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FPGA Implementation of Human Detection by HOG Features with
AdaBoost∗

Keisuke DOHI†a), Kazuhiro NEGI†, Yuichiro SHIBATA††, and Kiyoshi OGURI††, Members

SUMMARY We implement external memory-free deep pipelined
FPGA implementation including HOG feature extraction and AdaBoost
classification. To construct our design by compact FPGA, we introduce
some simplifications of the algorithm and aggressive use of stream ori-
ented architectures. We present comparison results between our simplified
fixed-point scheme and an original floating-point scheme in terms of qual-
ity of results, and the results suggest the negative impact of the simplified
scheme for hardware implementation is limited. We empirically show that,
our system is able to detect human from 640 × 480 VGA images at up to
112 FPS on a Xilinx Virtex-5 XC5VLX50 FPGA.
key words: histogram of oriented gradients, AdaBoost, human detection,
FPGA

1. Introduction

In this paper, we present external memory-free FPGA im-
plementation of a real-time image-based human detection
system. The image-based human detection generally con-
sists of two stages; calculation of feature amount of given
images and pattern classification based on machine learn-
ing. In this implementation, histograms of oriented gra-
dients (HOG) [2] and AdaBoost classifiers [3] are used as
feature amount and pattern classifiers, respectively. The
HOG feature roughly describes object shape of local re-
gions of given images and this is widely used for various ob-
ject recognition such as pedestrian and car detection [4]–[6].
High-performance and compact implementation is achieved
by making deep pipelined arithmetic structure and a high
bandwidth on-chip RAMs. Our streamed processing ap-
proach illustrated by Fig. 1 achieves real-time human detec-
tion for input video frames without any external memory.
The streamed architecture consists of three main parts: reg-
isters, a FIFO, and pipeline(s). The registers hold the data
for pipeline parts and shift to next registers or a FIFO. The
FIFO part holds the data that is not required by pipeline parts
and pass the data to the next line of registers. The pipeline
part does actual computation and outputs results for next im-
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age processing. One advantage of this architecture is any
huge memory to store whole input frame data is not used;
instead, FIFO to store only a few lines of data is needed.
This is a preferable character also in term of energy effi-
ciency. Many previous researches were reported which used
this external memory-free architecture, especially for image
processing, including our previous works [7]–[9].

So far, hardware implementation of HOG-based ob-
ject detection has been actively investigated. Cao et al. [10]
presented FPGA implementation of a stop sign detection
system using HOG features. By using a simplified 4-
bin HOG method, their architecture achieves a processing
throughput of 60 frames per second (FPS) for 752 × 480
images on a Virtex-4 SX35 FPGA. However, this sim-
ple detection method is not directly applicable for human
detection. Kadota et al. [11] presented a novel simplifi-
cation technique of the HOG feature extraction for effi-
cient FPGA implementation. Their architecture can pro-
cess 640 × 480 image at 30 FPS with operating frequency
127.49 MHz on Stratix II FPGA, but detection part is not
implemented. After we presented a preliminary version
of this paper [1], Komorkiewicz et al. [12] presented fully-
pipelined HOG and SVM implementation without using any
external memory. To achieve superior accuracy, they used
single-precision floating-point arithmetic for all stages of
processing on a Virtex-6 XC6VLX240T FPGA. Their archi-
tecture needs multiple clock domains: 25 MHz clock for the
HOG feature extraction and up to 237 MHz clock for SVM
classifiers. Their architecture is able to process 640×480 im-
ages at 60 FPS in real-time. While their system shares some
architectural concepts with ours in terms of streamed pro-
cessing, an aspect of low-cost and low-energy implementa-
tion is more emphasized in our approach. Mizuno et al. [13]
presented HOG and SVM implementation for HDTV reso-
lution video images, which is able to process 1920 × 1080

Fig. 1 Streamed architecture.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



DOHI et al.: FPGA IMPLEMENTATION OF HUMAN DETECTION BY HOG FEATURES WITH ADABOOST
1677

images at 30 FPS with a Cyclone IV EP4CE115 FPGA op-
erating at 76.2 MHz. Their architecture is based on an SoC
style, in which an HOG feature extraction module is con-
nected to a soft-core processor with on-chip buses on the
FPGA. Contrasting to our approach, two types of exter-
nal memories with SDRAM and SRAM are attached to the
FPGA and aggressively used to process image data.

