
1734
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

PAPER

Finding Interesting Sequential Patterns in Sequence Data Streams
via a Time-Interval Weighting Approach

Joong Hyuk CHANG†, Nonmember and Nam Hun PARK†a), Member

SUMMARY The mining problem over data streams has recently been
attracting considerable attention thanks to the usefulness of data mining
in various application fields of information science, and sequence data
streams are so common in daily life. Therefore, a study on mining sequen-
tial patterns over sequence data streams can give valuable results for wide
use in various application fields. This paper proposes a new framework for
mining novel interesting sequential patterns over a sequence data stream
and a mining method based on the framework. Assuming that a sequence
with small time-intervals between its data elements is more valuable than
others with large time-intervals, the novel interesting sequential pattern is
defined and found by analyzing the time-intervals of data elements in a
sequence as well as their orders. The proposed framework is capable of
obtaining more interesting sequential patterns over sequence data streams
whose data elements are highly correlated in terms of generation time.
key words: time-interval weight, weighted sequential pattern, time-
interval sequential pattern, time-interval sequence data stream, data
stream

1. Introduction

Since data has been increasingly taking the form of con-
tinuous data streams rather than finite stored data sets in
various application fields, the database research community
has begun focusing its attention on processing over data
streams [1]. The data stream is a massive unbounded se-
quence of data elements continuously generated at a rapid
rate [2]. In data stream processing, each data element should
be examined at most once to analyze the data stream, and the
memory usage for data stream analysis should be restricted
finitely although new data elements are continuously gener-
ated in a data stream. Moreover, newly generated data ele-
ments should be processed as fast as possible to produce the
up-to-date analysis result of a data stream so that it can be
instantly utilized upon request [2]. To satisfy these require-
ments, data stream processing sacrifices the correctness of
its analysis result by allowing some error.

Considering the changes in the form of data generated
in realworld application fields, many research have been ac-
tively performed to find various kinds of knowledge embed-
ded in data streams. They mainly focus on efficient mining
of frequent itemsets [3]–[5] and sequential patterns [6], [7]
over data streams, which have been proven to be useful in
conventional data mining for a finite data set. In addition,
mining algorithms [3], [8] have also been proposed to effi-
ciently reflect the changes of data streams over time into

Manuscript received November 8, 2012.
Manuscript revised March 19, 2013.
†The authors are with Anyang University, Korea.

a) E-mail: nmhnpark@anyang.ac.kr (Corresponding author)
DOI: 10.1587/transinf.E96.D.1734

their mining results. However, they have been targeted on
finding naively interesting patterns such as frequent patterns
and simple sequential patterns, which are found intuitively,
taking no interest in mining novel interesting patterns that
express the characteristics of target data streams better. In
recent computing application fields generating data streams,
a data stream generally takes a more complex form with ad-
ditional information such as generation times of data ele-
ments. Therefore, it can be a valuable research topic in the
field of mining data streams to define novel interesting pat-
terns and develop a mining method finding the novel pat-
terns, which will be effectively used to analyze recent data
streams.

Sequential pattern mining aims to discover interesting
sequential patterns in a sequence database, and it is one of
the essential data mining tasks widely used in various appli-
cation fields such as Web access pattern analysis, customer
purchase pattern analysis, and DNA sequence analysis. In
many of the previous researches on sequential pattern min-
ing problems, sequential patterns and items in a sequential
pattern have been considered uniformly. However, they have
different weights in real world applications, and thus more
interesting sequential patterns can be found when their dif-
ferent weights are considered in sequential pattern mining.
Based on this observation, weighted sequential pattern min-
ing [9]–[12] has recently been proposed and actively stud-
ied. In weighted sequential pattern mining, the weight of in-
formation is used in finding interesting sequential patterns,
which is derived from its quantitative information and value
in a real world application. For example, in a retail database,
the quantum and price of an item being sold can be consid-
ered as its weight.

For a sequence or a sequential pattern, not only the
generation order of data elements but also their generation
times and time-intervals are important because they can help
to get more valuable sequential patterns. In [13] and [14],
several sequential pattern mining algorithms have been pre-
sented which consider a time-interval between two succes-
sive items in a sequential pattern. However, they simply
consider a time-interval between two successive data ele-
ments as an item. If the importance of sequences in a se-
quence database is differentiated based on the time-intervals
in the sequences, more interesting sequential patterns can be
found.

The following is an example of a set of time-interval
sequences generated from the purchasing history in a com-
puter store.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

CHANG and PARK: FINDING INTERESTING SEQUENTIAL PATTERNS
1735

[Customer A]
a laser printer → (1 month after) → a scanner → (1 month
after)→ a CD burner
[Customer B]
a laser printer→ (6 months after)→ a scanner→ (3 months
after)→ a CD burner

The sequences consist of the same items and their or-
ders are the same in both customers, but the time-intervals
between the items are different. Therefore, they may ap-
pear to be the same if only the order of items is considered,
but they would be totally different if the time-intervals were
itemized. However, it is better to consider them as hav-
ing the same sequence with a different weight, since it is
closer to a real world situation. In the above example, the
sequence by customer A can be considered more important
than the sequence by customer B since the former has rela-
tively smaller time-intervals than the latter.

