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SUMMARY Nowadays, fault tolerance has been playing a progres-
sively important role in covering increasing soft/hard error rates in elec-
tronic devices that accompany the advances of process technologies. Re-
search shows that wear-out faults have a gradual onset, starting with a tim-
ing fault and then eventually leading to a permanent fault. Error detection
is thus a required function to maintain execution correctness. Currently,
however, many highly dependable methods to cover permanent faults are
commonly over-designed by using very frequent checking, due to lack of
awareness of the fault possibility in circuits used for the pending execu-
tions. In this research, to address the over-checking problem, we introduce
a metric for permanent defects, as operation defective probability (ODP),
to quantitatively instruct the check operations being placed only at criti-
cal positions. By using this selective checking approach, we can achieve
a near-100% dependability by having about 53% less check operations, as
compared to the ideal reliable method, which performs exhaustive checks
to guarantee a zero-error propagation. By this means, we are able to reduce
21.7% power consumption by avoiding the non-critical checking inside the
over-designed approach.
key words: low power, fault-tolerant computing, FU array

1. Introduction

With the improvement in CMOS technology, the size of
semiconductor devices is shrinking rapidly, leading to many
advantages in modern microprocessor design such as low
energy consumption per transistor, low manufacturing cost,
high operating frequency, and high density of transistors.
However, at the same time, such benefits make the tran-
sistors more vulnerable to fault attacks. Specifically, high
operating frequency and chip-level overheat accompanying
the shrinking of the technology also increase the potential
wear-out rates of transistors and inner-connections. As a re-
sult, the lifetime of the microprocessors and digital circuits
becomes shorter and less predictable [1]–[4]. Moreover, a
recent study on the memory system of different data-centers
shows that 73% errors are from permanent faults [5]. Fault-
tolerant techniques are thus necessary to guarantee execu-
tion correctness and keep technology advancing.

Error check and correction (ECC) is a conventional
fault tolerant technique. Although ECC logic has been effec-
tively working for data-center memory systems [5], it may
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Fig. 1 DMR-based permanent fault locating: (a) Exhaustive check tech-
nique, (b) Light-weighted technique, and (c) Selective check based tech-
nique.

be not suitable for reconfigurable systems with many FUs,
which mainly consist of combinational logic. In order to
detect the faults in combinational logic, on-line tests [6], [7]
and explicit checks [8] have been used. On-line test [6] is
not real-time, while the real-time explicit check [8] increases
power consumption continuously and visibly. Figure 1 (a)
gives an example of exhaustive check to keep a full under-
standing of defective units in the data-path. The thorough
check adds pressure to the power utilization limitation, and
may be an over-design by not considering the criticality of
faults in different operations. An alternative way is a light-
weighted technique, which add only one check at the end of
the data-path (Fig. 1 (b)). However, it allows the tainted data
from the early stage, such as I1’ in Fig. 1 (b), to propagate
inside the path. The erroneous data may taint more data,
which possibly downgrades the reliability and becomes un-
predictable when a second fault occurs.

Unlike both Fig. 1 (a) and Fig. 1 (b), in this research we
propose to insert selective checks into the data-path based
on the operation defective probability (ODP), as shown in
Fig. 1 (c). The ODP of an operations is calculated according
to the number of gates the operation uses. The branch of
the data-flow-graph (DFG) with ODP larger than a thresh-
old is regarded as a potential candidate to contain permanent
faults, and a check instruction will be inserted at that branch
to help a deterministic verification. Furthermore, our ODP
calculation also takes the influence of special inputs into ac-
count, i.e., certain inputs of circuits can put parts of the cir-
cuits into don’t care zones. Potential errors in these gates
will not contribute to the final potential error rate and are
thus carefully removed from the influence chain, in order to
further reduce the number of check operations without af-
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fecting the dependability.
The results show that our proposed technique achieves

near-optimal dependability by reducing the checking in-
structions to 60%. By allowing a slight increase of the error
propagation rate (2%), our approach is able to further re-
duce the number of check instructions to a 37% level, as
compared to the exhaustive check method. The removal of
non-critical check instructions can contribute to the energy
saving in the dependable execution. Under the allowance
of 2% error propagation rate execution, 22% energy can be
saved by avoiding the thorough checking.

