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PAPER

Extreme Maximum Margin Clustering

Chen ZHANG†a), ShiXiong XIA†, Bing LIU†, Nonmembers, and Lei ZHANG†, Member

SUMMARY Maximum margin clustering (MMC) is a newly proposed
clustering method that extends the large-margin computation of support
vector machine (SVM) to unsupervised learning. Traditionally, MMC is
formulated as a nonconvex integer programming problem which makes it
difficult to solve. Several methods rely on reformulating and relaxing the
nonconvex optimization problem as semidefinite programming (SDP) or
second-order cone program (SOCP), which are computationally expensive
and have difficulty handling large-scale data sets. In linear cases, by mak-
ing use of the constrained concave-convex procedure (CCCP) and cutting
plane algorithm, several MMC methods take linear time to converge to a
local optimum, but in nonlinear cases, time complexity is still high. Since
extreme learning machine (ELM) has achieved similar generalization per-
formance at much faster learning speed than traditional SVM and LS-SVM,
we propose an extreme maximum margin clustering (EMMC) algorithm
based on ELM. It can perform well in nonlinear cases. Moreover, the ker-
nel parameters of EMMC need not be tuned by means of random feature
mappings. Experimental results on several real-world data sets show that
EMMC performs better than traditional MMC methods, especially in han-
dling large-scale data sets.
key words: maximum margin clustering, unsupervised learning, extreme
learning machine (ELM), random feature mapping

1. Introduction

In machine learning, a recent trend is to incorporate super-
vised learning with unsupervised learning effectively, i.e.
semi-supervised classification, which is actually a super-
vised method based on clustering or manifold assumptions.
More recently, maximum margin clustering (MMC) is a
newly proposed clustering method by means of supervised
learning method. Different from traditional clustering meth-
ods, such as the k-means clustering [1], mixture models [2],
and spectral clustering [3], [4], the key idea of MMC is to
extend the maximum margin principle of support vector ma-
chines (SVM) to the unsupervised learning scenario. Hence
the MMC technique often obtains more accurate results than
conventional clustering methods.

However, unlike supervised large margin learning
methods which can be formulated as a convex optimiza-
tion problem, MMC is much more computationally diffi-
cult. As the labels of samples are unknown, optimization
over all possible labeling leads to a hard, non-convex integer
optimization problem. Consequently, different optimization
techniques have been used to relax the original problem. Xu
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et al. [5] reformulate it as a semidenite programming (SDP)
problem, which could be efficiently solved using standard
SDP solvers such as SeDuMi [6] and SDPT3 [7]. Valiza-
degan and Jin [8] further proposed the generalized MMC
(GMMC) algorithm which reduces the number of parame-
ters in the SDP formulation form n2 to n, where n is the num-
ber of samples. This makes MMC more practical in deal-
ing with some data sets. Unfortunately, due to the fact that
solving SDP is still computationally expensive, the worst-
case time complexity of MMC and GMMC is O(n6.5) and
O(n4.5), respectively. Thus, MMC and GMMC can only
handle very small data sets containing several hundreds of
samples. Zhang et al. [9] utilized the alternative optimiza-
tion techniques to solve the MMC problem, in which the
MMC result is obtained by solving a series of SVM or Sup-
port Vector Regression (SVR) training problems, but it is
still hard to handle large-scale data sets. In real-world ap-
plications such as image segmentation and text mining, the
data set usually contains a large amount of data samples.
Therefore, how to make MMC applicable to a large-scale
data set is a very challenging and valuable research topic.

Recently, ELM has been attracting considerable inter-
est from more and more researchers [10]–[13]. The idea
of ELM is actually the same to that of the random vector
functional-link (RVFL) network [14], [15] where the hidden
neurons are randomly selected and only the weights of the
output layer need to be trained. Hence, ELM can be re-
garded as the single-hidden-layer RVFL network. Igelnik
and Pao [16] proved that the RVFL network is an efficient
universal approximator with the rate of approximation er-
ror converging to zero of order O(C/

√
n), where n is num-

ber of basis functions and with C independent of n. Tyukin
et al. [17] proposed that the domain of parameters in RVFL
should be bounded, and thus one can assume that basis func-
tions have compact support to mitigate this restriction. On
the basis of this conclusion, Huang et al. [18], [19] proved
that almost all nonlinear piecewise continuous functions
used as feature mapping can make ELM satisfy universal
approximation capability, but the convergent rate of approx-
imation error in ELM is hard to estimate. It should also be
noticed that approximation error is not at all guaranteed to
be close to zero for every randomly chosen set of hidden
nodes. Recently, Romero [20] showed that support vector
sequential feedforward neural networks have better gener-
alization performance than error minimized extreme learn-
ing machines, which build single-hidden-layer feedforward
networks sequentially. Fortunately, the relatively fast con-
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vergence rate and small approximation error can be guaran-
teed if the number of hidden nodes is large enough, which
is meaningful to large-scale data sets. Like the method used
in [21], [22], ELM also applies the zero-order regularization
to improve the generalization capacity. Thus, the regulariza-
tion form of ELM aims to reach not only the smallest train-
ing error but also the smallest norm of output weights, which
embodies the structural risk minimization principle. In ad-
dition, ELM provides a unified solution to different practical
applications (e.g., regression, binary, and multiclass classi-
fications), while different variants of LS-SVM and SVM are
required for different types of applications, so the applica-
tion of ELM is much easier.