In general a sequence with small time-intervals be-
tween its data elements is more valuable than others with
large time-intervals. Motivated by this observation, this pa-
per proposes a new framework for mining novel interesting
sequential patterns over time-interval sequence data streams
and a mining method based on the new framework. First, a
technique to get the weight of a sequence in a time-interval
sequence data stream is presented, which is derived from
the time-intervals of items in the sequence. Based on the
weight of a sequence, a novel interesting sequential pattern
of a time-interval weighted sequential pattern is defined, and
a framework for finding the patterns in a time-interval se-
quence data stream is presented. In addition, adapting the
proposed framework to the conventional method of mining
sequential patterns over a data stream, this paper proposes a
mining method of novel interesting sequential patterns over
a time-interval sequence data stream, which can find time-
interval sequential patterns over the data stream in a short
time with a small memory.

The rest of this paper is organized as follows: Section 2
gives a brief summary of related work including our previ-
ous work on mining sequential patterns over data streams,
and the definition of a time-interval sequence data stream
and a problem discussed in this paper are described in
Sect. 3. Section 4 presents novel interesting sequential pat-
terns for mining time-interval sequence data streams, which
are based on time-intervals of data elements in a data stream.
A mining method to get the novel interesting sequential pat-
terns over a time-interval sequence data stream is also pre-
sented in the section. In Sect. 5, the effectiveness of the
novel interesting sequential patterns and the efficiency of the
proposed mining method are verified through a series of ex-
periments. Finally, Sect. 6 concludes this paper.

2. Related Work

To extract different types of knowledge embedded in data
streams, various algorithms [3]–[8] have been actively pro-
posed. These algorithms mainly target on minimizing the

memory usage and processing time to get their mining re-
sults in data streams. For mining sequential patterns, the
number of patterns to be considered in a mining process
is very large, and it takes quite a long time to get its min-
ing result. Therefore, it is very hard to do mining se-
quential patterns efficiently in data streams whose data el-
ements are continuously generated at a rapid rate. Previous
researches [6], [7] on mining sequential patterns over data
streams have focused on getting their mining results effi-
ciently in a short time and a small memory using basic in-
formation such as the frequency of a data element, but they
have not been able to support getting interesting sequential
patterns by considering additional information such as the
generation time of a data element.

In particular, to find frequent sequential patterns effi-
ciently over a data stream, the eISeq [6] method has been
proposed in our previous work. In the eISeq method, the
effect of the information in an old sequence on the current
mining result is diminished by decaying the old occurrence
count of a sequential pattern as time goes by. In other words
sequences are differentiated by their generation times. How-
ever, to concentrate on the mining problem of interesting
sequential patterns in a time-interval sequence data stream,
they are not differentiated by the generation time in this pa-
per as in most conventional data stream mining approaches.

For mining sequential patterns in sequence databases,
various algorithms for mining simple sequential pat-
terns [15]–[19] and weighted sequential patterns [9]–[11]
have been actively proposed so far. In most of the weighted
sequential pattern mining algorithms, they usually require
pre-assigned weights, which are generally derived from the
quantitative information of items and its importance in a real
world application. In addition, there have been several stud-
ies on mining sequential patterns considering time-interval
and gap information between items in a sequence. In recent,
a mining method for finding time-interval weighted sequen-
tial patterns is proposed [12], but it focuses on a stored finite
data set. So that, it cannot be used for mining data streams
efficiently.

Chen et al. [13], [14] have proposed sequential pattern
mining algorithms for a sequence database with single items
and their corresponding time-intervals, but the algorithm
just considers time-interval information between two suc-
cessive items as an item. Pei et al. [20] and Ji et al. [21] have
proposed constrained sequential pattern mining algorithms,
which use time-interval and gap information as a constraint.
In these algorithms, time-interval and gap information are
used only to confine the mining result of sequential patterns.
Consequently, they are unable to support getting a mining
result of weighted sequential patterns.

3. Preliminaries

3.1 A Time-Interval Sequence Data Stream

Conventional sequential pattern mining considers the order
of data elements of a sequence in general, so that a sequence

1736
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

in a sequential data stream is represented as an ordered list
of data elements [6]. However, a time-interval sequence data
stream discussed in this paper has generation time informa-
tion for each data element in the data stream, and is defined
as follows:

i) Let I = {i1, i2, . . . , in} be a set of current items, which
have been used as a unit of information of an applica-
tion domain.

ii) A sequence S is an ordered list of items and its
time stamp list TSL(S) is an ordered list of corre-
sponding time stamps of the items, which stand for
the time when the items occur. They are denoted as
S = <s1, s2, . . . , sl> and TSL(S) = <t1, t2, . . . , tl>,
respectively, where s j is an item and t j is the time
stamp of s j for 1 ≤ j ≤ l. In addition, the relation-
ship t j−1 ≤ t j for 2 ≤ j ≤ l is satisfied. In a se-
quence, if items occur at the same time, they are or-
dered alphabetically. The length of S , |S |, is the num-
ber of items that form the sequence, and a sequence
with n items is called an n-sequence. A sequence α =
<a1, a2, . . . , an> is called a subsequence of another se-
quence β = <b1, b2, . . . , bm>, and β is a super-sequence
of α, if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m
such that a1 = b j1, a2 = b j2, . . . , an = b jn. Each
sequence has a unique sequence identifier SID. A se-
quence generated at the kth turn is denoted by S k and
its transaction identifier SID is k.

iii) When a new sequence S k is generated, the current
time-interval sequence data stream TiDSk is com-
posed of all sequences that have ever been generated so
far, i.e., TiDSk = <S 1, S 2, . . . , S k>, and the total num-
ber of sequences in TiDSk is called its size and denoted
by |TiDS|k. In the rest of this paper, a sequence data
stream means a time-interval sequence data stream, if
not specified otherwise.