The rest of this paper is organized as follows. The pro-
posed method of optimizing the cost for locating a perma-
nent fault is discussed in Sect. 2. Section 3 shows the results
of the proposed approach. Section 4 concludes the paper.

2. Our Proposal: Constructing an ODP-Aware Data-
Path

2.1 Selective Check Instructions in Redundant Data-Path

In this research, we mainly focus on reconfigurable archi-
tectures [9], [10] which contain a large pool of resources to
exploit extreme parallelism. We use LAPP [11], [12] as our
baseline architecture, which is a reconfigurable architecture
containing an array of FUs for accelerating image process-
ing applications. LAPP consists of a large set of combina-
tional units and networks to which ECC protection cannot
be applied as easily as in the data-center research [5] with an
acceptable cost. Several architectural methods have already
been proposed to achieve a relatively effective fault toler-
ance in combinational logic. Specifically, dual modular re-
dundancy (DMR) with a check after the dual executions can
guarantee that no soft error goes undetected [8]. As reconfi-
gurable architectures such as LAPP [11], [12] are originally
rich in resources, DMR with checks from software level can
be applied flexibly and efficiently with the understanding of
the DFG inside the architecture.

To detect the permanently defective unit inside the
DMR execution, the straightforward method is to exhaus-
tively check all the instruction executions in order to gain
the information of all units used, as have been shown in
Fig. 1 (a). After that, on-line test or tuning can locate the de-
fective unit at that erroneous spot. An alternative way is to
add one check instruction at the end of data-path (Fig. 1 (b)).
However, it downgrades the dependability as described in
Sect. 1. In this research, we use selective check instructions
together with DMR to create correct executions and locate
the possible erroneous spots. Figure 2 gives a brief intro-
duction of this method.

Figure 2 gives the algorithm to put the duplicated DFG
into the FU array. During the mapping of the DFG, ba-
sically, each instruction will be duplicated by map(i,i’).
Along with the mapping, we also study the vulnerability
of each instruction by using get vulnerability(), which
provides the possibility of permanent fault inside this hard-
ware unit. Later sections will give a detailed explanation

sum = 0; /* Accumulated vulnerability in data-path */

last need check = 0; last inst = NOP;

while (!end(DFG)) {
/* To map data-flow-graph (DFG) in FU array */

i = fetch inst(PC);

/* Duplicate & selective check in map */

if (last need check)

map(i, i’, check(last inst));

else

map(i, i’);

/* Analyze vulnerability of instruction */

sum += get vulnerability(i);

if (sum > th) {
/* Critical spot */

last need check = 1;

sum = 0;

}
else

last need check = 0;

last inst = i;

PC++;

} /* end of this cycle */
Fig. 2 Algorithm to selectively add check instruction.

of get vulnerability(). Only when the accumulated
vulnerability ‘sum’ becomes larger than a predetermined
threshold ‘th’, a check instruction will be added, following
map(i,i’,check(last inst)), where ‘last inst’ is
the instruction in previous cycle. ‘last inst’ is used in
the check because the results of the duplicated instructions
will be known in this cycle. By this way, the data-path in
Fig. 1 (c) is obtained.

By introducing a selective check according to ODP,
the number of check instructions is reduced, as shown in
Fig. 3 (b). With the help of selective check instructions, only
the segment with an error report needs to be checked in
detail for the defective unit. For example, in Fig. 3 (b) the
chk-I5 is the first check instruction to report an error, since
I2 is mapped on a defective unit. Thus, only the dependent
instructions (in Fig. 3 (a)), I2 and I3, need to be checked
to locate the permanent failure as shown in Fig. 3 (c). At
the same time, due to the previous checks, the instructions
inside other segments are judged to be previously mapped
inside the correct units. Therefore, they need to be inside
the DFG only for the completion of the data-path. No DMR
execution is necessary for these instructions, as is shown in
Fig. 3 (c). Consequently, the number of check and redundant
instructions is reduced significantly during the permanent
defect location. Although the period of locating permanent
fault in Fig. 1 (a) is short, we are not increasing 1/3 power
consumption by avoiding exhaustive checking. The burst of
power hungry mode as in Fig. 1 (a) is thus avoided.

