
1766
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

PAPER

Fast Iterative Mining Using Sparsity-Inducing Loss Functions

Hiroto SAIGO†a), Nonmember, Hisashi KASHIMA††, and Koji TSUDA†††, Members

SUMMARY Apriori-based mining algorithms enumerate frequent pat-
terns efficiently, but the resulting large number of patterns makes it diffi-
cult to directly apply subsequent learning tasks. Recently, efficient iterative
methods are proposed for mining discriminative patterns for classification
and regression. These methods iteratively execute discriminative pattern
mining algorithm and update example weights to emphasize on examples
which received large errors in the previous iteration. In this paper, we study
a family of loss functions that induces sparsity on example weights. Most
of the resulting example weights become zeros, so we can eliminate those
examples from discriminative pattern mining, leading to a significant de-
crease in search space and time. In computational experiments we com-
pare and evaluate various loss functions in terms of the amount of sparsity
induced and resulting speed-up obtained.
key words: discriminative pattern mining, sparsity, support vectors, clas-
sification, regression

1. Introduction

Structured data is becoming increasingly popular in data
mining and machine learning. Much of the worlds’ in-
teresting data are not vectorial (tabular) data, but struc-
tured data such as trees, sequences and graphs. Examples
of such data includes HTML and RNA secondary struc-
tures as trees, time series data as sequence, chemical com-
pounds and social networks as graphs. Influenced by the pi-
oneering work of [1] for mining frequent association rules,
various frequent pattern mining algorithms are developed
for various class of structured data; such as LCM [2] for
itemsets, TREEMINER [3] for trees, PrefixSpan [4] for se-
quences and gSpan [5] for graphs. These frequent structure
enumeration algorithms give us a foundation to apply basic
statistical learning tools on the obtained set of patterns. Fig-
ure 1 represents the corresponding feature space consisting
of frequent subgraph patterns.

However, it is often argued that the number of fre-
quent patterns is too large for the subsequent learning tasks,
thus summarization of frequent patterns is necessary [6]. A
common heuristic to overcome this difficulty is to set sup-
port (frequency of a pattern) high or maxpat (maximum pat-
tern size) low to limit the number of resulting frequent pat-
terns [7].

Manuscript received March 8, 2013.
†The author is with Kyushu Institute of Technology, Iizuka-shi,

820–8502 Japan.
††The author is with University of Tokyo, Tokyo, 113–8656

Japan.
†††The author is with Advanced Industrial Science and Technol-

ogy, Tokyo, 135–0064 Japan.
a) E-mail: saigo@bio.kyutech.ac.jp

DOI: 10.1587/transinf.E96.D.1766

Fig. 1 Feature space based on subgraph patterns. The feature vector con-
sists of binary pattern indicators.

More advanced approaches attempt to mine discrimi-
native graphs by using the labels of examples as external
information source to prune the search space [8]. Correla-
tion or Information gain are typically employed to estimate
the informativeness of patterns and prune uninteresting pat-
terns. However, the set of patterns collected by such a two-
step method is not optimal for different learning tasks.

More recently, substructure boosting approach has
been successfully applied to different learning tasks on var-
ious kinds of data including RNA secondary structure clus-
tering [9], video classification [10], and QSAR [11], [12].
These methods combine statistical learning algorithms with
pattern mining algorithms to directly mine discriminative
patterns which are optimal for the subsequent learning task
in an iterative fashion [13]. The basic strategy is similar to
ordinary boosting where examples which received large er-
rors in the previous iteration are intensively learned in the
next iteration. In each iteration, one feature is added to the
solution set, and the weights for all the previously found
features are updated. The algorithm consists of two parts,
namely, discriminative pattern mining part which searches
for the most discriminative pattern, and the learning part
which computes the example weights. In this paper, we
study a family of loss functions that induce sparsity on ex-
ample weights. The search space formed by both non-sparse
weights and sparse weights is illustrated in Fig. 2. If spar-
sity is enforced, example weights nearby zero (such as those
of the second and the fourth example) on the left shrinks to
zeros. Such examples can be eliminated from subsequent
pattern mining, and the resulting search space for pattern
mining shrinks from one on the left to the one on the right.
Therefore we can expect that pattern mining with sparse ex-
ample weights is more efficient than one with non-sparse
weights, and that we should fully exploit this property.