Figure 1 shows an example time-interval sequence data
stream, TiDS4, having 4 sequences subsequently generated,
and their SIDs are 1, 2, 3, and 4, respectively.

A sequence is represented as an ordered list of items
in this paper, while it is represented as an ordered list of

Fig. 1 A time-interval sequence data stream TiDS4.

itemsets in practice. However, the new representation of se-
quences described herein is in fact a typical one. A sequence
in the previous format can be transformed to the new format
by sorting all the items first by time and then alphabetically.
Likewise, a sequence in the new format can be transformed
into the traditional format by first combining items that oc-
cur at the same time into an item set and then sorting these
item sets by time [13]. Moreover, a sequence in the new for-
mat itself is capable of capturing some of the most important
and popular sequences, such as Web-logs, DNA sequences,
and documents [21].

3.2 Problem Statements

In general, when a sequence S k is currently generated in a
sequence data stream TiDSk, the current count Ck(s) of a
sequential pattern s is the number of sequences that contain
the sequential pattern among the k sequences. Likewise, the
current support Suppk(s) of a sequential pattern s is the ratio
of its current count Ck(s) over |TiDS|k.

In order to find interesting sequential patterns over a
sequence data stream, a term of weighted sequential pat-
terns is used in this paper. That is, in sequence data stream
mining, the weight of a sequence in a sequence data stream
is considered, and it is derived from the time-intervals of
items and used to get the count of a sequence and the size
of a sequence data stream. In mining of weighted sequen-
tial patterns on the basis of a time-interval of an item, the
weighted count of a sequential pattern A in a sequence data
stream TiDSk is the sum of weights of sequences in TiDSk

containing A. Likewise, its weighted support is the ratio of
its weighted count over the sum of the weights of all se-
quences in TiDSk.

When a sequence S k is currently generated in a se-
quence data stream TiDSk, a sequential pattern A is called
an interesting sequential pattern in TiDSk for a given support
threshold minSupp (0 < minSupp ≤ 1), if the weighted sup-
port of A is no less than the support threshold. Accordingly,
for a given sequence data stream and a support threshold,
the mining problem of interesting sequential patterns over
the data stream is to find the complete set of all interesting
sequential patterns whose weighted supports are no less than
the threshold.

4. Interesting Sequential Pattern Mining over a Time-
Interval Sequence Data Stream

A new term of interesting sequential patterns is presented in
this section, which can be effectively used in analyzing time-
interval sequential data streams. It is based on the weight
of a sequence derived from the time-intervals between data
elements of the sequence. In general, not only the genera-
tion order of data elements but also their generation times
and time-intervals among them are important in sequential
pattern mining. Therefore, the novel interesting sequential
patterns can be usefully applied to analyzing the character-
istics of real world applications generating data as a form of

CHANG and PARK: FINDING INTERESTING SEQUENTIAL PATTERNS
1737

sequence data streams. In addition, a mining method to find
the novel interesting sequential patterns over a time-interval
data stream is also presented.

4.1 Time-Interval Weight of a Sequence

For mining sequential patterns over a time-interval sequence
data stream, the weight of a sequence in the data stream can
be computed from the generation times of data elements in
the sequence, which means the relative importance of the
sequence in the sequence data stream. It is called the time-
interval weight of the sequence.

To get the time-interval weight of a sequence in a se-
quence data stream, first the time-intervals in the sequence
are found from the time stamps of items in the sequence. For
a sequence S = <s1, s2, . . . , sl> having its time stamp list
TSL(S) = <t1, t2, . . . , tl> in a sequence data stream, there
exist {l × (l − 1)}/2 pairs of items in the sequence because it
consists of l items, and the time-interval between two items
si and s j (1 ≤ i < j ≤ l) in the sequence, i.e., TIi j, is defined
as follows:

TIi j = t j − ti

For a sequence whose SID is 1 as shown in Fig. 1, there can
be 4× (4− 1)/2 pairs of items, and the time-interval of each
pair can have the following possible pairs of items as shown
in Table 1.

The time-interval between a pair of items is a positive
value with no limitation. Therefore, to fairly enumerate the
time-intervals of different pairs of items in a sequence data
stream, they need to be normalized. For this purpose, the
time-interval weight for each pair of items in a sequence
is found on the basis of its time-interval, and defined as in
Definition 1.

Definition 1 Time-interval weight
Let u (u > 0) be the size of unit time and δ (0 < δ < 1) be a
base number to determine the amount of weight reduction
per unit time u, for a sequence S = <s1, s2, . . . , sl> and its
time stamp list TSL(S) = <t1, t2, . . . , tl>, the time-interval
weight of the time-interval TIi j between two items si and s j

(1 ≤ i < j ≤ l), i.e., w(TIi j), is defined as follows:

i. General-scale weighting

w(TIi j) =
δ

⌈
TIi j

u

⌉
=
δ

⌈ t j − ti
u

⌉

ii. Log-scale weighting:

w(TIi j) =
δ

⌈
log2

(
1+

TIi j

u

)⌉
=
δ

⌈
log2

(
1+

t j − ti
u

)⌉

�

The smaller the values of δ and u are, the more sensitive
a time-interval weight is to the increase of a time-interval.
Among the two weighting functions shown in Definition 1,
when the general-scale weighting function is applied, the

Table 1 Possible pairs of items.