In this paper, we propose an extreme maximum margin
clustering (EMMC) method based on ELM. Firstly, we re-
formulate the MMC problem based on ELM as a nonconvex
optimization problem, and then perform alternating opti-
mization directly on the constructed nonconvex problem in-
stead of relaxing it. Our key modification is to replace SVM
or SVR by ELM with the square loss, which can not only
speed up the MMC algorithm but also discourage premature
convergence. Thus, compared to existing approaches, the
proposed EMMC in fact involves only a sequence of ELM
training and the resultant implementation is fast and scales
well. Experimental evaluations on several real-world data
sets show that EMMC performs better than existing MMC
methods.

The rest of this paper is organized as follows. In Sect. 2,
we briefly introduce some MMC algorithms. In Sect. 3, we
briefly introduce the ELM model. The two-class and mul-
ticlass EMMC algorithm are presented in detail in Sect. 4.
Experimental results on several real-world data sets are pro-
vided in Sect. 5, followed by the conclusions in Sect. 6. In
order to avoid confusion, we give a list of the main notations
used in this paper in Table 1.

Table 1 Notations.

Notation Explanation
R

d The input d-dimensional Euclidean space
R

d
+ The set of nonnegative vectors in Rd.

X X = [x1, . . . , xn] ∈ Rd×n is the training data
m matrix.
y The number of classes that the samples
Y belong to.

y = (y1, . . . , yn) ∈ {−1,+1}n is the 0-1 label vector.
Y = (y1, . . . , yn) ∈ Rm×n is the 0-1 label matrix.

A � 0 yi ∈ Rm is the lable vector of xi,
F(·) and all componets of yi are 0 s except one being 1.

Matrix A is symmetric and positive semidefinite.
k(x, y) F(x) = ( f1(x), . . . , fm(x))T is the discriminative

K vector function. The index of the class which
B x belongs to is that of the component with the max-

imum value.
Kernel function of variables x and y

‖ ‖K Kernel matrix K =
{
k
(
xi, x j

)}
∈ Rn×n

< >K B = (β1, . . . , βn) ∈ Rn. Its columns are the coef-
ficients of the kernel function to represent the dis-
criminative function F(·).
norm in the Hilbert space HK

Inner product in the Hilbert space HK

2. Maximum Margin Clustering

As stated in the introduction, MMC extends the maximum
margin principle of SVM to the unsupervised scenario,
which labels the samples by solving the following optimiza-
tion problem:

miny∈{−1,+1}n minw,b,ξi
1
2
‖w‖2 +C

n∑
i

ξi (1)

s.t. yi

(
wTϕ (xi) + b

)
≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , n,

where ϕ(·) is a nonlinear mapping induced by the kernel
function k, xi ∈ Rd, εi(1 ≤ i ≤ n) is the slack variable
for the errors, and C > 0 is a tradeoff parameter between the
complexity and fitness of the decision function f (x).

It can be observed that the above optimization problem
has a trivially “optimal” solution with infinite margin, which
is to assign all patterns to the same class. Moreover, an-
other undesirable solution is to separate a very small group
of samples or even a single outlier from the rest of data. To
avoid these trivial solutions, Xu et al. [5] introduced a class
balance constraint on y

−l ≤ eTy ≤ l (2)

where l ≥ 0 is a user-defined constant controlling the class
imbalance and e is the all-one vector.

In order to get the solution of problem (1) in reasonable
time, Xu et al. [5] proposed to make several relaxations, in-
cluding relaxing the labeling vector y to take continuous val-
ues, relaxing yyT to a positive-semidefinite matrix M with its
diagonal elements all set to 1 and setting the bias term b in
the decision function to 0, which leads to a SDP problem. In
GMMC [8], the number of parameters in the SDP is reduced
from n2 to n and the bias term b may not be 0. Considering
the high computational cost of MMC and GMMC, Zhang
et al. [9] proposed a simple alternative optimization tech-
nique iterative support vector regression (IterSVR), which
is more efficient than the SDP-based techniques. However,
both GMMC and IterSVR can only tackle two-class prob-
lems. Wang et al. [23] propose a cutting plane maximum
margin clustering (CPMMC) algorithm. It first decomposes
the nonconvex MMC problem into a series of convex sub-
problems by making use of the constrained concave-convex
procedure. Then for each subproblem, it adopts the cut-
ting plane algorithm to solve it. In the linear case, the
CPMMC algorithm takes O(sn) time to converge, where s
is the sparsity of the data set, i.e., the average number of
nonzero features of the data samples. But in the nonlinear
case, CPMMC takes O(T1T2n2) time to compute the most
violated constraint, where T1 is the number of CCCP iter-
ations, T2 is the number of cutting plane iterations. These
MMC methods cannot handle large-scale data sets and is
often not viable in practice.
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3. ELM Model