The contributions of this paper are as follows: a) pre-
senting a unified pipelined architecture of HOG feature ex-
traction; b) using AdaBoost classifiers for real-time human
detection; c) only single clock frequency is needed for HOG
feature extraction and AdaBoost classifying; and d) our ar-
chitecture is constructed without any external memory. Sec-
tion 2 explains fundamentals of the HOG feature extraction.
Section 3 shows the reduction techniques of the calcula-
tion amount for efficient implementation of human detec-
tion on an FPGA. Then, Sect. 4 details FPGA implementa-
tion with on-chip Block RAM and shift registers. Section 5
presents evaluation of the proposed architecture. Finally,
Sect. 6 summarizes the paper.

2. Algorithms

In this section we explain two algorithms that we have im-
plemented, the HOG algorithm for feature extraction from
an input image and AdaBoost classifiers for real-time hu-
man detection. Along with the original HOG described in
[2], we used some extended schemes for compact FPGA im-
plementation [11], [14].

2.1 HOG Features

The histograms of oriented gradients (HOG) use local his-
tograms of oriented gradients of pixel luminance for feature
extraction from a given image. In our implementation, the
process of HOG feature extraction roughly consists of the
following four stages:

1. Luminance gradients calculation
2. Histogram generation
3. Histogram normalization
4. Feature binarization

The first step is to calculate luminance values from a
given image. We used lightness in the HSL color model as
luminance for ease of luminance extraction from RGB full
color images. In this scheme, the luminance L for each pixel
is given by the following equation:

L =
max(R,G, B) +min(R,G, B)

2
, (1)

where R, G and B mean values of each color channel of
given image. All the values are presented as 8-bit unsigned
integers, i.e., the value from 0 to 255.

Using the luminance, 1st-order central-differences in
both x and y direction, gx and gy, are given by:

gx(x, y) = L(x + 1, y) − L(x − 1, y)

gy(x, y) = L(x, y + 1) − L(x, y − 1),
(2)

where L(x, y), gx(x, y) and gy(x, y) mean values of lumi-
nance and central-differences at the coordinate (x, y), re-
spectively. Then a magnitude m as well as an orientation
θ of the gradient are computed by:

m(x, y) =
√
gx(x, y)2 + gy(x, y)2

θ(x, y) = tan−1 gy(x, y)

gx(x, y)
,

(3)

respectively.
After computing gradient magnitudes and orientations

for each coordinate, the second step, histogram generation,
is started. A histogram is generated for each cell, a square
region of p×p pixels, by accumulating the magnitude values
according to each orientation of all pixels in a cell. Note
that cells have no overlap with neighbors which means that
a total of wp × h

p cells are defined for w× h luminances of the

given image. In this implementation, we used p = 5.
To make histograms, the gradient magnitudes are voted

into 8 bins according to their orientations as shown in Fig. 2.
When an orientation θ meets the following condition:

n
8
π − π

16
≤ θ < n

8
π +
π

16
, (4)

the corresponding magnitude is voted to the bin bn. Note
that since the HOG does not focus on gradient directions but
orientations, the opposite direction locates in the same bin.
Since we vote gradients into eight bins, eight-dimension fea-
ture vector is eventually generated for each cell as shown in
Fig. 3. Then the feature vector for the cell is described as:

f = ( f0, f1, . . . , f7) (5)

where fn means the sum of voted gradient magnitudes for
bin bn.

The third step, histogram normalization, is one of the
most complex process. A histogram v for the block at (i, j),
the larger spatial region which consists of 3 × 3 cells in this
implementation, is defined as:

Fig. 2 Orientation spacing of 8-bin.

Fig. 3 Voting magnitude for bins.