2.2 Calculation of Defective Probability

Mukherjee and et al. [13] have stated that various programs
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Fig. 3 Cost-effective permanent fault locating: (a) DFG, (b) DMR mode with reduced check instruc-
tions, (c) Locating a permanent fault after chk-I5 reports error.

will respond differently to the same fault rate, according
to their different architectural vulnerability factors (AVFs).
AVF gives a measure of the probability that a fault will turn
into a visible error. Given that the soft error occurs in a cer-
tain memory block, it will become an error only when the
latter calculation depends on this faulty block. The AVF of
a program depends on its working behaviors, especially the
memory access intensity and frequency.

Similarly, we are using the idea of operation defective
probability (ODP) in this research to selectively add data
verification instructions. We extend the above AVF, which
is for soft errors only, to handle permanent faults. In this
research, we treat the permanent fault occurrence probabil-
ity as in proportion to the gate number inside the functional
unit. For example, a 1-bit AND operation requires two 2-
input NAND gates, while a 1-bit XOR operation uses four
2-input NAND gates. As a result, the lifespan of the XOR
will be relatively shorter than the AND unit under a given
gate defect ratio. Applying the consideration to arithmetic
operations, the defective probability to a permanent defect
may be even larger due to the large area and the complex
wire interconnections inside the arithmetic operations. For
example, a 1-bit full adder takes nine 2-input NAND gates
to finish the calculation. A large word-length multiplication
uses several stages of adder chains and partial product gen-
erators. These units are thereby vulnerable to soft error and
permanent defects because of their large hardware areas and
relatively long data paths.

We give ODP to permanent defects in Table 1 by study-
ing the typical operations from the FRV Instruction-set ar-
chitecture [14]. As shown in Table 1, these operations can
be categorized into four types: logic, arithmetic, media and
memory. Although the FUs for these operations may merge
and share circuits between operations to achieve the opti-
mized design in both power and area, in this research, we
implement these operations into separated units, from the
viewpoint that each operation takes an independent and in-
dividual path in the FUs and for every calculation, only the
corresponding path is activated. The FUs are implemented
into Verilog HDL modules and then synthesized by Design

Table 1 ODP of the baseline ISA for this study.

Types of
Operations

Number Defective
Operations of Gates Probability (%)

Logic

AND 176 0.10
OR 176 0.10

XOR 208 0.12
SLL/SRL 1,020 0.58

Arithmetic

ADD 892 0.50
SUB 1,022 0.58
MUL 5,130 2.90
SLA 1,005 0.57

Media

MSRL 792 0.45
BYTE-HALF 219 0.12

SUML/H 996 0.57
HALF BYTE 854 0.48

SAD 2,970 1.69
UADD 1,320 0.75
USUB 1,398 0.86
MUL 2,569 1.46

Memory
LOAD 892 0.50
STORE 892 0.0

Compiler with a 180 nm cell library to obtain the area in
the number of gates, as listed in Table 1. In addition, we
treat AND operation as having a defective probability of
0.1%†. The other vulnerable probabilities are thus calcu-
lated by 0.1%× AreaOP

AreaAND
. As discussed above, logic operations

are relatively less complex in hardware than other units, and
their ODPs are thus relatively small. The arithmetic instruc-
tions take medium ODPs, except for the very large multi-
plication unit whose ODP reaches 2.9%. The media oper-
ations are a combination of logic and arithmetic operations
and thus tend to show large ODPs. Finally, for LOAD in-
struction, it has been assumed that the memory is protected
with error correcting code (ECC) so that the loaded data can
be regarded as error free results. The only vulnerability in
LOAD comes from the address calculation part which is the
same as the ADD operation. To guarantee that there will
be no tainted value by faults to the data storage, in our high

†Although the value may be far larger than practical meanings,
we simply use it here to demonstrate how our methods work ac-
cordingly to these assumed ODP values.