The output function of ELM for generalized SLFNs in one
output node case is

fL (x) =
L∑

i=1

βihi (x) = h (x)β (3)

where β = [β1, . . . , βL]T is the vector of the output weights
between the hidden layer of L nodes and the output node,
and h(x) = [h1(x), . . . , hL(x)] is the output (row) vector of
the hidden layer with respect to the input x. In fact, h(x) ac-
tually maps the data from the d-dimensional input space to
the L-dimensional hidden-layer feature space H. By impos-
ing a penalty on the norm of β, ELM minimizes the training
error as well as the norm of the output weights [19], [24]

Minimize : ‖Hβ − T‖2 and ‖β‖, (4)

where H is the hidden-layer output matrix, denoted by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h (x1)
h (x2)
...

h (xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 (x1) . . . hL (x1)
h1 (x2) . . . hL (x2)
...

...
...

h1 (xn) . . . hL (xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

As with SVM for the binary classification, to minimize the
norm of the output weights ‖β‖ is actually to maximize
the distance of the separating margins of the two different
classes in ELM feature space: 2/‖β‖. The norm actually
controls the complexity of the function in the ambient space.

If a feature mapping h(x) is unknown to users, the out-
put function of the ELM classifier is

f (x) = h (x) HT

(
I
C
+ HHT

)−1

T (6)

= [k (x, x1) , . . . , k (x, xn)]

(
I
C
+ M

)−1

T

where M = HHT , m(i, j) = k(xi, x j) and k(x, y) is some
kernel function. If a feature mapping h(x) is known, we
have

h (x) = [G (a1, b1, x) , . . . ,G(aL, bL, x)] (7)

where G(a, b, x) is a nonlinear piecewise continuous func-
tion satisfying ELM universal approximation capability
theorems [25], [26], such as the Sigmoid function 1/(1 +
exp(−(a · x+b))) and the Gaussian function exp(−b‖x−a‖2),
{(ai, bi)}Li=1 are randomly generated according to any contin-
uous probability distribution. The output function of ELM
classifier is

f (x) = h (x) HT

(
I
C
+ HHT

)−1

(8)

or

f (x) = h (x)

(
I
C
+ HT H

)−1

HTT (9)

where T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11 . . . t1m

t21 . . . t2m
...

...
...

tn1 . . . tnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and m is the number of classes.

It can also be noted that the solution of ELM does not
include the bias term b in SVM, which will simplify the
computation of ELM training. Meanwhile, if yi(1 ≤ i ≤ n)
equals to +1 or −1 in ELM, then V( f , xi, yi) = ( fi − yi)2 =

(1− fiyi)2. Thus, to minimize the norm of the output weights
‖β‖ is actually to maximize the distance of the separating
margins of the two different classes in ELM feature space.
Consequently, we can incorporate ELM into MMC and en-
hance the performance of MMC by means of ELM.

4. Two-Class and Multiclass EMMC Algorithm

In this section, we will firstly reformulate the MMC problem
based on ELM with single output, and then solve the con-
structed nonconvex MMC problem by means of alternating
optimization. Computationally, this allows the nonconvex
problem to be formulated as a sequence of ELM training, so
the proposed algorithm is fast and effective. Finally, we ex-
tend EMMC with single output to the multioutputs scenario.

4.1 EMMC Based on ELM with Single Output

Since ELM can approximate any target continuous func-
tions, the output of the ELM classifier h(x)β can be close
to the class labels in the corresponding regions as possible.
Thus the classification problem for the ELM with a single-
output node can be formulated as [13]:

minβ,ξi
1
2
‖β‖2 + C

1
2

n∑
i=1

ξi
2 (10)

s.t. h (xi)β = ti − ξi, i = 1, . . . , n,

where h(x) = [h1(x), . . . , hL(x)] is the output (row) vector
of the hidden layer with respect to the input x. Thus the
corresponding MMC problem is

min
t,β,ξi

1
2
‖β‖2 + C

1
2

n∑
i=1

ξi
2 (11)

s.t. h(xi)β = ti − ξi, i = 1, . . . , n,

where ti ∈ {±1} for two-class clustering with the class
balance constraint −l ≤ ∑n

i=1 ti ≤ l or ti ∈ {1, . . . ,m}
for m-classes clustering with the class balance constraint
−l ≤ Np − Nq ≤ l, where m is the number of classes,
p, q ∈ {1, . . . ,m}, Np and Nq are the number of samples in
the pth and qth class, respectively.