In machine learning literature, support vector machine
(SVM) is known to achieve sparsity on the example weights,
and only a small fraction of examples receives non-zero
weights (so-called support vectors) [14]. We propose to take
full advantage of sparsity of support vectors for speeding-up

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



SAIGO et al.: FAST ITERATIVE MINING USING SPARSITY-INDUCING LOSS FUNCTIONS
1767

Fig. 2 Comparison of pattern mining with non-sparse example weights (left) to sparse example
weights (right). If sparsity is enforced, example weights nearby zero (such as those of the second
and the fourth example) on the left shrinks to zeros. Such examples can be eliminated from subsequent
pattern mining, and the resulting search space for pattern mining shrinks from one on the left to the one
on the right.

Fig. 3 Loss functions for binary classification (left). Binomial deviance: log(1 + exp(−2y f )), expo-
nential loss: exp(−y f ), squared loss (y − f )2, hinge loss: (1 − y f )+.
Loss functions for regression (right). Squared loss: (y− f )2, hinge loss: (1− y f )+, absolute loss: |y− f |,
ε-insensitive loss |y − f |ε and Huber’s loss: δ2 (y − f )2 if |y − f | ≤ δ and δ(|y − f | − δ/2) otherwise.

pattern mining. Lending the knowledge from sparse kernel
learning methods [14], we study different types of loss func-
tions which induce sparsity.

This paper is organized as follows. In Sect. 2, we
briefly review substructure boosting algorithm to understand
what makes the example weight sparse, and give instances
of loss functions which do not have sparse solutions. Sec-
tion 3 considers regression methods in terms of ability to
achieve sparsity on example weights. Section 4 shows com-
putational results. Section 5 concludes the paper.

2. Review on Substructure Boosting for Classification

This section briefly reviews substructure boosting algo-
rithm. The substructure boosting algorithm constructs a lin-
ear model by progressively adding a feature at each iteration.
Our feature vector is a binary indicator of patterns (Fig. 1),
and a label yi is attached to each feature vector. We repre-
sent the presence or absence of the j-th pattern in the i-th
graph by an indicator function which returns 1 if xi, j ∈ X,
−1 otherwise, where X is a universe of patterns in a given
dataset.

Suppose for a moment that we solve classification
problem, then our classifier is represented as a linear com-

bination of patterns with corresponding weights;

yi = sgn

⎛⎜⎜⎜⎜⎜⎜⎝
p∑

j=1

xi, jβ j

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where yi ∈ 0, 1 is a binary target value of i-th graph, xi

is a length p vector corresponding pattern presence/absence
in the i-th graph, and β is a length p weight vector to be
learned. Note that the potential number of features p is quite
large, so a large amount of memory is required when p is
large. Therefore we regularize the weight vector β with re-
spect to �1 norm so that most of patterns have zero weights.
By employing hinge loss for classification (Fig. 3), our ob-
jective function is written as

min
β

p∑
j=1

|β j| +C
n∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎣1 − yi

p∑
j=1

β j xi, j

⎤⎥⎥⎥⎥⎥⎥⎦
+

,

where C is a regularization parameter and “+” indicates pos-
itive part. By introducing the slack variable ξ, we can for-
mulate a linear programming problem corresponding to the
above objective function.

min
β,ξ

p∑
j=1

|β j| +C
n∑

i=1

ξi (1)



1768
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

s.t. yi

p∑
j=1

xi, jβ j + ξi ≥ 1, ξi ≥ 0 i = 1, . . . , n. (2)

Due to the high dimensionality of β, solving the above pri-
mal problem is hard, thus we consider the equivalent dual
problem;

max
u

n∑
i=1

ui (3)

s.t.
p∑

j=1

uixi jyi ≤ 1, j = 1, . . . , p, (4)

0 ≤ ui ≤ C, i = 1, . . . , n. (5)