AHMED et al.: SELECTIVE CHECK OF DATA-PATH FOR EFFECTIVE FAULT TOLERANCE
1595

Fig. 4 NAND gate error analysis for constant Inputs.

dependable LAPP, the STORE operation is originally de-
signed to take checked data before the real commitment, by
embedding a check instruction inside it to check both data
and address. For this reason, although the address calcula-
tion part of STORE still contains 892 gates, the ODP of this
address calculation will be updated to 0% as the in-store
check determines the correctness of the address and makes
the defective possibility to 0%.

2.3 Optimization of the ODP for Constant Input

In Sect. 2.2, we calculated the ODP of a particular opera-
tion based on the size of the circuit. Due to the behavior
of certain gates such as NAND2, NXOR2, the sensitivity to
faults—measured as ODP in our approach—can be further
reduced when a constant value is provided to an operation.
As an example, given a constant LOW input in an AND gate,
it will always have the LOW output. Thus, any fault (stuck
at 0 or stuck at 1) on the other input wire of this AND gate is
masked and turned into don’t care. Similarly, with an input
provided to be logic HIGH, an OR gate can ignore the sensi-
tivity of faults in its other input ports. As a result, compared
to operations with variable inputs from prior circuits or reg-
ister files, an operation with an immediate source operand
will demonstrate less sensitivity to faults, since part of its
sub-circuits can be logically masked into don’t care zones
which contribute 0% ODP.

Rather than counting the insensitive inputs, we use
don’t care gates by the constant value in order to update
the ODP with immediate operand in our approach. Fig-
ure 4 shows the method to calculate the sensitive gates of
an adder while one input is constant. In Fig. 4, the gate-level
schematic of the adder and a table containing the gate usages
for different constant input patterns have been shown. For
the pattern <X, 0, 0>= <A, B, Cin> the input ‘A’ is a vari-
able and ‘B’ and ‘Cin’ are LOW. Two XOR gates are used
for calculating the sum. However, two AND gates can be
replaced with wires since both have a constant LOW input.
Again, similarly for the input pattern <X, 1, 0> AND gate 1
can be ignored. This illustrates the sensitive gates for a con-
stant input has been reduced. Accordingly, we change the
ODP calculation from 0.1%× AreaOP

AreaAND
to 0.1%×AreaOP×S(#imm)

AreaAND
,

where S(#imm) represents the ratio of sensitive circuit area
under the given #imm inputs.

Based on the above assumption, the sensitive gates are
calculated for the operations of our baseline ISA. The aver-
age of different constant values of the benchmark functions
for an operation is included in Fig. 5. Specifically, the oper-

Fig. 5 Area required for the constant input operations.

ations with large areas under variable inputs can be signif-
icantly reduced to a level of halved or even smaller circuit
areas. The originally small-sized operations such as AND,
OR and BYTE-HALF do not show visibly important area
reduction, due to their relatively less complex implementa-
tion. All these results thus give a more accurate estimation
of the ODP inside a real program, which is able to help re-
duce further the number of exhaustive checks and lower the
resource utilization. The approach to calculate the ODP of
operations in data-flow-graph (DFG) will be introduced in
the next subsection by using the updated ODPs.

2.4 Adding Check According to ODP

Table 1 shows the defective probability of each in-
struction. Assuming that each operation takes two
source operands and produces one result, we can design
get vulnerability() in Fig. 2 by calculating the prob-
ability of the error of the result as follows:

1 − Pr(out) = (1 − Pr(op))
2∏

i=1

(1 − Pr(si)) (1)

Pr(s1) and Pr(s2) are the probabilities of errors in the source
operands, while Pr(op) is the error probability coming from
the operation itself. It can be imagined that the Pr(op) has
a direct connection to the defective probability in Table 1,
augmented with the insensitivity from constant inputs in
Sect. 2.3. Assume that the whole data path starts from sev-
eral checked inputs such as values from the ECC-ed register
file which has 0% probability of error. The output of the
first operation will have a probability of error regarding the
operation itself. The successive dependent data will inherit
this probability of error and adds a new probability when the
data goes forward through the data flow graph. Although the
values of defective probability in Table 1 are actually much
larger than a practical probability of error, we are still di-
rectly using these values as Pr(op) in the remaining parts of
this paper to introduce the idea. By this means, we are able
to tag the results with the probability of permanent error in-
side the whole data path.