1678
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

v = (

f (i, j),f (i + 1, j),f (i + 2, j),

f (i, j + 1),f (i + 1, j + 1),f (i + 2, j + 1),

f (i, j + 2),f (i + 1, j + 2),f (i + 2, j + 2)

),

(6)

where f (i, j) means the feature vector for the cell located at
the i-th row and j-th column. Since f is eight-dimension
vector, v has 8 × 9 = 72 dimensions. Note that the block
scans the entire image in a cell-by-cell manner (stride 1) and
thus the number of blocks is equal to that of cells.

The values of histograms in a block are normalized us-
ing the L1-norm scheme described in [2]. The normalized
histogram vn is computed as:

vn =
v

‖v‖1 + ε
‖v‖1 =

∑
‖f‖1,

(7)

where εmeans regularization constants (here, ε = 1) to sup-
port empty histograms and it is known to have little impact
on final results over a large range [2].

The final step is feature binarization. As a result of nor-
malization, the normalized histogram has 72 real numbers.
So the HOG features for w × h luminance image occupies
approximately w

5 × h
5 × 72 × 8 byte of memory capacity to

store. This corresponds about 6.75 MB for VGA image, if
we use the 8-byte double-precision floating point format for
each value of histograms. This makes compact implemen-
tation with embedded hardware difficult. Therefore, we em-
ployed a binarized HOG scheme described in [14] to reduce
the size of the features. In this scheme, each value of nor-
malized histograms is binarized as:

vb =

⎧⎪⎪⎨⎪⎪⎩
1 if vn ≥ tb
0 otherwise,

(8)

where vb means a binarized result of a value vn in the nor-
malized histogram and tb means a scalar threshold value.
The binarized histogram vb is generated by applying the bi-
narization to all the values within the normalized histogram
vn. With this reduction scheme, the memory capacity re-
quired to store the HOG features for luminance of w × h is
reduced to w5 × h

5 × 72 bits. Compared with the original size
of w5 × h

5 × 72 × 8 bytes, 1
64 of reduction is achieved.

In the boundaries of a given image, we have to treat
special cases for generation of both cells and blocks. In this
implementation, we ignored cells and blocks which cover
the outside of the image. Therefore the numbers of cells and
blocks are

(
w
5 − 2

)
×
(

h
5 − 2

)
.

2.2 AdaBoost Classifiers

AdaBoost is a machine learning method that combines mul-
tiple weak classifiers, each of which only returns a true or
false, so that an effective strong classifier is constructed [3].

In the training phase, positive sample images and nega-
tive sample images are repeatedly used by changing their
weights, to select appropriate weak classifiers.

Since generation of classifiers using sample images is
an offline process, we implemented AdaBoost classifier gen-
erator with software. In this implementation, HOG features
that frequently appear in human sample images (positive
samples) and rarely observed in other images (negative sam-
ples), were employed for weak classifiers. In addition, the
block coordinates of such HOG features exist were also uti-
lized. In AdaBoost method, one training phase generates
one weak classifier as:

Cw = {H ,P }, (9)

where H means the feature pattern and P means coordi-
nate of the classifier. Given a binarized histogram vb as a
HOG feature, our weak classifier Cw returns true if any one
of the nine binarized feature vectors for the cells within a
block is exactly matched with the feature H of the classi-
fier. The strong classifier Cs constructed through Nc times
of the training can be expressed as:

Cs = {Cw1,Cw2, . . . ,Cwi}. (10)

Note that since duplicated weak classifiers are eliminated,
the number of weak classifiers in one strong classifier is not
always equal with the number of trainings. An example of
a strong classifier constructed with three training phases is
shown in Fig. 4.

The strong classifier counts up the number of HOG fea-
tures which weak classifiers return true in a wc×hc detection
window. After that the region that surrounded by the detec-
tion window is identified as a human image region if enough
number of weak classifiers return true (≥ tc).

The detection window moves the entire image from the
upper left corner in a block-by-block raster scan manner.
The required number of window scans for wb × hb blocks
using wc×hc window is (wb−wc+1)×(hb−hc+1). Therefore,

Fig. 4 Strong classifier generation by three times training.
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the total number of matching processes required by the Nc

weak classifiers is (wb − wc + 1) × (hb − hc + 1) × Nc.