This problem has a large number of constraints correspond-
ing to Eq. (4), but column generation algorithm [15] can effi-
ciently solve it by iteratively adding the mostly violated con-
straint. The constraint to be added is determined by solving
the following column generation subproblem;

j∗ = argmax
j

n∑
i=1

uixi jyi. (6)

In our case this is equivalent to finding a pattern with the
maximum absolute weighted support by discriminative pat-
tern mining. For efficiently traversing the search space,
pruning of the search space is crucial. We employ the fol-
lowing pruning condition that makes use of target labels y
as extra information source,

Theorem 1: [16] Let us define

μ(x(), j) = max{2
∑

{i|yi=+1,xi, j=1}
ui −

�∑
i=1

yiui,

2
∑

{i|yi=−1,xi, j=1}
ui +

�∑
i=1

yiui},

where x(), j denotes j-th pattern which appears at least once
in a given data. If the following condition is satisfied,

g∗ > μ(x(), j), (7)

the inequality g(x′(), j) < g
∗ holds for any x′(), j such that x(), j ⊆

x′(), j. So we can safely prune the parent nodes of x(), j without
losing the optimal pattern.

A pseudocode of this substructure boosting algorithm
for classification is shown in Algorithm 1.

2.1 Sparsity on Example Weights

Notice that when C → ∞, then solving (1) amounts to min-
imizing ‖ξ‖1 while ignoring β. This case is known as hard
margin SVM which does not have regularization on β at all.
In the dual, C → ∞ corresponds to removing upperbound
of u in Eq. (5);

max
u

p∑
j=1

u j. (8)

Algorithm 1 Substructure boosting algorithm

1: Initialization: X̂
(0)
= ∅, u(0)

i = 1/n, k = 0
2: loop
3: Find the optimal pattern x∗ based on u(k)

4: if termination condition holds then
5: break
6: end if
7: X̂ ← X̂ ∪ X j∗
8: Solve the restricted dual problem (4 ) to obtain u(k+1)

9: k = k + 1
10: end loop

s.t.
p∑

j=1

uixi jyi ≤ 1, i = 1, . . . , n, (9)

The solution to this linear programming problem occurs at
a vertex of a polyhedron, and most of the resulting u are
zeros. Examples (data points) with nonzero weights u are
known as support vectors in SVM literature [14]. Due to
KKT condition, the following equations hold;

ui

⎛⎜⎜⎜⎜⎜⎜⎝yi

∑
j

xi jβ j − 1 + ξi

⎞⎟⎟⎟⎟⎟⎟⎠ = 0, ui ≥ 0,

yi

∑
j

xi jβ j − 1 + ξ ≥ 0,

that is, either ui = 0 or yi
∑

j xi jβ j − 1 + ξi = 0 holds. In
order to have more sparsity, more data points should satisfy
ui = 0. Geometrically speaking, such a region corresponds
to a flat segment along the x axis in Fig. 3.

The longer the segment, the more sparsity is induced.
Among loss function for classification (Fig. 3), only a hinge
loss function turns out to induce sparsity. Inducing more
sparsity is important in our case because examples with
zero-weights can be eliminated from pattern mining. This
effect is already illustrated in Fig. 2. A figure on the left do
not have sparsity on example weights, while one on the right
has sparsity on example weights; the second and fourth ex-
amples can be eliminated since their examples weights are
zero.

However, the problem of hard margin SVM is that it
does not allow any error points during training, which is
too restrictive in practice. Typically, the trade-off between
sparsity and the number of training errors is controlled by
the regularization parameter C, which is found by a grid
search from between 0 and∞. ν-SVM or its linear program-
ming version (ν-L1SVM) [15] provides us more sophisti-
cated way of choosing regularization parameter. The primal
problem of ν-L1SVM is written as follows;

min
β,ξ,ρ

p∑
j=1

β j +
1
nν

n∑
i=1

ξi − ρ (10)

s.t. yi

p∑
j=1

xi, jβ j + ξi ≥ ρ, ξi ≥ 0, i = 1, . . . , n, (11)

where ν is a regularization parameter chosen from between



SAIGO et al.: FAST ITERATIVE MINING USING SPARSITY-INDUCING LOSS FUNCTIONS
1769

0 and 1. Equivalent dual problem is

max
u,γ
−γ (12)

s.t.
n∑

i=1

yi xi jui ≤ γ, j = 1, . . . , p, (13)

n∑
i=1

ui = 1, 0 ≤ ui ≤ 1
nν
, i = 1, . . . , n.