Figure 6 gives a detailed illustration of using ODP in
get vulnerability() in algorithm of Fig. 2. For sim-
plicity, we assume that the threshold of error probability is
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1.0%. The data flow graph starts by taking inputs R1, R2,
R3 and R4 from the register file or memory, which are pre-
viously checked results and protected by ECC. It ends by
committing the final result R6 into the memory. Basically,
every operation will be doubly executed and the final result
R6 will be compared before being written to memory.

In Fig. 6, the defective probability of each operation
is shown inside the operation. After stage 2, both R1 and
R2 get error probabilities that exceed the threshold. The
check instruction is thus added to make a fast determina-
tion whether or not an error has happened there. This also
covers Zone1 and Zone2, as shown in Fig. 6.

It is possible that the data-path will take backward by-
passing data, such as OP7(R4+=R5) in Fig. 6. Considering
that this data path represents a loop body, operation R4+=R5
takes its first operands from the register file in the first it-
eration and updates itself afterward. For the first iterations,
the vulnerability of the output of OP7 denoted as Pr(R4[1]),
is calculated as previous Eq. (1). From the second iteration
using Bayes’ theorem the correctness of the output of OP7,
as Pr(R4[2] correct) is calculated as:

Pr(R4[2] correct) =Pr(R5,OP7 correct)×
Pr(R4[1] correct |R5,OP7 correct)

(2)

However, as R4[1] depends on R4[0], R5 and OP7,
when R5, OP7 are correct, the only dependency becomes
R4[0]. For this reason, we can have:

Fig. 6 Adding check instruction on a DFG based on Eq. (1).

Pr(R4[1] correct |R5,OP7 correct) = Pr(R4[0] correct)

(3)

Using Eq. (3) in Eq. (2) we can have

Pr(R4[2] correct) = Pr(R4[0] correct)×Pr(R5,OP7 correct)

= Pr(R4[1]correct) (4)

Therefore, we can expect that from the second iteration
Pr(R4[n]) = Pr(R4[n − 1]). We thus fixed the possibility of
faults in loop-back R4 by the above means.

3. Results

3.1 Workloads and Characteristics

In this section, we present the results of our proposed tech-
nique based on ODP-aware selective checking. We tried our
techniques on eight image filter functions. The size and the
number of independent tree of the functions are described
in Table 2. Figure 7 show three different types of data flow
graph in FU array. There is a long data graph in Fig. 7 (a),
and a small data path in Fig. 7 (b). Both of them have a final
single output to the memory. Figure 7 (c) gives a data graph
with many independent branches, where all the branches are

Table 2 Benchmark programs.

Functions
Number of Number of Types of
Instructions Independent Trees Program

Expand4k 73 2

A
Unsharp 63 1
Wdifline 57 1

FI-1 40 1
Blur 20 1
FI-3 14 1

B
Tone 12 1
FI-2 68 8 C

(a) A long data-path with
many instructions.

(b) A small data-path with
few instructions.

(c) A program with many independent branches.

Fig. 7 Three kinds of data flow graphs.
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Table 3 Simulator specification.