3. Simplification of the HOG Feature Process for
Hardware

Some of the processes of the HOG feature extraction de-
scribed in the previous section consist of mathematical func-
tions such as a trigonometric function and division. These
functions make our design difficult to fit in small FPGAs.
Thus, we introduce approximation schemes to reduce the
calculation complexity.

3.1 Approximation for Gradient Orientations

Our first approximation is for choosing the best bin bn ac-
cording to a given gradient orientation θ as described in
[10]. A naive scheme requires computation of the arc tan-
gent function as shown in Eq. (3). Since we only need to
choose the best bin bn to vote from eight bins, we can intro-
duce a more compact scheme to compute Eq. (3) and Eq. (4).
The best bin bn for given orientation θ can be defined as:

gx · tan
(n
8
π − π

16

)
≤ gy < gx · tan

(n
8
π +
π

16

)
. (11)

Equation (11) allows us to choose the bin using simpler
functions. Figure 5 shows pseudo code for simplified com-
putation of the bin selecting. This scheme only requires four
multiplication with constants, four comparisons, compari-
son of signs, subtraction and modulo operation.

3.2 Approximation for Normalization of Histogram

The second approximation is for normalization process in
Eq. (7). Kadota et al. introduced an approximation scheme
for L2-norm normalization in [11]. In this scheme, divisors
for the normalization are approximated to power-of-two val-
ues, so that the division is replaced by a shift operation. We
enhanced this approximation and applied it in Eq. (7).

If the denominator of Eq. (7) is approximated to 2α

Fig. 5 Simplified bin selection.

such that 2α−1 < (‖v‖1 + ε) ≤ 2α, the division for the nor-
malization can be replaced by a shift operation. However,
this naive approximation to the nearest power-of-two value
increases the normalization error. To mitigate the error, we
used sums of the number of the form 1/2k, like 1/2k + 1/2l.

The original interval (2α−1, 2α] is divided into n sub-
intervals;

(
2α−1, (1 + 1

n )2α−1
]
,
(
(1 + 1

n )2α−1, (1 + 2
n )2α−1

]
,

. . .,
(
(1 + n−1

n )2α−1, 2α
]
, and shift amounts for each interval

are precomputed. Figure 6 shows pseudo code for the ap-
proximation we used. In the approximation, the minimum α
which meets the condition (‖v‖1 + ε) ≤ 2α is first computed.
Then an appropriate interval is chosen from n sub-intervals,
and finally each value of normalized histogram is computed
by shift and addition. We divided the original interval into
four sub-intervals (n = 4) and used three kinds of power of
two values in this implementation.

Figure 7 shows comparison results of approximation
errors between our scheme and the naive power-of-two
scheme, in the case that a numerator is 361 in Eq. (7). The
results show that the normalization errors are effectively re-
duced with the relatively simple additional computation pro-
cesses.

Fig. 6 Simplified histogram normalization.

Fig. 7 Normalization errors.
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Fig. 9 Overview of HOG feature extraction pipeline.

Fig. 8 Overview of our architecture for human detection. Gray boxes
show what data are stored on BRAM.

4. Implementation

Figure 8 shows an overview of our human detection system
and Fig. 9 shows the pipeline structure for HOG feature ex-
traction. The camera module outputs bayer-patterned image
data sequentially in a pixel-by-pixel manner, and these data
are directly passed to the HOG feature extraction pipeline.
Then, extracted HOG features are stored in on-chip BRAMs
and are used by the human detection module consisting of
AdaBoost classifiers. Decision criteria for each weak clas-
sifier (AdaBoost data) are provided by on-chip ROM also
implemented with BRAMs. Finally, detection results are in-
dicated with markers on output images and outputted to an
external display.

4.1 Luminance

We used an OmniVision Technologies OV9620 CMOS cam-
era as an input device. Since this device produces a raw 8-bit
Bayer pattern image consisting of 640 × 480 valid pixels as
shown in Fig. 10, we implemented 2×2-pixel filter to convert
a bayer-patterned image to a full color image. Then, lumi-
nance values are calculated from the full color image using
Eq. (1). This filter can be implemented by the streamed ar-
chitecture shown in Fig. 1 with 2 × 2 of 8-bit registers and a
FIFO to store 638 of 8-bit pixels. As a result, a gray scale
image of 320 × 240 of 8-bit luminance values is produced
from an input image.