In the same way as in L1SVM, sparsity is enforced on exam-
ple weights u as we set ν smaller, and recovers hard margin
SVM in the limit ν → 0. Indeed ν controls the sparsity of
the solution [17], and nν is the lower bound of the number of
support vectors [15]. Regarding the regularization parame-
ter ν, the following statements hold:

Theorem 2 ([18]): Assume that the solution of (10) satis-
fies ρ ≥ 0.

1. ν is an upperbound of the fraction of margin errors, i.e.,
the examples with

yi

p∑
j=1

xi, jβ j < ρ, i = 1, . . . , n.

2. ν is a lowerbound of the fraction of the examples such
that

yi

p∑
j=1

xi, jβ j < ρ, i = 1, . . . , n.

Below, we abbreviate ν − L1S V M simply as L1SVM.

2.2 Non-sparse Example Weights of AdaBoost

In this subsection, we review AdaBoost [19] as an example
of iterative learning algorithm which does not have sparsity
on the example weights. AdaBoost iteratively generates a
sequence of hypothesis functions to build a linear model that
maximizes exponential loss (see Fig. 3). The objective func-
tion of AdaBoost is as follows.

min
β,ξ

exp

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

ξi

⎞⎟⎟⎟⎟⎟⎠

s.t. yi

p∑
j=1

xi, jβ j ≤ ξi ξi ≥ 0 i = 1, . . . , n

β j ≥ 0, j = 1, . . . , p

The example weights of AdaBoost is updated by the follow-
ing update rule [19].

ui ← ui exp

(
− log

(
1 − err

err

)
· I(yi � f (xi))

)
, (14)

where err stands for error rates of the current hypothesis.
AdaBoost does not have a regularization on β, and the re-
sulting β is has no structure such as sparsity.

3. Sparse Substructure Boosting for Regression

This section deal with regression problem, so the target re-
sponse value y takes real value. Without loss of generality,
below we assume that y is center to zero. We compare two
regression methods; LASSO (Least Absolute Shrinkage Op-
erator) [20] that not induce sparsity and linear programming
regression that induce sparsity on example weights.

LASSO employs least squared loss (Fig. 3) and �1
regularization with respect to a parameter vector β. The
LASSO regression is formulated by the quadratic program-
ming problem as follows,

min
β,ξ

p∑
j=1

β j +
C
2

n∑
i=1

ξ2i

s.t.
p∑

j=1

xi, jβ j − yi ≤ ξi, yi −
p∑

j=1

xi, jβ j ≤ ξi

ξi ≥ 0, i = 1, . . . , n

where C is a regularization parameter. The dual of the
LASSO is

max
u
− 1

2C

p∑
j=1

u2
j +

n∑
i=1

yiui,

s.t. − 1 ≤ u j

n∑
i=1

yi xi, j ≤ 1, j = 1, . . . , p.

We can see that the example weights u is regularized with
respect to �2-norm. �2-norm locates each u j on the surface of
an p-dimensional Euclid ball, but no one u j becomes zero,
so does not have sparsity. A sparse regression example is
a linear programming regression(LPR) which employs ε-
insensitive loss, and �1 norm on a parameter vector β. The
primal problem of LPR is as follows;

min
β,ξ

n∑
i=1

βi +C
n∑

i=1

ξi +Cνε

s.t.
p∑

j=1

xi, jβ j − yi ≤ ε + ξi, yi −
p∑

j=1

xi, jβ ≤ ε + ξi,

ξi ≥ 0, i = 1, . . . , n

where C and ν are both regularization parameters. ν controls
the ratio of support vectors inside the ε-tube, and C param-
eter controls the trade-off between overfitting and underfit-
ting given ν. KKT condition tells us that either ui = 0 or∑

j xi jβ j−y−ε+ξi = 0 holds. Geometrically speaking, more
data points should lie on a flat region of the ε-insensitive loss
function (Fig. 3) in order to have more sparsity. Sparsity and
accuracy is trade-off [17], and controlled through C and ν.