Stage0
Decode Width max. 8 inst./cycle
General Register 32
Media Register 32
Data transfer speed

8 bytes/cycle
(with ext. cache)
Instruction Cache 4 ways 16 KB (64 byte/line)
L1 Data Cache 4 ways 16 KB (64 byte/line)
L1$→ L0$ Data Transfer Rate 16 bytes/cycle
Store Buffer 4 entries
50 Stages
Number of FUs 200 (4 FUs × 50 rows)
Instruction Mapping Speed 4 ways 256 B (16 bytes/cycle)
Inter L0$ Data propagation rate 16 bytes/cycle
L1$→L0$ Data transfer rate 16 byte/cycle
L0$→LSU Data transfer rate 4 byte/cycle
Store Buffer 1 entry

Fig. 8 Incidence of instructions.

end up in writing results to memory. The benchmark func-
tions are classified as Type A, Type B and Type C according
to Fig. 7 (a), 7 (b) and 7 (c), respectively.

We used a cycle-accurate architectural simulator [12]
to get the energy data of the executions of the programs
with the selective check instructions. The parameters of the
baseline processor in the architectural simulator are listed in
Table 3. Specifically, power data of each unit in the base-
line processor has been obtained by the PrimeTime with a
180 nm cell library, under the working condition of a 1.8 V
supply voltage. Together with the utilization of each unit,
which is extracted from the simulator itself, the total energy
consumption with the fine-grained power gating scheme can
be obtained. Paper [15] has introduced the accuracy of this
simulator, verified by the real data from a 180 nm-based pro-
totype ASIC.

As can be expected, this study mostly depends on
the instruction types and their distribution. Thus, we
calculate the incidence rate of the different instructions
of the benchmark functions, which are shown in Fig. 8.
We categorize the instructions by memory accesses and
logic/arithmetic/media operations. As can be easily ob-
served from Fig. 8, the ratio of instructions in a function
varies according to the application characteristics. For ex-

Fig. 9 Incidence of instructions with a fixed input.

ample, FI-2 and FI-3 have only memory accesses and logic
operations. Differently, Expand4k, Unsharp and Blur have a
high ratio of media operations. According to our technique,
these functions require more check instructions, since me-
dia operations have a higher level of ODP and may be more
possibly turned into a defective unit.

Furthermore, we optimized the ODP of the instruc-
tions with a constant input to reduce the number of check
instructions further as introduced in Sect. 2.3. Figure 9
shows the ratio of instructions with a constant input in-
side the functions. Note that most of the address calcula-
tions for the memory access operations have one constant
input as the offset to the base address. As an example, LD
R1,@(R10,#4) is a memory access operation, in which,
(R10,#4) calculates the memory address by taking an im-
mediate input #4. Therefore, there is a rough tendency that
programs with a large portion of load operations is likely
to have a higher ratio of operations with constant inputs.
As an example, the difference between FI-2 and Expand4k
in Fig. 8 and Fig. 9 gives a good demonstration of this ten-
dency. Another rough observation is that media operations
contribute far less constant inputs than other types. As a
result, for Wdifline, the low ratio of constant inputs over-
whelms the gaining of high ratio from the memory oper-
ations, which results in a medium level of fixed input ra-
tio in this benchmark in Fig. 9. Overall, the average result
shows that it is possible to update the ODP more precisely
in 65% instructions with the insensitivity from constant val-
ues, which may have a visible increase in the accuracy in
avoiding non-critical checking.

3.2 Reduction of Check Instructions

Figure 10 (a) gives the number of check instructions by us-
ing algorithm (Fig. 2) and ODPs in Table 1. Figure 10 (b)
shows the results of more precisely updated ODP by taking
constant inputs into account. For comparison, both figures
also include the ratio of check instructions from the light-
weighted technique, which only adds the check instruction
at the end of the execution-path. It can be observed from
Figs. 10 (a) and 10 (b) that the light-weighted method can
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Fig. 10 Ratio of check instructions for different thresholds.

achieve the smallest number of check instructions. How-
ever, we can also find in these figures that the difference of
the check instruction ratio is very small between the light-
weighted method and our proposal when ODPth=10%, as
compared to other ODPth values. A detailed analysis indi-
cates that the difference between ODPth=10% and the light-
weighted method is usually within one check instruction,
which helps divide the loop kernel into two branches and ac-
cordingly isolates the error propagation so as to increase the
dependability. From this view, we can roughly represent the
light-weighted method by taking a large ODPth such as 10%
or more. However, although these large ODPths help reduce
the check instructions largely, their corresponding reliabil-
ity will be traded off, which will be discussed in detail in
Sect. 3.3.