Fig. 2 Time-interval weighting functions.

time-interval weight of a pair of items is affected by its
time-interval in general-scale. In other words, the weight
decreases in general-scale as the time-interval increases as
shown in Fig. 2 (a). In the case of the log-scale weight-
ing function, the weight decreases in log-scale as the time-
interval increases as shown in Fig. 2 (b). In the former case,
all the pairs of items whose time-intervals, TIs, are in the
range of u× i < T I ≤ u× (i+ 1) have the same time-interval
weight, while all the pairs of items whose time-intervals are
in the range of u × 2i < T I ≤ u × 2(i+1) have the same time-
interval weight in the latter case, where u denotes the size of
unit time and i = 1, 2, 3,

The time-interval weight of a sequence is computed
from the time-intervals of pairs of items in the sequence.
For a sequence S = <s1, s2, . . . , sl> and its time stamp list
TSL(S) = <t1, t2, . . . , tl>, the time-interval weight of the
sequence is found as in Definition 2 considering the time-
intervals in the sequence.

Definition 2 Time-interval weight of a sequence
For a sequence S = <s1, s2, . . . , sl> and its time stamp

list TSL(S) = <t1, t2, . . . , tl>, the time-interval weight of the
sequence, i.e., W(S), is defined as follows:

1738
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

W(S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
N

|S |−1∑
i=1

|S |∑
j=i+1

w(TIi j), where N = |S |(|S |−1)
2 (l ≥ 2)

1 (l = 1)

�

For a sequence S 1 in Fig. 1, the time-interval weight of the
sequence, W(S 1), is as follows:

N = 4 × (4 − 1)/2 = 6

W(S 1) = 1/6{w(TI12) + w(TI13) + w(TI14) + w(TI23)

+ w(TI24) + w(TI34)}
= 1/6{w(1) + w(3) + w(5) + w(2) + w(4) + w(2)}
= 1/6{w(1) + w(2) × 2 + w(3) + w(4) + w(5)}

Therefore, when the general-scale weighting function
w(TI) = δ�T I/u� with δ = 0.9 and u = 1 is applied, the
value of W(S 1) is found to be 0.749. Under the same condi-
tion, the weights of the other sequences in Fig. 1 are found
to be W(S 2) = 0.813, W(S 3) = 0.870, and W(S 4) = 0.810,
respectively. In addition, the appearance of the sequence
<a, b> in S 3 is considered more important than that in S 1

because the time-interval weight of S 3 is greater than that of
S 1.

4.2 Time-Interval Weighted Support of a Sequential Pat-
tern

The sequential pattern evaluation by support has been gen-
erally based on simple counting. Contrary to the classi-
cal sequential pattern mining, however, this paper proposes
a novel interesting sequential pattern of a time-interval
weighted sequential pattern which is based on the time-
interval weighted support of a sequential pattern. In this
section, the evaluation process of the time-interval weighted
support of a sequential pattern is presented in detail.

The time-interval weighted support of a sequential pat-
tern in a sequence data stream is found by using a time-
interval weight of a sequence described in Sect. 4.1. For
a sequence data stream TiDSk consisting k sequences, the
time-interval weighted support of a sequential pattern X
in the sequence data stream, i.e., TW-Supp(X), is defined as
follows:

TW-Supp(X) =

∑
S :(X⊆S)∧(S∈TiDS k) W(S)∑

S :S∈TiDS k
W(S)

Accordingly, a novel interesting sequential pattern of a time-
interval weighted sequential pattern can be defined. Given
a support threshold minSupp (0 < minSupp ≤ 1), a se-
quential pattern X is a time-interval weighted sequential
pattern if TW-Supp(X) is no less than the threshold, i.e.,
TW-Supp(X) ≥ minSupp.

Table 2 shows the supports of several sequential pat-
terns derived from the sequence data stream in Fig. 1 when
the general-scale weighting function w(TI) = δ�T I/u� with
δ = 0.9 and u = 1 is applied. Three sequential patterns
<b, a>, <c, b>, and <c, d> have the same support in sim-
ple support counting, but the time-interval weighted support

Table 2 Change of supports (Simple support vs. Time-interval weighted
support).

of <b, a> is less than those of the others because it appears
in the sequences whose time-interval weights are relatively
smaller such as the sequence S 1. In addition, if the support
threshold for mining sequential patterns on the data stream
is set to 0.5, all of them can be interesting sequential pat-
terns in the classical sequential pattern mining, but the se-
quence <b, a> cannot be an interesting sequential pattern in
mining time-interval weighted sequential patterns since its
time-interval weighted support is less than the threshold.

4.3 TWDS Method

For a sequence data stream, to find interesting sequential
patterns of time-interval weighted sequential patterns over
the data stream, a TWDS (Time-interval Weighted sequen-
tial pattern mining over a sequence Data Stream) method
is presented in this section. Although it is based on the
eISeq method, it also has an additional operation to get the
time-interval weight of a sequence in a sequence data stream
from the time-intervals of data elements in the sequence. In
addition, a count updating operation and a sequential pat-
tern insertion operation are merged into one operation in
the TWDS method. It can help to reduce the number of
times to traverse a monitoring tree, and then the process-
ing time for each sequence can decrease. For a sequence
data stream, when a sequence is newly generated in the se-
quence data stream, the time-interval weight of the sequence
is first computed before a series of operations to process
the sequence are performed. In every operation for the se-
quence such as a parameter updating operation, a count up-
dating & sequential pattern insertion operation, and a time-
interval weighted sequential pattern selection operation, the
time-interval weight of the sequence is considered. For a
sequence data stream, the time-interval sequential pattern
selection operation is not necessary to be performed in ev-
ery sequence, but it is performed only when the up-to-date
set of time-interval weighted sequential patterns in the cur-
rent sequence data stream is requested. A force-pruning op-
eration is similar to that in the eISeq method, but a time-
interval support is used to decide whether a sequential pat-
tern, i.e., its corresponding node in a monitoring tree, should
be pruned or not. Details of the TWDS method can be sum-
marized as follows and presented in Fig. 3.