4. Experiments

In this section, we compare several classification and regres-
sion methods in terms of induced sparsity and the resulting



1770
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 4 Transition of example weights of AdaBoost (left), that of L1SVM (ν = 0.1) (center) and that
of L1SVM (ν = 0.01) (right). The vertical axis shows example ID, and the horizontal axis shows
iterations. Nonzero weights are represented in black, and zero weights are represented in white. Notice
that weights of L1SVM become increasingly sparser as iteration proceeds.

Fig. 5 (left) Evolution of Q2 for AdaBoost and L1SVM as a function of total time in seconds (total
time = optimization time +mining time). (right) Mining time of AdaBoost and L1SVM at each iteration.

Table 1 Datasets Summary. The number of positive data (POS) and
negative data (NEG) are only provided for classification datasets. Average
number of atoms (ATOM) and bonds (BOND) are shown for each dataset.
TIME indicates the time in seconds for enumerating all the frequent pat-
terns up to size 20.

ALL POS NEG ATOM BOND TIME
CPDB 684 341 343 14.1 14.6 7126
EDKB 146 - - 19.5 21.1 2893

mining time. For the purpose of comparing different learn-
ing algorithms in a fair setting, we fix the mining algorithm
to gSpan [5] for graph mining†. We show the basic statistics
of the data used in Table 1.

The CPDB dataset is available from the supplementary
information of [21], and used for classification experiments.
The EDKB data is provided by National Center for Toxico-
logical Research††, and contains 146 molecules with activ-
ity levels in real number. This dataset is used for regression
experiments. We used AMD Opteron 2.6 GHz system with
32 GB RAM for all the experiments. As a reference, fre-
quent mining with minimum support 2 and maximum pat-
tern size 20 was run, and it took 2893 seconds and 7126
seconds on EDKB dataset and CPDB dataset, respectively.
The number of frequent subgraphs up to the size 20 were
4.4 million and 1 million for EDKB and CPDB dataset, re-
spectively.

For classification problem, we compare L1SVM with

Table 2 Influence of the choice of ν parameter on L1SVM. Pat: the
number of patterns with nonzero β, Itr: the number of iterations, ρ: the
margin, Time: total time, SVs: mean ratio of support vectors over the iter-
ations, Acc: the classification accuracy in the training set. We can observe
that ν lowerbounds the number of support vectors.

ν 0.01 0.1 0.2 0.3 0.4
Itr 67 73 47 26 47
Pat 66 65 46 24 46
Time 1410 618 315 156 116
ρ 2.41e-11 0.130 0.0346 0.0809 0.143
SVs 0.537 0.549 0.572 0.585 0.745
Acc 0.993 0.973 0.938 0.892 0.839

AdaBoost in terms of induced sparsity on example weights
and resulting running time. Convergence of L1SVM was
checked using early stopping criterion

∑
yi xi jui ≤ γ + ε,

where ε is set to 0.05. AdaBoost was run 100 iterations.
Figure 4 shows the transition of example weights of

AdaBoost (left) and L1SVM with ν set to 0.1 (center) and
0.01 (right). As expected, AdaBoost does not generates
sparsity on examples weights (left). In contrast, examples
weights of L1SVM become sparser as iteration proceeds
(center, right). Setting ν = 0.1 for L1SVM means that more

†Graph mining toolbox, available from
http://www.nowozin.net/sebastian/gboost/, is used for all the ex-
periments.
††http://edkb.fda.gov/databasedoor.html



SAIGO et al.: FAST ITERATIVE MINING USING SPARSITY-INDUCING LOSS FUNCTIONS
1771

than 10% of examples receive nonzero weights at each it-
eration. Behavior of L1SVM for various regularization pa-
rameter ν is summarized in Table 2. We can observe that ν
lowerbounds the number of support vectors.