It can be predicted that the number of check instruc-
tions will be dominant by the ODP threshold used in our
method. However, there are some other parameters that
change the final insertion of selective check instructions,
such as the type of instructions, the length of the critical
paths, and the number of branches inside the functions. For
example, in Fig. 10, functions from Unsharp to FI-1 (Type
A) contain a lot of media operations. A low ODP threshold
0.1% leads to about 95% selective check instructions, and
they will divide the program into 1-instruction zones. How-
ever, this represents situations of impractically high error
rates. With a threshold 0.5% or higher, the number of selec-
tive check instructions can be largely reduced. Specifically,
for a threshold of 10%, the number of check instructions
can be averagely reduced to a 7% level, in which the added
check instructions segment the data path into 5 or 6 zones,
each contains 17% instructions.

Secondly, programs with a short critical path (Type B),
as Blur, FI-3 and Tone, behave differently from the programs
in Type A. The increase ratio of the check instructions is
high for low ODP thresholds. However, for the thresholds
over 5%, no additional check instructions are required other
than checking the final result. On average, these programs
have 15% check instructions, and for large thresholds, only

the check instruction for the final result covers the whole
data path.

Finally, the Type C function, FI-2, which contains
many independent data paths, also behaves in the same way
as the Type B function. In FI-2, there is one store per each
independent data branch, which has been designed to con-
tain a built-in check. These in-store checks have already
segmented the whole data-path into small zones, which do
not eagerly require additional checks to lower the criticality
of the ODP accumulation. For this reason, the number of
check instructions stops growing at ODPth = 5%. The total
number of check instructions, including the in-store checks,
remains at 8% even when ODPth = 10%.

According to the Figs. 10 (a) and 10 (b), the number of
check instructions differs by taking or not taking the influ-
ence from the constant input into account. The maximum
difference can be found when ODPth=0.5%, averagely. Fur-
thermore, studying the individual programs, we can have the
following detailed observations:

1. Under ODPth=0.5%, benchmark programs Unsharp,
Wdifline, Blur, Tone and FI-2, show large differences
by using the insensitivity from the fixed input in cal-
culating ODP. These benchmark programs contribute
to most of the reductions from Figs. 10 (a) to 10 (b),
which is 13.2% under ODPth=0.5%. This may come
from their relatively high ratios of constant input op-
erations. However, in other than ODPth=0.5%, minor
changes can be found between Figs. 10 (a) and 10 (b)
for these benchmarks.

2. Programs Expand4k and FI-1, show very minor
changes under most ODPths.

3. The best ODPth to distinguish Figs. 10 (a) and 10 (b) for
benchmark FI-3 is ODPth=1.0%.

The above observations can be connected to the combi-
nation of the program characteristics such as the ratio of the
operations with a fixed input, the distribution of operations
with a fixed input among all the operation types, and the
weight of all input operation types. For example, Expand4k
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and FI-1 have a small number of operations with a fixed in-
put, they therefore have less changes after taking the fixed
input into account. FI-3 has a medium ratio of operations
with a fixed input. However, it has a relatively short data-
path, which is 14 operations in Table 2. In addition, the 14
operations in FI-3 are mainly the logic and arithmetic ones,
which have a simpler distribution as the other benchmarks.
Therefore, FI-3 shows some differences between Figs. 10 (a)
and 10 (b) under ODPth=1.0%, which is slightly different
from other benchmarks.

3.3 Dependability and Energy Savings

By adding different numbers of check instructions, we are
changing the dependability of the data-path by preventing
the tainted data from the defective unit propagating inside
the data path. The data propagation is usually safe when ev-
ery instruction is duplicated and checked at the output point
of the data-path. However, a prior research [5] on hard error
in a data-center also states that the hard error rate will be
very high for the servers that have previously experienced a
hard fault. Therefore, it is possible that during the prop-
agation of the tainted data, the dependability will go un-
predictable when facing a second error before the tainted
data is detected. For this reason, we use the metric of er-
ror propagation distance to measure the dependability of the
data-path. The propagation distance is defined as the delay
between the error generation node and the detection node in-
side the DFG. For a 10-node single branch data-graph, if we
have only one check instruction at the end, the propagation
distance will be 9 if an error occurs in the first node.