4.2 Luminance Gradient

As shown in Fig. 11, calculation of central-differences of lu-
minance gx and gy in Eq. (2) requires the streamed architec-
ture with 3×3 of 8 bit-registers and a FIFO to store two lines.
In a pipeline part, two subtractors for 8-bit integers is needed
for computing both gx and gy. Computation of the gradient

Fig. 10 Bayer pattern of camera images. Each alphabet means valid
color channel at each location.

Fig. 11 Streamed architecture for computation of the gradient magnitude
and the bin.

magnitude m in Eq. (3) requires two multiplier for 8-bit un-
signed integers (|gx| and |gy|), an adder for 17-bit unsigned
integers and a square root operator for 17-bit unsigned inte-
gers. Since the maximum value of the gradient magnitude is
361 (=

⌈√
2552 + 2552

⌉
), m is expressed as a 9-bit unsigned

integer. The bin bn to be vote can be chosen with the algo-
rithm shown in Fig. 5. In order to simplify the implementa-
tion, we employed fixed-point arithmetic with a 10-bit frac-
tion part for |gx|, |gy| and results of tangent functions. As
a result, the computation for the bin bn requires four mul-
tipliers for |gx| and 10-bit constant unsigned integers, four
comparators for 18-bit unsigned integers and other small op-
erators. The bin bn is expressed as a 3-bit unsigned integer.

Multipliers and a square root operator were generated
by Xilinx CORE Generator. Note that all the module is
fully-pipelined to compute luminance gradients in the same
rate with the camera interface.

4.3 Histogram Generation for Cells

We also took a stream processing approach for the histogram
generation. Since each cell is not overlapped with others,
histograms do not have to be computed every clock cycle.
Thus we need not to handle 25 gradients at the same time.

As shown in Fig. 12, the first partial histogram of gra-
dient histograms for five consecutive luminance gradients
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Fig. 12 Histogram generation for cells.

in horizontal direction is computed using temporary register
in partially voating process. Then the stream of the partial
histograms goes through FIFO so that partial histograms for
five lines are eventually summed up to make the full his-
togram for the cell in fully voating process.

Since the gradient magnitude m is expressed with a
9-bit value, each orientation of a partial histogram can be
expressed as a 11-bit unsigned integer. Thus, required re-
sources for streaming are registers corresponds to 11 bits ×
8 orientations × 5 lines and FIFOs corresponds to 11 bits × 8
orientations × 63 cells per line × 4 lines. The voter requires
eight comparators for 3-bit unsigned integers and eight ac-
cumulators for 11-bit unsigned integers. Finally, full his-
togram consists of eight 14-bit unsigned integers.

4.4 Histogram Normalization in a Block

The normalization process is carried out for a moving 3 × 3
windows of cell histograms. Again, we can exploit the
streamed structure. For this process, three lines of 3-stage
shift registers and 2 lines of 61-stage FIFOs are used to store
cell histograms. The histogram v is generated by concate-
nating all the cell histograms in a window.

Every time a new cell histogram is streamed in, all
the 72 values of nine histograms in the 3 × 3-cell window
are summed up to obtain a value of ‖v‖1. This addition is
done in two clock cycles to avoid degradation of the clock
frequency. Since the maximum value of ‖v‖1 is 81, 225,
‖v‖1 + ε can be expressed as a 17-bit unsigned integer when
ε ≤ 49, 847, and the value of ε is ‘1’ in this implementation.

In the next clock cycle, shift amounts for normaliza-
tion are computed using the approximation scheme shown in
Sect. 3.2. Figure 13 shows more hardware-oriented pseudo
code for the approximation scheme. Lines from 1 to 4 of
Fig. 13 can be implemented as a Look-Up-Table. Since a
value of ‖v‖1 + ε is expressed with a 17-bit unsigned inte-
ger, α is expressed with a 5-bit unsigned integer. In lines
5-16, the shift amounts are computed with small shift oper-
ation and comparisons. Lines 6-7 are needed for intervals
which are too narrow to divide.