Figure 5 (left) shows the evolution of accuracy as a
function of total time for L1SVM and AdaBoost. It is
observed that L1SVM collect discriminative patterns and
learns classifier much faster in total time than AdaBoost.
Figure 5 (right) shows the mining time at each iteration. Due
to the induced sparsity, mining time of L1SVM is shorter
than that of AdaBoost except for last a few iterations. Min-
ing time per iteration was 4.23 seconds and 16.4 seconds
for AdaBoost and L1SVM, respectively. However, the last
iterations of L1SVM did not contribute to the increase in
accuracy, so one can stop it earlier by using validation set.
Then the resulting mining time per iteration is shorter than
that of AdaBoost as we can see in Fig. 5 (right).

Figure 6 shows transition of percentage of support vec-

Fig. 6 Transition of percentage of SVs and mining time for AdaBoost
(left) and L1SVM (right).

Fig. 7 Transition of optimization time and mining time for AdaBoost
(left) L1SVM (right).

Fig. 8 Transition of example weights of LASSO (left), that of LPR (C = 1000, ν = 0.1) (center) and
that of LPR (C = 1000, ν = 0.01) (right). The vertical axis shows example ID, and the horizontal axis
shows iterations. Nonzero weights are represented in black, and zero weights are represented in white.
Example weights of LASSO are not sparse, in contrast to LPR.

tors and mining time for L1SVM and AdaBoost in details.
As AdaBoost does not have sparsity on example weights,
percentage of support vectors for AdaBoost is always 1.00.
In contrast, percentage of support vectors for L1SVM keeps
decreasing (right), which makes significant difference in
mining time. In Fig. 7, we can observe that mining is al-
ways more costly than optimization for AdaBoost (left). On
the other hand, optimization is always more costly than min-
ing for L1SVM except for last a few iterations. Notice that
mining time for L1SVM is a magnitude shorter than that for
AdaBoost, accounting for the effect of induced sparsity.

For regression we compare LASSO with LPR. Conver-
gence of LASSO and LPR was checked using early stopping
criterion

∑n
i=1 xi jui ≤ 1 + ε, where ε was set to 0.05. Ex-

ample weights for pattern mining at each iteration is shown
in Fig. 8. As expected, example weights of LASSO is not
sparse, in contrast to that of LPR. This makes difference in
the size of search space and efficiency in pattern mining.

Table 3 shows the behavior of LPR when changing ν.
We can observe that ν lowerbounds the number of support
vectors. As we set ν larger, more examples (data points)
become support vectors, and pattern mining becomes faster.

Figure 9 (left) shows the evolution of regression accu-
racy Q2 as a function of total time in seconds for LASSO
and LPR. It clearly demonstrates faster learning of LPR
compared with LASSO. Q2 of LPR is almost 1.0 around
700 seconds, but that of LASSO was still around 0.8, and
was 0.85 after another 1800 seconds. Figure 9 (right) shows
the mining time for LASSO and LPR at each iteration. This

Table 3 Influence of the choice of ν parameter on LPR. Pat: the num-
ber of patterns with nonzero β, Itr: the number of iterations, ρ: the mar-
gin, Time: total time, ε: tube size automatic determined by ν, SVs: mean
ratio of support vectors over the iterations, Q2: the regression Q2 in the
training set. The tube size ε is recovered after solving the optimization
problem [14].

ν 0.01 0.1 0.2 0.3 0.4
Itr 118 3 2 2 2
Pat 24 1 1 1 1
Time 2120 34.3 14.6 15.9 15.4
ε 7.23e-12 0.386 0.349 0.261 0.219
SVs 0.382 0.402 0.598 0.645 0.701
Q2 1.00 0.535 0.345 0.359 0.358



1772
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 9 (left) Evolution of Q2 for LASSO and LPR as a function of total time in seconds (total time =
optimization time + mining time). (right) Mining time of LASSO and LPR at each iteration.

Fig. 10 Transition of % of SVs and mining time for LASSO (left) and
LPR (right).

Fig. 11 Transition of optimization time and mining time for LASSO
(left) LPR (right).

figure gives us an interesting observation; mining part of
LASSO is slow, while that of LPR is fast and called many
times. On average, mining time per iteration was 15.1 sec-
onds for LPR, which was much faster than LASSO that took
182 seconds on average. One interpretation of this obser-
vation is that LPR successfully split the original problem
into many small parts, while LASSO tried to solve the hard
original problem directly, which turned out to be more time
consuming in this case.

