoding of multimedia. Many
application kernels (e.g., ME mentioned above) have been
optimized by our proposed approach and it leads good re-
sults.

6.2 Run-Time Complexity

In our proposed algorithm, all the constraints in Problem1,
such as Eqs. (10a) (10b) (10c) (10d), are linear inequalities
or equalities. And the optimization target of Eq. (10) is the
lexicographic minimum of the unknowns in the inequalities.
Thus, the optimal integer solution for the affine transforma-
tion coefficients could be solved by a parameter integer pro-
gramming problem. As Paul Feautrier said in [12], although
the theoretical complexity of solving a parameter integer
programming (PIP) is quite high, it has a high probability of
being polynomial. In practice, we have found the complex-
ity of the algorithm to be commensurate to the complexity
of the solution.

Problem2 could be actually divided into two subprob-
lems: 1). Finding the initial pseudo-optimal solution when
without the nonlinear inequalities Eq. (14d), which has the
same complexity as Problem1. 2). Searching the optimum
a 3-dimensional space based on the pseudo-optimum. The
complexity of this stepwise expansion searching is relative
low because the boundary of the affine transformation co-
efficients is limited (−20 to 20 in most cases). To sum up
the two subproblems, the complexity of Problem2 is almost
equal to Problem1.

In our algorithms, the complexity is sensitive to the
number of dependence references of loop. To evaluate the
effectiveness of our algorithms, we run more tests for more
loop nests (mm, adi, jaocbi and gemm) with different num-
ber of dependence references. The compilation of the loop
optimization is taken on an Intel Dual-Core CPU machine
running at 1.9 GHz with 2 GB memory. Table 4 gives the
maximal run-time of the test cases. In practice, the run-time
is less than two seconds and the complexity of our algo-
rithms is acceptable.
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Table 4 Execution time on some cases.

test cases mm adi jacobi gemm
dependence
references

1 2 3 4

running time
(seconds)

0.23 0.51 0.97 1.35

7. Conclusion

PE utilization rate, communication cost and reconfiguration
cost are the three of the most important performance influ-
encing factors of reconfigurable computing system. In this
work, we present a coalescent loop transformation algorithm
to take into account the three factors as a whole to obtain two
RCA corresponding hyperplanes. A pseudo-optimum based
stepwise expansion search technique is proposed to speed
up the execution of algorithm. At last, the effectiveness of
our proposed algorithm is demonstrated with a few loop nest
examples.
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