In the 4th clock cycle, values of the normalized his-
togram are computed by three shift operations and two ad-

Fig. 13 Hardware oriented histogram normalization.

ditions in line 17. Therefore, the normalization in a block is
accomplished in four clock cycles.

Since the maximum shift amount is 19, each value of
histograms are temporarily expanded to a 33-bit fixed-point
number with a 19-bit fraction part. As a result of the nor-
malization, each value of histograms is expressed as a 19-
bit fixed-point number with a 19-bit fraction part. Which
means the normalized histogram for a block is expressed as
72 of 19-bit fixed-point numbers.

4.5 Histogram Binarization

As described in Sect. 2, the binarization process is relatively
simple. The process requires 72 comparators for 19-bit
fixed-pointer numbers, and thus we implemented in a com-
binational circuit. As a result of the binarization, 72-bit
HOG feature for a block is extracted.

4.6 Data Stream of HOG Feature Extraction

As summarized in Fig. 9, the whole process flow of the HOG
feature extraction is fully pipelined. All the HOG features
obtained in this process flow are serially stored in on-chip
RAMs. The on-chip RAMs can hold all the normalized
HOG histograms of 62 × 46 blocks, which are obtained
from a single frame image. Since each normalized HOG
histograms is expressed as a 72-bit value, whole HOG fea-
ture for a single frame image occupies about 25 kBytes of
the on-ship RAMs.

4.7 Human Detection using AdaBoost Classifiers

Figure 14 shows an overview of the human detection mod-
ule using AdaBoost classifiers. The strong AdaBoost clas-
sifier Cs is stored in ROM which actually implemented with
BRAM. Since each weak classifier is expressed as two 8-
bit values for a feature pattern H and a block coordinates
P , Nc weak classifiers occupies approximately 2Nc byte of
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Fig. 14 Overview of human detection module using AdaBoost classi-
fiers.

memory capacity to store. What the circuit for the strong
classifier needs to do is simply to compare the weak classi-
fiers with HOG features extracted from input images and to
count the number of active classifiers.

Since each weak classifier corresponds to a difference
block coordinate, random access to on-chip RAMs which
stores HOG feature is needed in contrast to the streamed
approach exploited in the HOG feature extraction.

In this implementation, we set the size of the detection
window (wc × hc) to 8 × 19 according to the size of train-
ing samples. While we executed 500 times training trials
to construct a strong classifier, a total of 84 weak classifiers
were eventually generated since we obtained a lot of dupli-
cations. Thus 168 bytes of memory capacity was required to
store the strong classifier.

The total number of matching processes required for
the 84 weak classifiers is (62− 8+ 1)× (46− 19+ 1)× 84 =
129, 360. The camera device we used generates one frame
image data in 400,000 clock cycles including synchroniza-
tion intervals. Our implementation requires 385,452 clock
cycles to extract whole HOG features for one frame data,
while the AdaBoost detection process takes 129,360. To
finish whole the detection process within 400,000 clock
cycles, we overlapped the feature extraction and the hu-
man detection processes. As a result, our implementa-
tion processes whole computation for one frame in 387,820
clock cycles to enable in-frame real-time processing. Due
to the remainder can process additional 7 weak classifiers,
�12, 180/(55 × 28)	 = 7, this result suggests the strong clas-
sifier can be constructed of up to 91 weak classifiers.

5. Implementation Results and Evaluation

The human detection process described in Sect. 4 was im-
plemented on a Xilinx ML501 board equipped with a Virtex-
5 XC5VLX50 FPGA. The design was described in Ver-
ilog HDL and a bitstream file was generated using Xilinx
ISE design tools 13.4.

Table 1 shows implementation results of the design.
While the maximum operating frequency of the design
achieved 45 MHz, the camera device in our system restricts
the system clock to 25 MHz. In spite of the restricted
relatively-low clock frequency, our FPGA implementation
achieved the throughput of 62.5 FPS for VGA frames and
execution latency was also fitted in a single frame time,

Table 1 Resource utilization.