Figure 10 and Fig. 11 give us more detailed informa-
tion. Figure 10 shows percentage of support vectors for
LASSO and LPR in details. As LASSO does not have spar-
sity on example weights, percentage of support vectors for
LASSO is always 1.00 after the first iteration. In contrast,
percentage of support vectors for LPR is less than 1.00 un-
til last a few iterations, which makes significant difference
in mining time. In Fig. 11, we can observe that time used

for mining is almost always shorter than time used for opti-
mization in LPR, but vice verse in LASSO.

5. Conclusion

In this paper we proposed to use loss functions that induce
sparsity on example weights for speeding-up discriminative
pattern mining. We compared popular loss functions in clas-
sification and regression in terms of induced sparsity and
resulting mining time. Computational experiments on real-
world datasets showed that either exploiting sparsity or not
makes large difference in pattern mining. It is worth not-
ing that other iterative mining method for classification and
regression can also benefit the claim of this paper and en-
joy sparsity by carefully choosing loss functions. Resulting
efficiency will be appreciated especially when mining prob-
lem is hard and time consuming such as the case of frequent
graph mining. From an optimization point of view, one does
not have to limit a loss function to convex one, but can em-
ploy, e.g., ramp loss function [22], which is not convex but
induce improved sparsity, for solving large problems.

References

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining associ-
ation rules,” Proc. 20th International Conference on Very Large
Databases, pp.487–499, 1994.

[2] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver.3: Collaboration of
array, bitmap and prefix tree for frequent itemset mining,” OSDM
’05: Proc. 1st international workshop on open source data mining,
pp.77–86, 2005.

[3] M.J. Zaki, “Efficiently mining frequent trees in a forest: Algorithms
and applications,” IEEE Trans. Knowl. Data Eng., vol.65, no.1-2,
pp.33–52, 2005.

[4] J. Pei, J. Han, B. Mortazavi-asl, J. Wang, H. Pinto, Q. Chen, U.
Dayal, and M. Hsu, “Mining sequential patterns by pattern-growth:
The prefixspan approach,” IEEE Trans. Knowl. Data Eng., vol.16,
no.11, pp.1424–1440, 2004.

[5] X. Yan and J. Han, “gSpan: Graph-based substructure pattern min-
ing,” Proc. 2002 IEEE International Conference on Data Mining,
pp.721–724, IEEE Computer Society, 2002.

[6] Y. Xiang, J. Ruoming, F. David, and F.F. Dragan, “Succinct summa-
rization of transactional databases: An overlapped hyperrectangle
scheme,” KDD ’08: Proc. 14th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, New York, NY,



SAIGO et al.: FAST ITERATIVE MINING USING SPARSITY-INDUCING LOSS FUNCTIONS
1773

USA, pp.758–766, 2008.
[7] N. Wale and G. Karypis, “Comparison of descriptor spaces for

chemical compound retrieval and classification,” Proc. 2006 IEEE
International Conference on Data Mining, pp.678–689, 2006.

[8] B. Bringmann, A. Zimmermann, L.D. Raedt, and S. Nijssen, “Don’t
be afraid of simpler patterns,” 10th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases (PKDD),
pp.55–66, 2006.

[9] K. Tsuda and K. Kurihara, “Graph mining with variational dirich-
let process mixture models,” SIAM Conference on Data Mining
(SDM), 2008.

[10] S. Nowozin, G. Bakir, and K. Tsuda, “Discriminative subsequence
mining for action classification,” Proc. 11th IEEE International Con-
ference on Computer Vision (ICCV 2007), pp.1919–1923, IEEE
Computer Society, 2007.

[11] H. Saigo, N. Krämer, and K. Tsuda, “Partial least squares regression
for graph mining,” Proc. 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2008.

[12] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda,
“gBoost: A mathematical programming approach to graph classifi-
cation and regression,” Mach. Learn., vol.75, no.1, pp.69–89, 2009.

[13] H. Kim, S. Kim, T. Weninger, J. Han, and T. Abdelzaher, “Ndpmine:
Efficiently mining discriminative numerical features for pattern-
based classification,” European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases (PKDD), pp.35–50,
2010.