For a data stream and a given minimum support min-
Supp, the TWDS method finds the complete set of interest-
ing sequential patterns of time-interval weighted sequential
patterns over the data stream. The method examines each
sequence in a sequence data stream one by one without any
candidate generation. Among all the sequential patterns in
each sequence of a sequence data stream, only those sequen-

CHANG and PARK: FINDING INTERESTING SEQUENTIAL PATTERNS
1739

Fig. 3 TWDS method.

tial patterns that should be monitored closely are maintained
in the main memory in a lexicographic tree structure [22]
called a monitoring tree. In the method, a sequential pattern
is called a significant sequential pattern when its weighted
support is greater than or equal to a predefined significant
support Suppsig (0 < Suppsig < minSupp), and only those
significant sequential patterns are maintained in the main
memory.

Every node in a monitoring tree contains an item, and
it denotes a sequential pattern composed of the items in the
nodes of its path from the root. Each node maintains an
entry (cnt, cnt r, tid, tid r) for its corresponding sequen-
tial pattern. The cnt is the count of the sequential pattern
in the current data stream Dk. The cnt r is the remain-
ing count of the sequential pattern that represents the num-
ber of sequences whose remaining-sequences are a super-

sequence of the sequential pattern in the current data stream
Dk. For a sequence S k, a prefix-item P(S k) and a remaining-
sequence R(S k) of the sequence are defined as follows [6]:
A prefix-item P(S k) is the first item of the sequence S k, and
a remaining-sequence R(S k) is a sub-sequence that is com-
posed of all the items of S k except P(S k). The tid denotes
the sequence identifier of the latest sequence that is a super-
sequence of the sequential pattern. The tid r denotes the
sequence identifier of the latest sequence whose remaining-
sequence is a super-sequence of the sequential pattern. The
other components are the same as those in the general lexi-
cographic tree structure.

When a new sequence S k is generated in the current
data stream Dk, the following operations, except a selec-
tion operation of frequent sequential patterns and a force-
pruning operation, are performed in sequence to reflect the

1740
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

information of the new sequence S k on a monitoring tree.
A selection operation of frequent sequential patterns is per-
formed only when the up-to-date set of frequent sequential
patterns in the current data stream is requested, and a force-
pruning operation is usually performed periodically or when
the current size of a monitoring tree reaches a pre-defined
threshold value.

• Getting the time-interval weight: The time-interval
weight of the sequence S k is computed from the time-
intervals of data elements in the sequence.
• Parameter updating: The total number of sequences in

the current data stream is updated.
• Count updating & Sequential pattern insertion: For

each sequential pattern s that appears in the new se-
quence S k, if its corresponding node with an entry (cnt,
cnt r, tid, tid r) is in the monitoring tree and it is not
traversed yet by the new sequence S k, the cnt and tid
of the entry are updated subsequently. If the sequential
pattern s is a subsequence of the remaining-sequence
R(S k) of the new sequence S k and the remaining count
of the entry is not updated yet by the new sequence
S k, i.e., tid r < k, the cnt r and tid r of the entry are
subsequently updated. When the updated support of a
sequential pattern in the monitoring tree becomes less
than Suppsig, the sequential pattern is regarded as an
insignificant one, and it is pruned from the monitoring
tree. On the other hand, for each sequential pattern s
that appears in the new sequence S k, if its correspond-
ing node is not in the monitoring tree but s is a signifi-
cant sequential pattern, its corresponding node with an
entry (cnt, cnt r, tid, tid r) is inserted to the monitoring
tree. The values of cnt, cnt r, tid and tid r in the entry
are initialized as described in [6].
• Frequent sequential pattern selection: All the cur-

rently frequent sequential patterns in the monitoring
tree, whose current supports are no less than minSupp,
are found by traversing all the paths of the monitoring
tree as in the conventional mining methods based on a
lexicographic tree structure.
• Force-pruning: All the insignificant sequential pat-

terns in a monitoring tree can be pruned together by
examining the current support of every sequential pat-
tern in the monitoring tree.

5. Performance Evaluation

To evaluate the effectiveness and efficiency of the proposed
method, five data sets listed in Table 3 are used in this pa-
per, and each data set is derived from a corresponding base
data set generated by the IBM data generator [15]. The IBM
data generator is widely used to generate data sets for perfor-
mance evaluation of a sequential pattern mining algorithm
in the fields of data mining and information systems. In all
our experiments, the sequences of each data set are looked
up one by one in sequence to simulate the environment of
an online data stream.

Table 3 Data sets.