A natural way to solve (15) is to use a simple iterative
approach based on alternating optimization [9]. This is sim-
ilar to the Iterative SVR proposed in [27]. First, we fix t and
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minimize (15) w.r.t. β, which is just a standard ELM train-
ing. Then, we fix β and minimize (15) w.r.t. t. Specifically,
we discuss the following problem without the class balance
constraint.

min
n∑

i=1

(h(xi)β − ti)
2 (12)

s.t. ti ∈ {±1} for two-class clustering

or ti ∈ {1, . . . ,m} for m-classes clustering.

i = 1, . . . , n.

As shown by the following proposition, the problem
(16) can be easily solved without the use of any optimization
solver.
Proposition 1: For two-class clustering, the optimal strat-
egy to determine ti’s in (16) is to assign all ti’s as −1 for
those with h(xi)β ≤ 0, and assign ti’s as 1 for those with
h(xi)β > 0; For muticlass clustering, the optimal strategy to
determine ti’s in (16) is to assign all ti’s as i for those with
i − 1 < h(xi)β ≤ i, i ∈ {1, . . . ,m}, where m is the number of
classes.

The proof of Proposition 1 is similar to that of the Iter-
ative SVR proposed in [27], we don’t discuss it further.

4.2 EMMC Based on ELM with Multioutputs

If ELM has multioutput nodes, an m-class classifier is cor-
responding to m output nodes. If the original class label
is l, the expected output vector of the m output nodes is

ti = [0, . . . , 0,
l
1, 0, . . . , 0]T. That is, the lth element of

ti = [ti1, . . . , tim]T is one, while the rest of the elements are
set to zero. The classification problem for ELM with multi-
output nodes can be formulated as [13]

minβ,ξi
1
2
‖β‖2 +C

1
2

n∑
i=1

ξi
2 (13)

s.t. h(xi)β = tT
i − ξT

i , i = 1, . . . , n

where ξi = [ξi,1, . . . , ξi,m]T is the training error vector of the
m output nodes with respect to the training sample xi. The
corresponding MMC problem is

mint,β,ξi
1
2
‖β‖2 +C

1
2

n∑
i

ξ2
i (14)

s.t. h(xi)β = tT
i − ξT

i , i = 1, . . . , n

ti ∈ {[ti1, . . . , tim]T} the wth element is one and the rest of
the elements are set to zero, w ∈ {1, . . . ,m}. where m is the
number of classes, −l ≤ Np − Nq ≤ l, p, q ∈ {1, . . . ,m}, Np

and Nq are the number of samples in the pth and qth class,
respectively.

Solving Eq. (18) by the alternative optimization
method and enforcing the class balance constraint are simi-
lar to those of EMMC based on ELM with the single out-
put. The difference is that the output function of ELM

with multioutputs is the function vector, i.e., F(x) =
[ f1(x), . . . , fm(x)]T , Thus we first compute h(xi)β, and then
assign the labels according to the distance between h(xi)β
and ti. Finally, we sort the maxi f (xi)(1 ≤ i ≤ m) and reas-
sign the labels to enforce the class balance constraint.

With Proposition 1, we proceed to enforce the class
balance constraint as follows. First, we sort f (xi) and obtain
the number of samples in each class. For two-class cluster-
ing, let N+ and N− denote the number of positive and neg-
ative samples, respectively. If N+ − N− > l, we change the
labels of the first (N+ − (n + l)/2) smallest positive sam-
ples; if N+ − N− < −l, we change the labels of the last
(N− − (n + l)/2) biggest negative samples. For multiclass
clustering, we compute the difference value between Ni and
Nj (i � j), where Ni denote the number of samples in the
ith class, and then find the two class p and q corresponding
to the biggest difference value. If Np − Nq > l and p > q,
the labels of the first (Np −Nq − l)/2 smallest samples in pth
class are changed from p to q. If Np − Nq > l and p < q,
the labels of the last (Np − Nq − l)/2 biggest samples in pth
class are changed from p to q. If Np − Nq < −l and p > q,
the labels of the last (Nq − Np − l)/2 biggest samples in qth
class are changed from q to p. If Np − Nq < −l and p < q,
the labels of the first (Np −Nq − l)/2 smallest samples in qth
class are changed from q to p. This procedure is repeated
until the class balance constraint is satisfied.

4.3 EMMC Algorithm

For the sake of clarity, the complete algorithm is summa-
rized in Algorithm 1. In each iteration, the training of ELM
takes O(L2n + L3) time and the computing and sorting of
h(xi)β takes O(n log n + nL) time, where L(L 	 n) is the
number of hidden nodes in ELM. Thus, the iteration pro-
cess of EMMC takes only (n log n + L2n) time. Moreover,
the number of iterations in EMMC is usually small (about
fifteen in practice).