Accordingly, the reliability is calculated in term of vul-
nerability to a second error, as follow:

E =
n∑

i=1

Pi × Di (5)

In Eq. (5), n is the number of instructions in a segment.
This segment refers to a DFG segment between two check
instructions added according to the ODPth in this research.
Pi is the ODP of an instruction and D is the error propaga-
tion distance. According to Eq. (5), the vulnerability to a
second error is 0% when all the instructions are protected
by a check instruction, as the distance Di is 0. With the de-
creasing number of check instructions under an increasing
ODP threshold, the vulnerability to a second error, as E in
Eq. (5), will increase.

The reliability of our proposed technique with consid-
ering and without considering the fixed input is depicted in
Fig. 11. Figure 11 clearly shows that the propagation dis-
tance decreases sharply from the light-weighted method to
ODPth=10% and then to ODPth=5.0%, which indicates that
these large ODPths may suffer more from the occurrence of a
second error when the first error is still inside the data-path
before detection. However, the decrease of error propaga-
tion distance goes rapidly flat when ODPth corsses 1.0%,
indicating a saturation in the check instructions. This also

Fig. 11 Vulnerability to the second error for different check instructions.

Fig. 12 Energy savings for 10M executions.

matches the expectation that the dependability increase will
be exponentially difficult after it reaches a certain level so
that balancing cost and efficiency is necessary. In addition,
from another view, at ODPth=1.0%, when a 1.0% longer er-
ror propagating distance is allowed, the check instructions
can be further reduced to a 66% level.

Studying the influence of applying constant inputs
in ODP, it can be easily observed that two lines are al-
most overlapping each other, which indicates that applying
the insensitivity of fixed input to decrease ODP does not
hurt the reliability. There is almost no difference between
ODPth=0.5% and ODPth=0.1%, and for ODPth=0.5%, 39%
check instructions can be saved while the influence of the
fixed input are not considered. There are 52% check instruc-
tions that can be removed from the DFG by considering the
influence of fixed inputs for the same ODPth. Another ob-
servation, at ODPth=0.1%, is that when a 1.0% longer error
propagating distance is allowed, the check instructions can
be further reduced to the 66% level.

Figure 12 gives the energy saving results by the pro-
posed method, as normalized by the energy of the origi-
nal exhaustive checking method. Figure 12 also shows that
we can save more energy by means of optimized ODP than
the normal ODP especially for ODPth=0.5%. Combining
with the results in Fig. 11, we can achieve the same near-
optimal reliability at ODPth = 0.5% ODPth = 0.1% by sav-
ing 17% more energy. If 1.0% downgrading of reliability is
allowed, further 22% energy reduction is possible by using
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ODPth = 1.0%.

4. Conclusion

In this paper, we have presented a technique to remove
check instructions from non-critical positions to avoid an ex-
haustive checking for fault-tolerable execution. The method
can efficiently work with a reconfigurable FU array archi-
tecture to achieve high dependability with awareness of the
fault possibility. In our approach, check instructions are
added selectively according to the error probability (ODP)
along the data path when the accumulated possibility ex-
ceeds a threshold. In addition, we also studied the influence
of constant inputs as they can turn parts of the circuit into
don’t care zones and therefore help reduce the sensitivity to
the faults.

Our study of the dependability of the updated data-path
has shown that the reliability can still be kept at a near-
optimal level when properly removing 52% non-critical
check operations. This results in an energy saving of 17%
for high dependable execution. With an allowance of down-
grading 1.0% reliability, it is possible to reduce the energy
further by 22%. In summary, a cost-effective high depend-
ability method has been achieved by using our ODP metric
in the FU array processor.
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