The base data sets generated by the IBM data gener-
ator do not have any generation time information. There-
fore, to use the data sets in the experiments for the proposed
TWDS method, a corresponding generation time has to be
assigned to each data element in the data sets. For this pur-
pose, several approaches such as the approach using a prob-
ability distribution function and that using a randomization
function can be considered. However, there is little relation-
ship between the type of the approach and the performance
of the proposed method, and the randomization function ap-
proach was used in this paper. For data set SDS 1M, the
difference in generation time between two successive data
elements in a sequence is in the range of 0–1000 millisec-
onds. The data set SDS AB is composed of two consecu-
tive subparts part A and part B. Part A is a set of sequences
generated by a set of items set A, and part B is a set of
sequences generated by a set of items set B. The two sub-
parts are generated by the same method described in [15],
but there is no common item between set A and set B. The
time-interval between two successive data elements in a se-
quence is in the range of 0–1000 milliseconds in part A,
while it is in the range of 2000–3000 milliseconds in part B.
That is, the sequences in part B have relatively larger time-
intervals than those in part A. The data sets SDS 100K 1,
SDS 100K 2 and SDS 100K 3 are derived from the same
base data set, but they have different time-intervals between
two successive data elements in a sequence. In other words,
the time-intervals between two successive data elements in
a sequence are in the range of 0–1000 milliseconds, 1000–
2000 milliseconds, and 2000–3000 milliseconds, respec-
tively. Details of each data set such as a base data set and
the range of a time-interval are listed in Table 3. For each
base data set, five numbers denote the number of customers
in the data set (D, in K), the average number of transactions
per customer (C), the average number of items per trans-
action (T), the average length of maximal sequences (S),
and the average length of transactions within the maximal
sequences (I), respectively.

All the experiments were performed on a 2.8 GHz Pen-
tium machine with 1 GB main memory running on Linux,
and all the programs were implemented in C. In all the ex-
periments, a significant support Suppsig was set to 30% of
a support threshold minSupp, and a force-pruning operation
was performed in every 1000 sequences.

Figures 4 and 5 show the number of sequential pat-

CHANG and PARK: FINDING INTERESTING SEQUENTIAL PATTERNS
1741

Fig. 4 Number of patterns in function of δ (u = 500, minSupp = 0.001).

Fig. 5 Number of patterns in function of u (δ = 0.7, minSupp = 0.001).

terns for the data set SDS 1M to compare the performance
of the TWDS method by varying the values of its parame-
ters. In this experiment, a support threshold was set to 0.001.
The series of generated sequences is divided into 5 inter-
vals, each of which consists of 200000 sequences. Figure 4
shows the number of sequential patterns in function of δ for
each interval. The line named NoWeight shows the case of
δ = 1.0 which denotes the number of sequential patterns
found by the eISeq method. In this case, all the sequences
in a sequence data stream have the same weight regardless
of the time-intervals of data elements in each sequence, so
it denotes the number of sequential patterns found in min-
ing sequential patterns based on simple support counting.
Among the sequential patterns found in mining sequential
patterns based on simple support counting, several sequen-
tial patterns with relatively large time-intervals were not
found in a resulting set found by the TWDS method. There-
fore, the number of sequential patterns found in the case of
δ < 1 is less than that in the case of NoWeight. Moreover,
the number of patterns decreases as the value of δ becomes
smaller. Figure 5 shows the number of sequential patterns in
function of u. Similarly in the case of δ in Fig. 4, the num-
ber of patterns decreases as the value of u becomes smaller
because it is more sensitive to the increase of a time-interval
as the values of δ or u become smaller.

Figure 6 shows the changes in the number of sequential
patterns for the weighting functions presented in Sect. 4.1.
The values of minSupp and u are set to 0.001 and 500 mil-
liseconds, respectively. The reduction rate of a time-interval
weight with respect to the increase of a time-interval is rel-
atively large in general-scale weighting, compared to log-

Fig. 6 Comparison of weighting functions (u = 500, minSupp = 0.001).

Fig. 7 Number of patterns derived from part B of SDS AB (u = 500,
minSupp = 0.0005).

scale weighting. That is, when the general-scale weight-
ing function is applied, there may be a more number of se-
quential patterns considered as less interesting because of
larger time-intervals, compared to the case when the log-
scale weighting function is applied. Consequently, as shown
in this figure, the number of patterns in the case of general-
scale weighting is less than that in the case of log-scale
weighting.

To verify the adaptability of the TWDS method for the
change of time-intervals in a sequence data stream, the data
set SDS AB is used which can simulate the change of time-
intervals in a sequence data stream over time. In this ex-
periment, the values of minSupp and u are set to 0.0005
and 500 milliseconds, respectively. The series of generated
sequences in SDS AB is divided into 10 intervals, each of
which consists of 50000 sequences. Figure 7 shows the
number of sequential patterns derived from part B of the
data set whose time-intervals between two successive data
elements are in the range of 2000–3000 milliseconds, and it
shows last five intervals. As shown in this figure, in the line
named NoWeight which denotes the number of sequential
patterns found by the eISeq method, the number of sequen-
tial patterns derived from part B greatly increases as the se-
quences are continuously generated despite the large time-
intervals in part B. However, in the other cases when the
values of δ are less than 1.0, the number of sequential pat-
terns derived from part B is much less than that in the case
of δ = 1.0, even though they are increased as the sequences
are continuously generated. The sequences in part B have
relatively large time-intervals between two successive data

1742
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 8 Number of patterns for various data sets with different time-
intervals (u = 1000, minSupp = 0.001).

elements; therefore, the sequential patterns appearing in the
sequences have a relatively smaller time-interval weighted
support, and many of them cannot be found in the resulting
set of time-interval weighted sequential patterns.