Algorithm 1: EMMC algorithm
1:Initialize the labels t (e.g., by using a simple clustering algo-

rithm such as k-means).
2:For two-class clustering, fix t, where ti ∈ {±1} and perform

training of ELM with single output. For muticlass clustering,
fix t, where ti ∈ {1, . . . ,m} and perform training of ELM with
single output, or fix t, where ti ∈ [ti1, . . . , tim]T and perform
training of ELM with multioutputs.

3:For two-class clustering, assign all ti’s as −1 for those with
h(xi)β � 0, and assign ti’s as 1 for those with h(xi)β > 0. For
muticlass clustering, assign all ti’s as i for those with i − 1 <
h(xi)β � i, i ∈ {1, . . . ,m}, where m is the number of classes.

4:Check the class balance constraint, if it is violated, sort the
h(xi)β’s and reassign the labels as described above.

5:Repeat steps 2–4 until convergence.

Hence, EMMC is computationally efficient. It can be noted
that EMMC keeps updating all labels. Thus, EMMC can
avoid premature convergence by using the square loss [9].
Meanwhile, by enforcing the class balance constraint, it can
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handle imbalanced data. For multiclass clustering, ELM
with single output or multioutputs can be used in each iter-
ation. For both cases, the hidden-layer matrix H(9) remains
the same, and the size of H is only decided by the number of
training samples and hidden nodes, which is irrelevant to the
number of output nodes (number of classes). Hence, EMMC
with single output has comparable performance to that based
on multioutputs, which will be validated in Sect. 5.

5. Experiments

In this section, we will validate the performance of the pro-
posed EMMC algorithm on a number of real-world data
sets. Specifically, we will analyze how the performance
of the proposed algorithm relies on the k-means algorithm.
Furthermore, we will study the sensitivity of EMMC to L,
both in accuracy and efficiency. All the experiments are per-
formed with MATLAB 7.0.1 environment on a 3.10 GHZ
Intel CoreTM i5-2400 with 3-GB RAM.

5.1 Data Sets

We use seven data sets from the UCI machine learning
repository (ionosphere, letter, digit and satellite), the LIB-
SVM data (svmguide1-a), and another benchmark reposi-
tory (ringnorm, USPS). The same experimental setup was
set as in [9]. For the letter and satellite data sets, we use their
first two classes only. Several multi-class data sets were cre-
ated from the digits and letter data. The class balance pa-
rameter is always set to l = 0.03n for the balanced data sets,
and l = 0.15n for the imbalanced ones. The basic informa-
tion about these data sets is summarized in Table 2.

5.2 Evaluation Criteria

In the experiments, for the clustering problem, we set the
number of clusters equal the true number of classes for all
the clustering algorithms. To evaluate their performance, we
compare the clusters generated by these algorithms with the
true classes by computing the following two performance
measures.
Clustering Accuracy (Acc) [23]. The clustering accuracy
discovers the one-to-one relationship between clusters and
classes and measures the extent to which each cluster con-
tained data points from the corresponding class. It sums up
the whole matching degree between all pair class clusters.

Table 2 Description of the data sets.

Data Size(n) Feature(d) Class Balance parameter l
Ionosphere 351 34 2 0.15n
LetterA-B 1555 16 2 0.03n
SatelliteC1-C2 2236 36 2 0.15n
Svmguide1-a 3089 4 2 0.15n
Ringnorm 7000 20 2 0.03n
Digits0689 713 64 4 0.03n
Digits1279 718 64 4 0.03n
LetterABCD 3096 16 4 0.03n
USPS 9298 256 10 0.15n

Clustering accuracy can be computed as

Acc =
1
N

max
(Ck ,Lm)

⎛⎜⎜⎜⎜⎜⎜⎝
∑

(Ck ,Lm)

T (Ck, Lm)

⎞⎟⎟⎟⎟⎟⎟⎠ (15)

where Ck denotes the kth cluster in the final results, Lm is the
true mth class and T (Ck, Lm) is the number of entities which
belong to class m and are assigned to cluster k. Accuracy
computes the maximum sum of T (Ck, Lm) for all pairs of
clusters and classes, and these pairs have no overlaps. It is
noted that the greater clustering accuracy means the better
clustering performance.
Rand Index (RI) [23]. Let C = {C1,C2, . . . ,CK} be the set
of final clustering results such that Ci represents the ith clus-
ter, and L = {L1, L2, . . . , LK} denotes the set of true data
classes such that Li represents the ith class. The following
four variables are defined:
a: the number of data pairs in X that are in the same set in
both C and L;
b: the number of data pairs in X that are in different sets in
both C and L;
c: the number of data pairs in X that are in the same set in C
but different sets in L;
d: the number of data pairs in X that are in different sets in
C but the same set in L;

Then, the rand index R that measures the similarity be-
tween C and L can be computed as

R =
a + b

a + b + c + d
(16)

Intuitively, one can think of a + b as the number of agree-
ments between C and L and c+d as the number of disagree-
ments between C and L. The value of R has a value between
0 and 1, with 0 indicating that C and L do not agree on any
pair of data points, and 1 indicating that C and L are exactly
the same.