[14] B. Schölkopf and A.J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond, MIT
Press, 2002.

[15] A. Demiriz, K. Bennet, and J. Shawe-Taylor, “Linear program-
ming boosting via column generation,” Mach. Learn., vol.46, no.1-3,
pp.225–254, 2002.

[16] T. Kudo, E. Maeda, and Y. Matsumoto, “An application of boosting
to graph classification,” in Advances in Neural Information Process-
ing Systems 17, pp.729–736, MIT Press, 2005.

[17] I. Steinwart, “Sparseness of support vector machines,” J. Machine
Learning Research, vol.4, pp.1071–1105, 2003.

[18] G. Rätsch, S. Mika, B. Schölkopf, and K.R. Müller, “Constructing
boosting algorithms from SVMs: An application to one-class clas-
sification,” IEEE Trans. Pattern Anal. Mach. Intell., vol.24, no.9,
pp.1184–1199, 2002.

[19] Y. Freund and R. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Computer and
System Sciences, vol.55, no.1, pp.119–139, 1996.

[20] R. Tibshrani, “Regression shrinkage and selection via the LASSO,”
J. Royal. Statist. Soc B., vol.58, no.1, pp.267–288, 1996.

[21] C. Helma, T. Cramer, S. Kramer, and L. Raedt, “Data mining and
machine learning techniques for the identification of mutagenic-
ity inducing substructures and structure activity relationships of
noncongeneric compounds,” J. Chem. Inf. Comput. Sci., vol.44,
pp.1402–1411, 2004.

[22] R. Collobart, J. Weston, and L. Bottou, “Trading convexity for scal-
ability,” Proc. 23rd International Conference on Machine Learning,
pp.201–208, 2006.

Hiroto Saigo is an associate professor of
Department of Bioscience and Bioinformatics,
Kyushu Institute of Technology since 2010. Af-
ter completing his Ph.D. in Informatics from
Kyoto University in 2006, he worked as a re-
search scientist at the Department of Empirical
Inference, Max Planck Institute for Biological
Cybernetics, Germany until 2008. From 2008
through 2010, he was a research scientist at the
Department of Bioinformatics, Max Planck In-
stitute for Informatics, Germany. His research

interests are in machine learning and its application to solving bioinformat-
ics/cheminformatics problems.

Hisashi Kashima has been an associate
professor of Department of Mathematical Infor-
matics, The University of Tokyo since August,
2009. Before joining the faculty, he was a re-
search staff member of Data Analytics Group
in Tokyo Research Laboratory of IBM Research
during April, 1999-July, 2009. He is working
on machine learning and data mining research
and their applications to bioinformatics, auto-
nomic computing, and industrial & business in-
telligence. His previous research work includes

development of kernel methods for structured data such as trees and graphs,
predictive modeling of networks including biological and social networks,
and anomaly detection for industrial systems, and those contributions were
awarded by academic societies. He also contributes to business based on
machine learning techniques, and has many issued and disclosed patents.
He obtained his B.S. degree in applied mathematics and physics in 1997,
and a M.S. degree in systems engineering in 1999, and a Ph.D. degree in
informatics in 2007 from Kyoto University in Japan.

Koji Tsuda is Senior Research Scientist at
AIST Computational Biology Research Center.
After completing his Dr.Eng. in Kyoto Univer-
sity in 1998, he joined former Electrotechnical
Laboratory (ETL), Tsukuba, Japan, as Research
Scientist. When ETL is reorganized as AIST
in 2001, he joined newly established Computa-
tional Biology Research Center, Tokyo, Japan.
In 2000-2001, he worked at GMD FIRST (cur-
rent Fraunhofer FIRST) in Berlin, Germany, as
Visiting Scientist. In 2003-2004 and 2006-2008,

he worked at Max Planck Institute for Biological Cybernetics, Tuebingen,
Germany, first as Research Scientist and later as Project Leader. He has
published more than 80 papers in refereed conferences and journals, and
served as an area chair and a program committee member in leading ma-
chine learning conferences such as NIPS and ICML. IPSJ Nagao Award
(2009).