Figure 8 shows the number of sequential patterns found
by the TWDS method on three data sets which are gener-
ated by the same base data set but the time-intervals between
two successive data elements are in different ranges for one
another. For this experiment, three data sets SDS 100K 1,
SDS 100K 2, and SDS 100K 3 are used, and the values of
minSupp and u are set to 0.001 and 1000 milliseconds, re-
spectively. In this figure, the number of sequential patterns
for each data set and each value of δ is found when all the
sequences in the data set are processed, i.e., right after the
100000th sequence is processed. For the same value of
δ, more number of sequential patterns are found in the re-
sulting set of time-interval weighted sequential patterns on
SDS 100K 1 since its time-intervals between two successive
data elements are smaller than those of the other data sets.
For the same data set, as described in Fig. 4, the number of
sequential patterns in its resulting set decreases as the value
of δ decreases.

To verify the basic performance of the TWDS method,
its memory usage and processing time per sequence in
its mining process are compared with those of the eISeq
method that is one of the conventional mining methods for
finding sequential patterns over data streams. For this pur-
pose, the data set SDS 1M is used, and the values of min-
Supp and u are set to 0.001 and 500 milliseconds, respec-
tively. The series of generated sequences is divided into 5
intervals, each of which consists of 200000 sequences.

Figure 9 (a) shows the memory usage of the proposed
method. For each interval, the memory usage is repre-
sented by the maximum usage in the interval. Since only the
significant sequential patterns are maintained by delayed-
insertion and pruning operations, the memory usage re-
mains almost the same although new sequences are con-
tinuously generated. On the other hand, for mining time-
interval weighted sequential patterns by the TWDS method
over a sequence data stream TiDSk, the smaller the value
of δ, the smaller the weight of each sequence in the data
stream. Therefore, for a sequence data stream, the value of
|TiDS|k decreases as the value of δ decreases, and then there

Fig. 9 Basic performance of the TWDS method (u = 500, minSupp =
0.001).

emerges a greater possibility that the sequential pattern that
appears in a small number of sequences can be a signifi-
cant sequential pattern. Consequently, as the value of δ de-
creases, the number of significant sequential patterns to be
maintained in memory increases, i.e., the memory usage of
the TWDS method increases. For the first interval, the value
of |TiDS|k is much less than those in the other intervals, so
that the memory usage in the interval is greater than those in
the other intervals for the same reason as aforementioned.

Figure 9 (b) shows the average processing time per se-
quence of the proposed method in each interval. The pro-
cessing time per sequence is measured by a period from the
generation of a new sequence to the end of a sequence in-
sertion operation. As shown in this figure, the average pro-
cessing time is less than 10 milliseconds. As the value of
δ decreases, the memory usage of the TWDS method in-
creases as shown in Fig. 9 (a), and then the processing time
required to traverse a monitoring tree increases to estimate
the weighted support of a new sequential pattern. As a re-
sult, the average processing time increases.

As shown in Fig. 9, the memory usage and the process-
ing time of the TWDS method increase a little compared
with those of the eISeq method. However, they remain small
even if the target data stream is continuously expanded, so
that it can get the mining result for mining data streams with
a small memory in a very short time. Consequently, it can
be useful for mining data streams.

CHANG and PARK: FINDING INTERESTING SEQUENTIAL PATTERNS
1743

6. Conclusions

For a sequence or a sequential pattern, the generation times
and time-intervals are as important as the generation or-
der of data elements. In sequential pattern mining, there-
fore, the time-interval information of data elements can help
to get more valuable sequential patterns. To obtain more
valuable sequential patterns, this paper analyzed the weight
of a sequence based on the time-intervals between its data
elements, differentiating the importance, i.e., the interest-
ingness, of a sequence as well as that of a sequential pat-
tern. Through this mechanism, more interesting sequential
patterns can be selectively found in mining sequence data
stream.

To develop a novel interesting sequential pattern of
a time-interval weighted sequential pattern for mining se-
quence data streams, this paper presented a new technique to
get the weight of a sequence in a sequence data stream. The
weight is computed from the time-intervals of the items in
the sequence. After defining the novel interesting sequential
pattern of a time-interval weighted sequential pattern based
on the weight of a sequence, a new framework to find the
patterns in a sequence data stream was presented. In ad-
dition, a mining method for finding time-interval weighted
sequential patterns over a sequence data stream was devel-
oped which can find its up-to-date mining result in a short
time with a small memory over the sequence data stream.

Recently, various application fields generate data in the
form of data streams. Especially, the time-interval sequence
data streams are common in such daily activities as retailing,
traveling, and E-commerce. Continuously generated trans-
action records of customers can be viewed as sequence data
streams in the retailing business. In the field of a web-based
service such as E-commerce, the member records and web-
access logs can be viewed as sequence data streams. Conse-
quently, the time-interval weighted sequential patterns pre-
sented in this paper can be effectively used in various pro-
fessional fields, and the information obtained by the mining
process can offer great benefits to the corporations and indi-
viduals related to the fields.

A promising direction for future research to make the
proposed term and framework more useful is the optimal
selection of parameters in the time-interval weighting func-
tion.

Acknowledgements

We would like to thank the editor of the ‘IEICE Trans. on
Inf. & Syst.’ and anonymous reviewers for their constructive
comments on an earlier version of this paper. This research
was partially supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT & Future Planning
(No. 2012R1A1B4000651), and was partially supported by
Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry

of Education, Science Technology(NRF-2011-0025300).