5.3 Experimental Setups and Comparisons

In the experiments, we set the number of clusters equal to
the true number of classes for all the clustering algorithms.
To evaluate their performance, we compare the clusters gen-
erated by these algorithms with the true classes by comput-
ing the following two performance measures, i.e., Cluster-
ing Accuracy (Acc) and Rand Index (RI) [24]. We have con-
ducted comprehensive performance evaluations by testing
our method and comparing it with the following representa-
tive MMC methods on the same data sets:

(1) Maximum Margin Clustering (MMC) [5]. The width
of the Gaussian kernel is set by exhaustive search from the
grid {0.1σ0, 0.2σ0, . . . , σ0} with σ0 being the range of dis-
tance between any two data points in the data set.

(2) Generalized Maximum Margin Clustering
(GMMC) [8]. The experimental setting is the same as in
[8].
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(3) Cutting Plane Maximum Margin Clustering (CP-
MMC) [23]. The Gaussian kernel is used in CPMMC and
the width of the Gaussian kernel is set in the same way as in
MMC.

(4) Iterative Support Vector Regression (IterSVR) [9].
The initialization is based on the k-means with randomly
selected initial data centers, and the width of the Gaussian
kernel is the same as that of MMC.

(5) Normalized Cut Spectral Clustering (NC) [28]. Using
the Gaussian affinity function to construct the graph Lapla-
cian matrix.

(6) Laplacian Regularized Gaussian Mixture Model
(LapGMM) [29]. A regularized probabilistic model based
on manifold structure for data clustering and the graph struc-
ture is incorporated in the maximum likelihood objective
function.

It is found that the ELM algorithm achieves good
generalization performance as long as L and C are large
enough [13]. Thus, we let C = 500 in this paper. For
both two-class and multiclass EMMC, we use the radial ba-
sis function and the results reported in the following are
averaged over 20 independent runs. In order to analyze
the influence of parameter C and different loss functions,
IterSVM with the hinge loss function [9], IterSVR with the
squared loss function [9] and the EMMC algorithm were
performed on the digit pair of “3” and “9” from the digit data
set, respectively. All algorithms used iterative approaches
based on alternating optimization. The clustering results are
shown in Table 3. As can be seen from Table 3, IterSVR
and EMMC perform better than IterSVM, Since IterSVM
use the hinge loss function which could cause the premature
convergence. By replacing the hinge loss function with the
square loss function, IterSVR and EMMC can effectively
avoid this phenomenon. With the increase of the parameter
C, the performance of EMMC does not vary monotonically.
Thus, C is chosen from the range {2−10, 2−9, . . . , 29, 210} by
cross validation in the next testing.

Firstly, we study the effect of initialization on EMMC
with single output. The two initialization schemes are in-
cluded in the experiment: 1) random; 2) standard k-means
clustering (KM). 3) k-means clustering in ELM random fea-
ture space. Each scheme is repeated 5 times due to the in-
herent randomness. For comparison, we use all 45 pairs of
the digits 0–9 from the optdigit data set in the UCI machine
learning repository. We let L equal the number of training
samples. The average performance of these 45 tasks is re-
ported in Table 3. As can be seen from Table 3, the clus-
tering error of the random scheme is close to 50% error,
EMMC with random initialization has poor performance

Table 3 Average clustering errors on Digits “3” and “9”.

C 0.00001 0.0001 0.001 0.01 0.1 1 100
IterSVM 31.13 21.27 19.7 19.2 19.7 19.46 19.46
IterSVR 14.01 2.98 2.85 3.24 3.76 3.5 3.5
EMMC 13.28 3.25 2.74 3.41 3.58 3.42 3.42

with the poor initialization. This is because EMMC re-
lies on local optimization. Thus, it cannot recover from a
very poor initialization. Meanwhile, it should be noted that
EMMC still improved the clustering accuracy by about 20%
because of its robustness. With better initialization provided
by k-means clustering algorithm, EMMC is able to obtain a
higher clustering accuracy. Similar to kernel k-means clus-
tering algorithms, the performance of the k-means cluster-
ing algorithm can be enhanced by the ELM feature map-
ping. Obviously, EMMC achieves the best clustering accu-
racy based on the last initialization scheme. Thus, the last
initialization scheme was chosen in the next testing.

It should be noted that multiclass EMMC is based on
ELM with single output or multiouputs. Hence, we perform
the multiclass EMMC algorithm on LetterABCD and USPS
data sets in both cases and analyze the influence of differ-
ent numbers of hidden nodes on the clustering results. As
can be seen from Tables 4 and 5, the clustering accuracy
of EMMC with single output is slightly lower than that of
EMMC with multioutputs, while EMMC with single out-
put performs a little faster than EMMC with multioutputs,
which is consistent with the analysis of EMMC in Sect. 4.
Thus, for simplicity, we use the EMMC algorithm with sin-
gle output in both two-class and multiclass clustering, and
then compare it with the other MMC algorithms.