Resource Used Available Percentage (%)

SLICE 6,607 7,200 91.8
FF 2,255 28,800 7.8

LUT 17,121 28,800 59.4
BRAM/FIFO 36 48 75.0

DSP48E 2 48 4.2

Fig. 15 Example results of human detection process.

that is, the real-time performance was accomplished. Fur-
thermore, if a high-speed camera device were used and the
FPGA design was operated with the maximum clock fre-
quency of 45 MHz, the execution throughput would be im-
proved up to 112.5 FPS. An adder tree for computing L1-
norm in Eq. (7) lies on a critical path. Figure 15 illus-
trates examples of our experimentation results. These im-
ages were obtained by a monitoring mechanism we also im-
plemented on the FPGA board, which allows us to trans-
mit actual result image data to the host PC. The red frame
markers were also generated by the FPGA circuit to display
detected regions.

We evaluated the quality of results of our approxi-
mation scheme by comparing to the original floating-point
arithmetic algorithm. We implemented two software sim-
ulators in C for both of the schemes and evaluated accu-
racy of human detection. In this evaluation, NICTA Pedes-
trian database [15] was used for benchmarking. To generate
AdaBoost classifiers, 2,000 images from the database were
used for offline machine learning, while other 1,000 images
were used as the evaluation data. The size of each image
is 64 × 80 pixels. As a result of 500 times of training, a
strong AdaBoost classifier which consists of 84 weak clas-
sifiers were eventually generated. The threshold value for
the histogram binarization was set to 0.04.

Figure 16 summarizes the results of comparison as a
chart of receiver operator characteristics (ROC) curve. The
chart shows the relationship between the false positive rate
(x-axis) and the detection rate (y-axis) of the system. The
closer to the upper left area of the chart means better quality
of results. The plots were made by changing the threshold
number of weak classifiers for detection from 0 to 30. As a
result, the simplified scheme for hardware implementation
shows 94.5 % of the detection rate with 15.7 % of the false
positive rate, while the original one shows 95.6 % of the de-
tection rate with 14.5 % of the false positive rate. Although
the detection results for original scheme might be improved
by tuning parameters such as the threshold value, the evalua-
tion results suggest the negative impact of simplified scheme
for hardware implementation is limited in terms of detection
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Fig. 16 ROC curves for the NICTA Pedestrian database.

rate.
Finally, we compared the throughput of our FPGA

implementation to software implementation. The software
implementation was compiled by gcc 4.3.1 and run on
2.67 GHz Intel Core i7 920 with 6 GB DDRIII operated by
openSUSE 11.2. As a result, the software implementation
achieve about 15 FPS which means the FPGA design is 4.2
times faster than the software implementation. Although an-
other software implementation using SIMD instructions is
reported to achieve 20 FPS [12], our FPGA design is still
3.13 times faster. Moreover, 7.5 times faster throughput to
our software implementation is expected if the camera de-
vice operates at the maximum frequency of the design.

Although our external memory free architecture was
shown to be efficient for the HOG-based human detection
algorithm, this architecture will not be versatile for every
image processing application. For example, use of an exter-
nal frame buffer enables random access to image data and
makes it easy to use a soft-core processor to execute a part
of tasks. Frame buffers are also useful for introducing mul-
tiple clock domains in designs and absorbing differences in
throughputs between the domains. On the other hand, appli-
cations that have a relatively simple control flow and regular
data access patterns, especially a class of algorithms that use
moving widow operators are good candidates for our archi-
tecture. Avoiding the use of frame buffers, we can reduce
energy consumption for the external memories and off-chip
data communications as well as implementation size, which
is advantageous especially for embedded systems.

6. Conclusion

In this paper, compact FPGA implementation of real-time
human detection using the HOG feature and AdaBoost clas-
sifier has been presented. As a result of evaluation, the
throughput of 62.5 FPS was achieved without using any ex-
ternal memory modules. If a high-speed camera device
was available, the maximum throughput of 112 FPS was
expected to be accomplished. While some simplifications
were introduced to reduce hardware complexity, the evalu-

ation with ROC curves showed that the negative impact of
the simplifications is limited.

Our future work includes to implement more com-
pact design to fit smaller and cheaper FPGA devices rather
than Virtex families and construct human abnormal behav-
ior detector combining with another feature detection like
CHLAC approach [16].
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