References

[1] J. Kang, J.F. Naughton, and S.D. Viglas, “Evaluating window joins
over unbounded streams,” Proc. 19th Int’l Conf. on Data Engineer-
ing, pp.341–352, 2003

[2] M. Garofalakis, J. Gehrke, and R. Rastogi, “Querying and mining
data streams: You only get one look,” The Tutorial Notes of the 28th
Int’l Conf. on Very Large Data Bases, 2002.

[3] J.H. Chang and W.S. Lee, “A sliding window method for finding
recently frequent itemsets over online data streams,” J. Information
Science and Engineering, vol.20, pp.753–762, 2004.

[4] G. Mao, X. Wu, X. Zhu, G. Chen, and C. Liu, “Mining maximal
frequent itemsets from data streams,” J. Inf. Sci., vol.33, pp.251–
262, 2007.

[5] J.X. Yu, Z. Chong, H. Lu, Z. Zhang, and A. Zhou, “A false negative
approach to mining frequent itemsets from high speed transactional
data streams,” Inf. Sci., vol.176, pp.1986–2015, 2006.

[6] J.H. Chang and W.S. Lee, “Efficient mining method for retrieving
sequential patterns over online data streams,” J. Inf. Sci., vol.31,
pp.420–432, 2005.

[7] Q. Huang and W. Ouyang, “Mining sequential patterns in data
streams,” Proc. 6th Int’l Symposium on Neural Networks, pp.865–
874, 2009.

[8] C.-H. Lin, D.-Y. Chiu, Y.-H. Wu, and A.L.P. Chen, “Mining frequent
itemsets from data streams with a time-sensitive sliding window,”
Proc. 5th SIAM Int’l Conf. on Data Mining, pp.68–79, 2005.

[9] S. Lo, “Binary prediction based on weighted sequential mining
method,” Proc. 2005 Int’l Conf. on Web Intelligence, pp.755–761,
2005.

[10] U. Yun, “WIS: Weighted interesting sequential pattern mining with a
similar level of support and/or weight,” ETRI J., vol.29, pp.336–352
2007.

[11] U. Yun, “A new framework for detecting weighted sequential pat-
terns in large sequence databases,” Knowledge-Based Systems,
vol.21, pp.110–122, 2008.

[12] J.H. Chang, “Mining weighted sequential patterns in a sequence
database with a time-interval weight,” Knowledge-Based Systems,
vol.24, pp.1–9, 2011.

[13] Y.-L. Chen, M.-C. Chiang, and M.-T. Ko, “Discovering fuzzy time-
interval sequential patterns in sequence databases,” IEEE Trans.
Syst. Man Cybern. B, Cybern., vol.35, pp.959–972, 2005.

[14] Y.-L. Chen and T.C.-H. Huang, “Discovering time-interval sequen-
tial patterns in sequence databases,” Expert Systems with Applica-
tions, vol.25, pp.343–354, 2003.

[15] R. Agrawal and R. Srikant, “Mining sequential patterns,” Proc. 1995
Int’l Conf. on Data Engineering, pp.3–14, 1995.

[16] Y.-H. Hu, Y.-L. Chen, and K. Tang, “Mining sequential patterns in
B2B environment,” J. Inf. Sci., vol.35, pp.677–694, 2009.

[17] M.-Y. Lin, S.-C. Hsueh, and C.-W. Chang, “Fast discovery of se-
quential patterns in large databases using effective time-indexing,”
Inf. Sci., vol.178, pp.4228–4245, 2008.

[18] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U.
Dayal, and M.-C.- Hsu, “Mining sequential patterns by pattern-
growth: The prefixspan approach,” IEEE Trans. Knowl. Data Eng.,
vol.16, pp.1424–1440, 2004.

[19] M.J. Zaki, “SPADE: An efficient algorithm for mining frequent se-
quences,” Mach. Learn., vol.42, pp.31–60, 2001.

[20] J. Pei, J. Han and W. Wang, “Mining sequential patterns with con-
straints in large databases,” Proc. 2002 ACM Int’l Conf. on Informa-
tion and Knowledge Management, pp.18–25, 2002.

[21] X. Ji, J. Bailey and G. Dong, “Mining minimal distinguishing sub-
sequence patterns with gap constraints,” Knowl. Inf. Syst., vol.11,
pp.259–296, 2007.

[22] R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad, “A tree projection
algorithm for generation of frequent itemsets,” J. Parallel Distrib.

1744
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Comput., vol.61, pp.350–371, 2001.

Joong Hyuk Chang received the B.S. and
M.S. degree in Computer science from Yonsei
University, Seoul, Korea, in 1996 and 1998, and
also received the Ph.D. degree in Computer Sci-
ence from Yonsei University in 2005. He was
a post-doctoral research associate in the Depart-
ment of Computer Science at the University of
Illinois at Urbana-Champaign. He is currently a
professor of Department of Computer & Infor-
mation Technology at Daegu University, Daegu,
Korea. He has been researching into mining and

processing over data streams in-cluding Web data stream and ubiquitous
data stream, anomaly detection system, data mining and knowledge in
large-scale data sets, bioinformatics and database systems.

Nam Hun Park received the B.S., M.S. and
Ph.D. degree in Computer Science from Yon-
sei University, Seoul, Korea, in 2000, 2002 and
2007. He was a post-Ph.D. at the Department
of Computer Science, Worcester Polytech Insti-
tute, Worcester, MA. He is currently a professor
of Department of Computer Science at Anyang
University, Korea. His current interests include
mining data streams.