We further perform EMMC with different numbers of
hidden nodes on several data sets, whose size is bigger than
1000. Figure 1 shows the clustering accuracy of EMMC
with various values for L. It can be seen from Fig. 1 that
the clustering accuracy of each data set grows quickly as
the number of hidden nodes increases, but it begin to grow
slowly after the variable L reaches some value. In Fig. 2 the
CPU time of EMMC grows nonlinearly with the increase of
the variable L. In order to achieve good clustering results at
a relatively fast speed, we select the number of hidden nodes

Table 4 Average Performance on the 45 Clustering Tasks Under Differ-
ent Initialization Schemes.

Clustering Scheme Clustering error (%) CPU time (Second)
Random only 48.21 0.001
Random + EMMC 26.37 11.06
Standard KM 3.49 0.025
KM in ELM feature space 2.16 0.28
Standard KM + EMMC 1.84 1.69
KM in ELM feature

1.78 1.95
space+EMMC

Table 5 Clustering Results Comparisons between EMMC with single
output and multiouputs on LetterABCD data set.

The number of EMMC EMMC
hidden nodes L with single output with multioutpus

Acc (%) Time (s) Acc (%) Time (s)
100 40.17 3.36 40.86 3.79
150 56.35 4.70 56.25 5.58
200 60.74 6.27 61.44 7.36
300 68.25 13.32 68.73 14.86
500 69.67 19.68 70.85 22.52
1000 71.53 103.76 71.72 109.69
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Fig. 1 Clustering accuracy of EMMC with various values for L. (a) sev-
eral data sets. (b) USPS.

for each dataset. From Fig. 1 and Fig. 2, it is not difficult
to find out that letting L equal 300 is suitable for letterA-
B, satelliteC1-C2, svmguide1-a and letterABCD. For ring-
norm and USPS, we let L equal 300 and 1000, respectively.
For the rest small data sets, since the training of ELM is
very fast in EMMC, we let L equal the number of train-
ing samples. The clustering results of our algorithm and
other competitive methods are shown in Tables 6–8. The
symbol ‘-’ means that the corresponding algorithm can-
not handle the data set in reasonable time. The symbol
‘*’ means that the corresponding algorithm cannot handle
multiclass problems. It can be seen from Tables 6 and 7
that the proposed EMMC algorithm performs better than
MMC, GMMC, IterSVR and CPMMC. Among the 7 two-
class data sets, EMMC reports 4 best results, which are the
largest among all MMC algorithms. The EMMC, IterSVR
and CPMMC algorithms are more effective than GMMC
and MMC. GMMC is slightly inferior to EMMC. Fur-
thermore, by enforcing the class balance constraint, EMMC
can handle imbalanced data sets well, such as Ionosphere,
SatelliteC1-C2 and Svmguide1-a. Specifically, for multi-
class clustering, the GMMC and IterSVR algorithms can-
not handle multiclass problems, while the clustering results
of EMMC are also comparable with CPMMC. From Ta-
ble 8, we can see that EMMC reports 3 best results among
the 4 multiclass data sets. Only for the Digits0689 data set,

Fig. 2 CPU time (in seconds) of EMMC as a function of the number of
hidden nodes. (a) several data sets. (b) USPS.

Table 6 Clustering Results Comparisons between EMMC with single
output and multiouputs on USPS data set.

The number of EMMC EMMC
hidden nodes L with single output with multioutpus

Acc (%) Time (s) Acc (%) Time (s)
200 42.65 30.51 41.31 32.62
400 75.29 87.90 75.54 92.11
600 87.38 190.56 87.74 196.885
800 92.26 342.21 92.45 350.875
1000 94.47 536.61 94.89 547.045
1200 94.75 742.05 95.03 754.705
1500 95.11 1173.06 95.57 1188.76

Table 7 Clustering Accuracy (In Percent) and Rand Index Comparisons
for Two-Class Problems (The bold element indicates the best performance).

Data
MMC GMMC IterSVR CPMMC EMMC

Acc RI Acc RI Acc RI Acc RI Acc RI
Ionosphere 78.75 0.67 76.50 0.64 70.52 0.55 75.48 0.65 74.73 0.63
Digits1-7 68.75 0.57 97.80 0.96 99.45 0.99 100 1.00 99.26 0.99
Digits8-9 96.25 0.93 84.00 0.73 96.33 0.93 98.12 0.97 98.36 0.97
LetterA-B – – – – 92.80 0.87 95.02 0.92 95.06 0.92
SatelliteC1-C2 – – – – 96.42 0.93 98.79 0.97 97.11 0.95
Svmguide1-a – – – – 83.32 0.72 84.85 0.74 86.63 0.75
Ringnorm – – – – 97.48 0.95 98.37 0.97 98.40 0.97

CPMMC achieves better clustering accuracy than EMMC.
Table 9 compare the CPU time of two-class and multiclass
EMMC with the others, the number inside the bracket is the
average number of iterations in EMMC. As can be seen
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Table 8 Clustering Accuracy (In Percent) and Rand Index Comparisons
for Multiclass Problems (The bold element indicates the best performance).

Data
MMC GMMC IterSVR CPMMC EMMC

Acc RI Acc RI Acc RI Acc RI Acc RI
Digits0689 94.83 0.94 * * * * 96.85 0.97 96.25 0.97
Digits1279 91.90 0.91 * * * * 95.27 0.95 96.37 0.97
LetterABCD – – * * * * 71.76 0.76 78.76 0.79
USPS – – * * * * 96.13 0.97 96.20 0.97

Table 9 CPU Time (In Seconds) For Two-class and Multiclass Problems
(The bold element indicates the best performance).

Data MMC GMMC IterSVR CPMMC EMMC
Ionosphere – 177.48 0.35 4.13 0.14(5)
Digits1-7 – 188.25 0.54 4.89 0.49(5)
Digits8-9 – 181.32 0.55 4.15 0.48(6)
LetterA-B – – 11.21 24.06 7.55(10.08)
SatelliteC1-C2 – – 9.28 32.78 8.90(6.8)
Svmguide1-a – – 25.38 47.45 15.34(13.32)
Ringnorm – – 103.87 221.32 73.02(9.34)
Digits0689 – * * 10.64 8.48(8.74)
Digits1279 – * * 18.93 9.65(9.83)
LetterABCD – * * 129.06 43.32(14.28)
USPS – * * – 536.61(15.46)

Table 10 Clustering Accuracy (In Percent) and Rand Index Compar-
isons for Two-class and Multiclass Problems (The bold element indicates
the best performance).

Data
NC LapGMM EMMC
Acc RI Acc RI Acc RI

Ionosphere 75.12 0.63 73.56 0.62 74.73 0.63
Digits1–7 97.25 0.95 98.37 0.97 99.26 0.99
Digits8–9 91.36 0.86 94.62 0.91 98.36 0.97
LetterA-B 86.24 0.75 90.21 0.90 95.06 0.92
SatelliteC1-C2 95.73 0.92 97.54 0.95 97.11 0.95
Svmguide1-a 76.26 0.64 88.35 0.76 86.63 0.75
Ringnorm – – 94.76 0.91 98.40 0.97
Digits0689 90.26 0.90 89.61 0.87 96.25 0.97
Digits1279 93.35 0.92 90.36 0.90 96.37 0.97
LetterABCD 80.68 0.81 77.36 0.76 78.76 0.79
USPS – – 88.62 0.89 96.20 0.97

from Table 9, the MMC and GMMC algorithms are slow-
est due to the high computation cost of solving SDPs. For
two-class clustering, EMMC is at least 3 times faster than
CPMMC; for multiclass clustering, EMMC also performs
faster than CPMMC. Specifically, CPMMC cannot handle
the larger USPS data set in reasonable time. The proposed
EMMC algorithm can converge very fast, we see that there
are less than 16 iterations for both two-class and multiclass
clustering. Hence EMMC has much better scaling behaviors
with the sample size than other MMC algorithms.

Finally, we compare EMMC with traditional cluster-
ing algorithms. Experimental results are shown in Table 10.
Among the 11 testing data sets, EMMC reports 7 best re-
sults, which indicates that margin maximization principle is
applicable to clustering. The performance of LapGMM is
close to that of NC. Both EMMC and LapGMM can effec-
tively larger data sets, such as the Ringnorm and USPS data
sets, while NC cannot be run on these data sets for the sake
of insufficient memory of our PC. Thus, EMMC performs
better than other MMC and traditional clustering algorithms.

It can handle not only two-class but multiclass problems,
and has good clustering performance at much faster learn-
ing speed.

6. Conclusions

In this paper, we propose an efficient approach for solving
MMC via ELM. While traditional MMC algorithms are
formulated as SDPs or based on the SVM model, our ap-
proach is formulated as a sequence of efficient ELM train-
ing. Meanwhile, the symmetric square loss function in ELM
discourages premature convergence by penalizing overcon-
fident predictions. It is also noted that our method can han-
dle imbalanced data effectively by enforcing the class bal-
ance constraint. Empirically, the clustering performance of
EMMC is comparable to that of the other MMC algorithms.
Moreover, it is much faster and can handle much larger data
sets. In the future, we will study how to extend our cluster-
ing method to the semi- supervised learning setting. In addi-
tion, in order to enhance the performance of EMMC further,
we will combine kernel learning methods with our methods.
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